

www.enisa.europa.eu European Union Agency For Network And Information Security

Advanced artefact analysis
Advanced static analysis

HANDBOOK, DOCUMENT FOR TEACHERS

OCTOBER 2015

http://www.enisa.europa.eu/

Advanced artefact analysis
Advanced static analysis

02

About ENISA

The European Union Agency for Network and Information Security (ENISA) is a centre of network and
information security expertise for the EU, its member states, the private sector and Europe’s citizens.
ENISA works with these groups to develop advice and recommendations on good practice in information
security. It assists EU member states in implementing relevant EU legislation and works to improve the
resilience of Europe’s critical information infrastructure and networks. ENISA seeks to enhance existing
expertise in EU member states by supporting the development of cross-border communities committed to
improving network and information security throughout the EU. More information about ENISA and its
work can be found at www.enisa.europa.eu.

Authors
This document was created by Yonas Leguesse, Christos Sidiropoulos, Kaarel Jõgi and Lauri Palkmets in
consultation with ComCERT1 (Poland), S-CURE2 (The Netherlands) and DFN-CERT Services (Germany).

Contact
For contacting the authors please use cert-relations@enisa.europa.eu
For media enquiries about this paper, please use press@enisa.europa.eu.

Acknowledgements
ENISA wants to thank all institutions and persons who contributed to this document. A special ‘Thank You’
goes to Filip Vlašić, and Darko Perhoc.

1 Dawid Osojca, Paweł Weżgowiec and Tomasz Chlebowski
2 Don Stikvoort and Michael Potter

Legal notice
Notice must be taken that this publication represents the views and interpretations of the authors and
editors, unless stated otherwise. This publication should not be construed to be a legal action of ENISA or
the ENISA bodies unless adopted pursuant to the Regulation (EU) No 526/2013. This publication does not
necessarily represent state-of the-art and ENISA may update it from time to time.

Third-party sources are quoted as appropriate. ENISA is not responsible for the content of the external
sources including external websites referenced in this publication.

This publication is intended for information purposes only. It must be accessible free of charge. Neither
ENISA nor any person acting on its behalf is responsible for the use that might be made of the
information contained in this publication.

Copyright Notice
© European Union Agency for Network and Information Security (ENISA), 2015
Reproduction is authorised provided the source is acknowledged.

https://www.enisa.europa.eu/
mailto:cert-relations@enisa.europa.eu
mailto:press@enisa.europa.eu.

Advanced artefact analysis
Advanced static analysis

03

Table of Contents

1. Training introduction 6

2. Introduction to IDA Pro 7

 Opening and closing samples 7

 IDA Pro interface 11

 Exercise 13

 Disassembly view 16

 Basic navigation 20

 Exercise 24

 Functions 24

 Enhancing assembly code 29

 Exercise 42

 Exercise 43

 Summary 43

3. Recognizing important functions 44

 Using call graphs 44

 Exercise 50

 Using cross references 54

 Exercise 63

 Summary 63

4. Functions analysis 64

 Analysis of network function 64

 Analysis of WinMain 78

 Analysis of thread function 84

 Exercise 94

 Summary 95

5. Anti-disassembly techniques 96

 Linear sweep vs. recursive disassemblers 96

 Anti-disassembly techniques 98

Advanced artefact analysis
Advanced static analysis

04

 Analysis of anti-disassembly techniques 99

5.3.1 Analysis of a call to loc_40101A 99
5.3.2 Analysis of a call to loc_401045 102
5.3.3 Analysis of a call to sub_401065 105
5.3.4 Analysis of a call to sub_4010B2 107
5.3.5 Analysis of a call to sub_40116D 109

 Exercise 112

6. Training summary 113

Appendix A: Answers to exercises 114

Exercise 2.3 114

Exercise 2.6 115

Exercise 2.9 115

Exercise 4.4 117

Exercise 5.4 117

Exercise 6.4 119

Advanced artefact analysis
Advanced static analysis

05

Main

Objective

The main goal of this training is to teach the participants all aspects of a static artefact analysis.

During the first part they are taught how to approach the disassembly of binary code,

recognize basic programming language structures and navigate through the disassembled

code. This part is conducted with non-malicious binary code for safety reasons.

Second part of the exercise focuses on characteristic patterns in assembly code that can be

found in popular artefacts. The participants will learn to quickly recognize these common

patterns which adds to the effectiveness of their further work.

Eventually, the instructor guides the class through real-world samples of known threats

while gradually increasing level of their complexity.

Targeted

Audience

CSIRT staff involved with the technical analysis of incidents, especially those dealing with

sample examination and malware analysis. Prior knowledge of assembly language and

operating systems internals is highly recommended.

Total Duration 8-12 hours

Frequency Once for each team member

Advanced artefact analysis
Advanced static analysis

06

1. Training introduction

In this training, students will learn the fundamentals of advanced static analysis. During the training, students will

have an opportunity to disassemble live malware samples with the help of IDA Free3 disassembler to determine their

functionality and gain additional knowledge of how malicious code works.

During the first part of the training, students will be introduced to the IDA disassembler, which is currently most

widely used disassembler. They will learn how to navigate through the code, use different views and functions, as

well as how to enhance and comment disassembled code. Next, students will learn how to find key parts in the code

and how to analyse disassembled functions. Finally, they will learn basic anti-disassembly techniques.

After the training, students will have learned:

 How to effectively use IDA to disassemble malicious code

 How to customize IDA workspace

 How to create call graphs and use them to find important functions

 How to use cross references

 How to analyse disassembled functions

 How to recognize some anti-disassembly techniques

Students should be familiar with the material presented during the first part of the training “Introduction to

Advanced Artifact Analysis” before starting this exercise, as it contains key knowledge required through the whole

course. At this point, students should be already familiar with x86 assembly language and principles of malicious

artefact analysis. Students should also have knowledge about Microsoft Windows system internals. Prior completion

of second part “Advanced dynamic analysis” training is also advisable.

In this training you will be using real malware samples. Since only static analysis will be performed and samples

won’t be executed, it is not necessary to restore a clean snapshot after each exercise. However, in case you

accidentally execute a malware sample, you should perform all analyses in an isolated environment. As a matter of

principle: execute caution when dealing with malware samples at all times!

3 Freeware version of IDA v5.0 https://www.hex-rays.com/products/ida/support/download_freeware.shtml (last
accessed 11.09.2015)

https://www.hex-rays.com/products/ida/support/download_freeware.shtml

Advanced artefact analysis
Advanced static analysis

07

2. Introduction to IDA Pro

During the first part of the training, you will learn how to use IDA Free disassembler, which is a powerful tool allowing

an analyst to effectively analyse disassembled code. In this training you will examine the binary of the popular SSH

client – PuTTY4. Since this code is not malicious, you don’t need to worry about accidentally executing it.

 Opening and closing samples
Copy putty.exe sample to the Desktop and start IDA Free disassembler.

At the beginning of the session you will be presented with the About window. Just click Ok.

In the next window you will be asked whether to disassemble a new file or just start IDA. Click Go button. You can

also check “Don’t display this dialog box again” option to prevent IDA from displaying this dialog each time.

4 PuTTY: A Free Telnet/SSH Client http://www.chiark.greenend.org.uk/~sgtatham/putty/ (last accessed 11.09.2015)

http://www.chiark.greenend.org.uk/~sgtatham/putty/

Advanced artefact analysis
Advanced static analysis

08

You will be now presented with the main IDA Free workspace window.

Open putty.exe file by choosing File->Open… or dragging putty.exe binary onto the disassembler window.

Now you will be presented with the Load a new file window. In this window, the analyst can choose various options

regarding how IDA should open and analyse selected sample.

Advanced artefact analysis
Advanced static analysis

09

When opening a new sample, IDA tries to recognize sample’s file format and properly set default options. At the top

of the window there is a list with file formats recognized by IDA. Here you can see that IDA correctly recognized

putty.exe as a Portable executable for 80386 file. However, IDA still gives you the chance to load putty.exe as a MS-

DOS executable or plain binary file.

If you had chosen to load putty.exe as a Binary file, IDA would have loaded file contents at given memory address

(specified with Loading offset parameter) without doing extensive analysis. For example it wouldn’t try to read PE

headers nor recognize the import address table (IAT) or check entry point address.

The next option is a drop-down list with processor types. Since assembly code for various processors differs you may

choose here what processor type IDA Pro should use when disassembling binary.

Below, there are various other options telling IDA how it should analyse binary. In most cases when analysing typical

Portable Executable (PE) binaries you can leave the default options selected. Click on each of the “options” buttons

to see the parameters of analysis that IDA Free offers.

In this exercise, leave all default options set as shown on the screenshot and press Ok button.

Now IDA will start disassembling and perform an initial (background) analysis process. It might take several seconds

or even a few minutes for larger and more complex binaries. When the analysis is finished you will see an appropriate

message in the message log box at the bottom of the window.

Advanced artefact analysis
Advanced static analysis

10

Now take a look at the directory where putty.exe is located. You should notice four new files: putty.id0, putty.id1,

putty.nam and putty.til. Those are database files where IDA stores runtime information about current analysis

(disassembled code, comments, labels, etc.).

When finishing the analysis by either quitting IDA Pro or selecting File->Close, IDA will ask whether to pack database

files (Pack database (store) - recommended) or leave unpacked files. You can also choose to finish analysis without

saving any results (DON’T SAVE the database option).

Advanced artefact analysis
Advanced static analysis

11

If you choose to pack the database, a single putty.idb file is created instead of four database files. To continue the

analysis later just open this file in IDA. If you are restoring clean snapshots of the virtual machine, remember to

preserve .idb files to not lose the results of your work.

 IDA Pro interface
First, load putty.exe as described in the previous step (or open a saved session). After IDA finishes its analysis, you

are presented with the default IDA workspace consisting of various windows and other elements. At a first glance

IDA interface may look quite complicated but it will become much clearer when you get to know it better.

Advanced artefact analysis
Advanced static analysis

12

The central part of the workspace is occupied by the Windows area (4). IDA uses multiple windows to present various

types of information about the disassembled binary. Among the most frequently used windows are:

 IDA View-A – window with disassembled code

 Hex View-A – hex view of disassembled binary

 Imports – functions imported in Import Address Table

 Functions – list of local functions recognized by IDA in disassembled code

 Strings – list of strings found in executable

To switch between windows you can use Windows tabs (3). If you accidentally close any of the windows you can

bring it back using the View->Open sub views menu or a corresponding shortcut key.

Advanced artefact analysis
Advanced static analysis

13

Right above the window tabs there is an Overview navigator (2) panel. This panel is used to present your current

location in the disassembled code/hex view within the address space of the loaded sample.

Switch to Hex View-A window and scroll up and down to observe how it changes your current position (pointed by

the yellow arrow). Note that different colours are used to indicate different types of data at given address (e.g. dark

blue means regular function)5.

The last three elements of the IDA workspace are: toolbars area (1) – to quickly access certain IDA functions, graph

overview (5) – to quickly navigate disassembled code and the output window (6) – to present various information

outputted by IDA.

 Exercise
Take some time to switch between the different data views (windows) and check what type of data is presented in

each of them.

 Name a few functions imported by PuTTY executable.

 What sections are present within executable?

 What do strings tell you about this binary?

5 Full colours legend can be checked in Options->Colors…->Navigation band menu.

Advanced artefact analysis
Advanced static analysis

14

One of the problems with the default layout of the IDA Free is that rarely used functions occupy too much space

while most frequently used ones (disassembly window and functions window) have too little space left. We will now

customize the default layout to use available space more effectively. Additionally it always helps to perform an

analysis on a bigger screen whenever possible.

Let’s get rid of some of the toolbars first (toolbar functions can be accessed through menus or shortcuts). Right

click on the toolbars (1) and uncheck unnecessary toolbars in the context menu.

It is up to you which of the toolbars you want to use. You can even decide to remove all toolbars. In the example

below we display the following toolbars:

 Main

 Files

 Navigation -> Jumps

 Navigation -> Navigation

 Navigation -> Graph overview

 Disassembly -> Cross references

 Graphs

It is also worth resizing output window (6), which is rarely used during analysis.

Advanced artefact analysis
Advanced static analysis

15

Next, rearrange all the windows and toolbars to give IDA a cleaner look. Since the functions window and disassembly

window will be very frequently used, it is good to have them on top. Moreover, it is also good to maximize IDA

window if you haven’t done so already.

When you are satisfied with the layout, save it using Windows->Save desktop option.

Advanced artefact analysis
Advanced static analysis

16

Now whenever you start a new analysis or your layout gets messed up you can quickly restore it using Windows-

>Load desktop option.

 Disassembly view
Central to IDA Pro is the assembly view (IDA View-A). In the assembly view, IDA presents disassembled code along

with all recognized functions.

There are two types of the assembly view: text view and graph view. To switch between the text and graph views,

click on the assembly view (IDA View-A) and press the spacebar.

In text view, you can see a linear listing of all disassembled instructions. Text view is useful when you want to analyse

parts of the code that IDA hasn’t recognized as proper functions.

Notice the dashed and solid lines on the left side of the text view. They are used to indicate conditional and

unconditional jumps, respectively. If you click on jump destination, IDA will highlight destination label as well as a

corresponding arrow.

The second type of assembly view is graph view. In the graph view, as the name suggests, IDA presents disassembled

code in the form of a graph, where nodes are represented by blocks of disassembled code and lines are branches

and unconditional jumps. For each recognized function, IDA creates a separate graph; that is, each graph represents

only a single function. Graph view is useful to quickly figure out the execution flow of a function.

Advanced artefact analysis
Advanced static analysis

17

Different colours of the lines are used to indicate different types of code transitions:

 Green – preceding jump is taken

 Red – jump is not taken

 Blue – normal branches (unconditional jump or just transition to the next instruction)

You can also hover the cursor over branches. IDA will show a small hint window with a code snippet about where a

branch is leading. This is useful if a branch leads to a location outside the current screen.

Sometimes you will want to get a higher level grasp of the code flow in the function. In such a situation, it is useful

to zoom out the graph view with Ctrl + Scroll button.

Advanced artefact analysis
Advanced static analysis

18

Another very useful feature of IDA is its highlighting capability. You can click on almost any name (register, operation,

variable, comment, etc.) and IDA will highlight every other occurrence of this name. For example, you can highlight

push/pop operations to track registry changes or highlight a particular registry to track which instructions are

changing it.

Advanced artefact analysis
Advanced static analysis

19

By default when viewing code in graph view, IDA doesn’t show instruction addresses. If you would like to see

instruction addresses while staying in graph view choose Options->General… and select Line prefixes option.

Now when viewing code in graph view, you will also see instruction addresses. For convenience you will use this in

the rest of the document so you could always easily navigate to the part of the code pointed by the screenshot.

Advanced artefact analysis
Advanced static analysis

20

At the end, it is worth mentioning that if IDA doesn’t recognize part of the code as a proper function, graph view will

be unavailable. You can recognize this situation when instruction addresses in text view are red and it is impossible

to switch to graph view. You will see how to deal with this situation later.

 Basic navigation
When reverse engineering a disassembled binary, you will spend most of your time trying to figure out which code

parts are important and what each function is doing. Thus it is crucial to learn how to navigate through the code

effectively and quickly.

One of the easiest ways to navigate through code is to use the functions window. Just find an interesting function

name and double click it to move to this function instantaneously. For example, go to the sub_4457D6 function.

Moreover, if the functions list is long you can click the functions window and start typing a function name. At the

bottom of the window, you can observe the characters you have typed and if a function with a given name exists, it

will be selected automatically.

Advanced artefact analysis
Advanced static analysis

21

As you may have noticed, some of the functions in the functions list are named differently than sub_XXXXXX.

Examples of such functions are _fwrite, _strcat, _sscanf, etc. With a few exceptions those are library functions

statically linked to the binary during compilation.

If you resize the functions window, such functions will be marked with capital L in sixth column6.

Moreover if you take a look at the overview navigator bar, library functions are marked with cyan colour.

Statically linked functions are pretty much indistinguishable from normal code. To distinguish them, IDA uses a

special FLIRT engine7, which uses the signatures of functions from popular and well-known libraries. More advanced

users can try to extend FLIRT with their own signatures; however, this topic is not covered in this training.

6 To check meaning of other columns refer to https://www.hex-rays.com/products/ida/support/idadoc/586.shtml
(last accessed 11.09.2015)
7 IDA F.L.I.R.T. Technology: In-Depth https://www.hex-rays.com/products/ida/tech/flirt/in_depth.shtml (last
accessed 11.09.2015)

https://www.hex-rays.com/products/ida/support/idadoc/586.shtml
https://www.hex-rays.com/products/ida/tech/flirt/in_depth.shtml

Advanced artefact analysis
Advanced static analysis

22

Go back to the WinMain function and look at the group of four calls at the beginning of the routine.

There are four types of calls you will see most frequently in disassembled code:

 Calls to local routines (e.g. call sub_XXXXXX)

 Calls to the address stored in memory (e.g. call dword_XXXXXX)

 Calls to location pointed by register or local variable (e.g. call eax)

 Calls to WinAPI or other library functions (e.g. call ds:CreateProcessA)

The most troublesome are usually calls to addresses stored in memory and calls to locations pointed by register.

This is because determining the destination address of such a call usually requires more detailed code inspection

and good code understanding.

In the above example, we see three calls to local functions (sub_44B2C5, sub_441535, sub_44AE44) and one call to

WinAPI function InitCommonControls. To quickly navigate to sub_44B2C5, double click its name.

In a similar way, you can also click on data offsets to move to the location of the data in memory. For example,

double click on aWs2_32_dll, a name given by IDA to the string “ws2_32.dll” defined in memory in section .rdata at

the address 0x473EF0.

Advanced artefact analysis
Advanced static analysis

23

Now to go back to WinMain quickly press the <Esc> key twice. It will move you back to the WinMain routine.

Respectively, to move forward, press <Ctrl> + <Enter> and you will be back in sub_44B2C5. You can also use the

Jumps toolbar:

When dealing with large and complicated functions, it is useful to use the small Graph overview window to navigate

within the code of a function. The Graph overview window should be present whenever disassembly view is active

and its current mode is graph view. If you accidentally close Graph overview window, open it using View -> Toolbars

-> Navigation -> Graph overview.

If the function graph is too big to fit your current disassembly view size, your current position will be marked with a

small dotted rectangle within the Graph overview window. This rectangle will change size whenever you zoom in or

out of the function graph.

You can move this rectangle or just click on any part of the Graph overview to move to the chosen part of the

function. Now try to inspect function sub_44F102 using only the Graph overview window.

Advanced artefact analysis
Advanced static analysis

24

Often, you know the particular memory address that you would like to inspect but you don’t know which function it

belongs to. In such situations, you can use Jump to address feature (Jump -> Jump to address… or press <g>).

In this dialog, you can enter any hexadecimal address within the memory range of analysed binary (e.g. 0x440C74)

or any name recognized by IDA like a function name or certain label (e.g. sub_40E589, loc_40E5CA).

 Exercise
Take some time to navigate through the various functions of disassembled PuTTY binary.

 Find function sub_4497AE. What API calls are made within this function?

 Go to the address 0x406AFB. To which function does this address belong?

 Go to the address 0x430EAB. Is there anything special about the instructions stored at this address?

 Functions
When loading a new binary sample, IDA performs an extensive auto analysis. During this process, IDA tries to find

all the functions defined in assembly code as well as determine their arguments, variables or calling convention.

Each detected function, whether it is a normal function or a library function, is listed in functions window.

The WinMain function provides a good example of IDA’s analysis capabilities:

Advanced artefact analysis
Advanced static analysis

25

Each function begins with a function prototype header (1). In this example, IDA recognized the function prototype,

function calling convention (stdcall) and arguments types (HINSTANCE, HINSTANCE, LPSTR, int.).

However, IDA doesn’t always properly recognize function prototypes. Consequently, if you obtain additional

information about the calling convention, arguments or return value during analysis, you can edit the function

prototype by clicking on the function name and choosing Edit->Functions->Set function type… from the menu.

This provides IDA with additional information about the function and help analyse rest of the code.

Below the function header is a list of local variables (2) and function arguments (3). IDA tracks how those variables

are used in the code and then tries to suggest their names. For example, if a variable is used only to store result of a

call to GlobalAlloc()8, IDA might name it “hMem”. If IDA is unsuccessful with naming variables, it will give them

ordinary names such as arg_0, arg_4, etc., for arguments and var_4, var_8, etc., for local variables.

Notice the offsets to the right of the variable names (5). The offsets tell the position of a variable on the stack in

reference to the stack frame of the function. This is also how you can distinguish local variables from function

arguments. Local variables will always have negative offsets while function arguments will have positive offsets.

arg_8 ebp+10

arg_4 ebp+C

arg_0 ebp+8

ret. addr. ebp+4

ebp ebp

var_4 ebp-4

var_8 ebp-8

var_C ebp-C

Additionally, if you double click on any of the variable names, IDA will open a stack frame window for the current

function. Using stack window, you can get a better understanding of how variables and arguments are positioned

on the stack. At this point you should also remember that what IDA sees as a group of separate variables might as

well be a structure or some array.

8 Allocates specific number of bytes from the process heap and returns handle to the allocated memory object.

Advanced artefact analysis
Advanced static analysis

26

Another important thing to know is how IDA references variables in the function body. This differs depending on

whether the function uses an EBP-based stack frame or an ESP-based stack frame9. In functions with EBP-based stack

frames, all variables are referenced relative to the EBP register. WinMain or sub_42FCAD are examples of such

functions.

You can recognize EBP-based functions by the typical function prologue in which in the first instruction EBP register

is pushed onto the stack (push ebp).

The second type of functions are those with an ESP-based stack frame. In such functions, the EBP register isn’t

preserved and all variables are referenced relative to the ESP register. Example of such a function is sub_40486C.

9 All About EBP http://practicalmalwareanalysis.com/2012/04/03/all-about-ebp/ (last accessed 11.09.2015)

http://practicalmalwareanalysis.com/2012/04/03/all-about-ebp/

Advanced artefact analysis
Advanced static analysis

27

In some situations, IDA doesn’t properly recognize functions. Sometimes, this requires correcting the code first –

either manually or by a custom script, but sometimes it is enough to tell IDA to create a function at the given address.

Example of a function that IDA did not properly recognize is code at address 0x430E38:

Fortunately, this code doesn’t require any changes and is not using any anti-disassembly techniques. To create a

function, click on the first instruction (push ebp) and choose Edit->Functions->Create function…

Advanced artefact analysis
Advanced static analysis

28

IDA should now recognize this part of the code as a proper function and you should be able to switch to the graph

view.

Unfortunately, this won’t always work – especially if malware is using anti-disassembly techniques. In such case you

may do analysis using only text view mode or try to correct code manually.

Additionally, if you believe a function was wrongly recognized, you can click on the function’s name in the code and

choose Edit->Functions->Edit function… to change various function parameters like the function’s start or end

address. To get more information about those parameters refer to IDA help file. Moreover, if for some reason you

would like to delete a function, just click on its name in the code and choose Edit->Functions->Delete function.

Advanced artefact analysis
Advanced static analysis

29

 Enhancing assembly code
When analysing disassembled code, it is important to document all of your findings properly. This will gradually make

the code easier to understand and track its execution flow. It will be also helpful if you decide to return to the analysis

later or share your results with someone else.

Fortunately IDA offers a lot of means to document code and improve its readability, such as:

- Editing numbers format and using symbolic constants

- Renaming functions, variables, names

- Adding comments

- Changing graph node colour

- Grouping one or several nodes

To show how to use the features that can improve assembly readability, go to the function sub_44D262 (0x44D262).

This function takes one unknown argument (arg_0) and uses a few variables, two of them IDA named FileName and

FindFileData.

In the function body you will see a few API calls to functions such as GetWindowsDirectoryA, FindFirstFileA,

FindNextFileA, GetProcAddress, etc.

Advanced artefact analysis
Advanced static analysis

30

There are also some unknown calls to an address stored in registers:

And calls to functions pointed by some global variable:

Such calls make analysis more difficult because you don’t know where those calls are leading to.

To start improving code readability, first look at the graph nodes with calls to GetProcAddr.

In total, there three such calls in sub_44D262. You can read the name of the function being resolved from the

value pushed onto stack (CryptAcquireContextA). After the call to GetProcAddress, the result is saved to the

memory location pointed by dword_47E0C8.

You can rename this memory location by clicking on dword_47E0C8 and pressing <n> key. Rename it to

CryptAcquireContextA.

Advanced artefact analysis
Advanced static analysis

31

After pressing Ok you will be informed that name exceeds 15 characters. Ignore this warning and click Yes.

Now the code should look like this:

Repeat this step for the remaining two calls to GetProcAddress in sub_44D262 (CryptGenRandom,

CryptReleaseContext). Make sure that you rename the memory locations exactly the same as the names of the

resolved functions.

Next, scroll down to the location where the calls to the functions pointed by memory address (call dword_XXXXXX)

were previously. Notice how they changed?

Advanced artefact analysis
Advanced static analysis

32

Now that IDA knows a little more about what functions are called at those locations, let it reanalyse the code. To do

this, go to the IDA Options dialog (menu Options->General…), switch to Analysis tab and click Reanalyze program.

Wait for IDA to finish the analysis and close the IDA Options dialog. Notice how IDA has now added additional

comments and renamed some variables!

Advanced artefact analysis
Advanced static analysis

33

Now scroll to the location 0x44D391 where there is a call to eax:

IDA still doesn’t know where this call is made to, but if you highlight eax register and take a look a few blocks above,

you will notice that eax is assigned with the pointer to CryptAcquireContextA.

It is good to comment this finding. To add comment click on call eax and pres <:> (colon):

Advanced artefact analysis
Advanced static analysis

34

Comment remaining arguments of CryptAcquireContextA accordingly to this function prototype10 to make it look

like the following:

Now you know that 0F0000000h and 1 are the constants passed to CryptAcquireContextA in arguments dwFlags and

dwProvType. You can check in function reference11 that dwFlags takes the constant with the CRYPT_ prefix while

dwProvType takes the constant with the PROV_ prefix. You can tell IDA to represent those values as a symbolic

constant.

To use symbolic constant representation, right-click on 0F0000000h and choose “Use standard symbolic constant”.

In the next window IDA will display all known standard symbolic constants whose value equals to 0F0000000h.

Choose constant with CRYPT_ prefix – CRYPT_VERIFYCONTEXT.

10 CryptAcquireContext function https://msdn.microsoft.com/en-
us/library/windows/desktop/aa379886%28v=vs.85%29.aspx (last accessed 11.09.2015)
11 CryptAcquireContext function https://msdn.microsoft.com/en-
us/library/windows/desktop/aa379886%28v=vs.85%29.aspx (last accessed 11.09.2015)

https://msdn.microsoft.com/en-us/library/windows/desktop/aa379886%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa379886%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa379886%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa379886%28v=vs.85%29.aspx

Advanced artefact analysis
Advanced static analysis

35

Repeat those steps for dwProvType, but this time choosing PROV_RSA_FULL. Now code should look like this:

Now scroll up to the address 0x44D367. Here you can see a group of nodes making jump to the same location –

loc_44D3BE.

Advanced artefact analysis
Advanced static analysis

36

Further inspection shows that loc_44D3BE is a location of a function epilogue – probably jumped to if something

earlier fails. Rename this location to func_exit in the same way as renaming memory location. Now all jumps should

look much more clearly:

You can rename almost any name used in IDA (function names, arguments, variables, etc.) in the same way.

Advanced artefact analysis
Advanced static analysis

37

To further simplify function structure, you will now group graph nodes used to resolve crypto functions addresses.

To do this, go to the graph node at the address 0x44D2F7 and select graph nodes by clicking on them while holding

the <Ctrl> key.

Select all graph nodes starting from 0x44D2F7 up to 0x44D367.

Now right-click on selected nodes and choose Group nodes.

In the next window write short description of what grouped nodes are used to.

Advanced artefact analysis
Advanced static analysis

38

After clicking Ok all previously selected nodes should be replaced with the single node. To edit node group text or

temporarily un-collapse group, use pair of new buttons on the node group header.

Now go to the location loc_44D2B1 (0x44D2B1).

Advanced artefact analysis
Advanced static analysis

39

Take a look at the call ebx instruction. If you select call ebx, you will notice that very similar calls are made in two

other locations in the function:

In each case, two arguments are pushed onto the stack – first some address, and the second one seems to be the

size of a buffer pointed by the first argument (it is good to comment this!).

Now if you select only the ebx register you will notice that its value is being assigned once at the beginning of the

function:

This means that arg_0 is a function pointer and the function pointed by this argument is called three times in our

function (you can rename arg_0 to func_ptr). Since this seems to be a significant element, it is good to mark all three

graph nodes where such a call takes place.

To mark a graph node you will use the node colouring feature. Go back to loc_44D2B1 and click the icon of the colour

palette in the left upper corner:

Advanced artefact analysis
Advanced static analysis

40

After clicking Ok node background should become cyan.

Advanced artefact analysis
Advanced static analysis

41

Repeat this step for the two remaining graph nodes where a call to ebx takes place.

Node colouring is a useful feature that can be used to mark graph nodes that we have already analysed or those that

are for some reason significant.

One more thing you can do with IDA to improve code readability is to change how IDA presents numerical values.

By default any numerical value is presented as hexadecimal. Sometimes you would like to view it as a decimal, binary

or even custom defined constant. To change value format you can right-click on it and choose more suitable format.

Additionally in some rare situations it might be also helpful to change the name of some registers. For example, if in

a given function some register is frequently used for only one purpose—e.g. storing some pointer or constant

value—it might be good to change its name. This change would only apply to the current function.

An example of such register in sub_44D262 is edi. The register is first zeroed (xor edi, edi) and then used in rest of

the function only to compare other values to zero, or push zero onto the stack:

Advanced artefact analysis
Advanced static analysis

42

To rename a register, click on register and press <N> (rename):

Now the code should look like this:

 Exercise
 Find where variable var_8 is used and rename it.

 Try to rename remaining locations: loc_44D2B1, loc_44D2DA, loc_44D36B, loc_44D3B4. What names would

you suggest for them?

Advanced artefact analysis
Advanced static analysis

43

 Group three graph nodes checking if functions CryptAcquireContextA, CryptGenRandom and

CryptReleaseContext were resolved correctly (0x44D36B, 0x44D374, 0x44D37C).

 Has the code readability of the function improved?

 Can you guess what function sub_44D262 might be used for?

 Exercise
Take time to get familiar with IDA Pro and disassembled code. Make sure you know how to perform all presented

operations and how to navigate through a code. Don’t hesitate to use functions not covered in this section. If

something goes wrong you can always reload the sample.

 Summary
In this exercise you have learned how to use IDA to analyse disassembled code. First you have learnt how to

customize the IDA workspace and then how to navigate through code. Basic function structure and function types

were also introduced. Finally you saw how to enhance disassembled code by adding comments, changing names

and using colouring functions to improve code readability.

Advanced artefact analysis
Advanced static analysis

44

3. Recognizing important functions

A problem with analysing complex malware samples is that disassembled code is often quite overwhelming and

consists of many functions. Usually not all of those functions are important. Some of them perform only trivial tasks

or we just want to focus on one particular malware functionality. In this exercise you will learn how to find which

functions might be important and which ones you should try to analyse first.

Always begin by thinking what the goal of your analysis is. Do you want to learn about general malware

functionality or just want to obtain information about one particular function? Depending on the answer, you should

narrow your search.

When starting the analysis of a new binary, one approach is to analyse the main routine and to try following its

execution flow. As long as such analysis might give us valuable information about the sample itself this is worth

trying, but it can also be quite a tedious task – especially when functions you are looking for are not directly called

from the main routine.

Fortunately there are three basic techniques which can help us to find interesting functions:

a) Using call graphs

b) Following cross references to strings and imported functions

c) Learning functions addresses during dynamic analysis

The first two techniques will be presented in the following exercises. In the last technique you will need to apply

techniques learnt during the second part of the training – Advanced dynamic analysis – to pinpoint where in the

code the interesting malware function is located (for an example, check the address of the code responsible for

communication with the C&C server) and then start analysis of this code in IDA. This technique is not covered in the

exercise.

In this exercise, you will use sample of the Slave trojan12 which is a banking trojan first detected by S21sec

company13. Before continuing, please load slave.exe sample in IDA and wait until the initial auto analysis

completes. Because you will be now analysing a live malware sample, remember to take all necessary precautions.

 Using call graphs
Starting the analysis of a new binary, some of the first questions that comes to mind are what is the execution flow

of the code? What local functions are called by what other functions? Are there any API calls? What data variables

are referenced in the code? To answer some of those questions, IDA provides us with its graphing capability.

Call graphs are graphical representations of all recognized function calls in the code. They use an external application

wingraph32 to present function calls in the form of a directed graph in which nodes represent functions or data

locations and lines are calls or references to data.

12 Sample
400fbcaaac9b50becbe91ea891c25d71 (MD5)
https://malwr.com/analysis/OTRiMDk1ODFkOGVjNDhkMzljYzdiZTUzZDUyYjEwM2M/ (last accessed 11.09.2015)
13 New banking trojan 'Slave' hitting Polish Banks http://securityblog.s21sec.com/2015/03/new-banker-slave-hitting-
polish-banks.html (last accessed 11.09.2015)

https://malwr.com/analysis/OTRiMDk1ODFkOGVjNDhkMzljYzdiZTUzZDUyYjEwM2M/
http://securityblog.s21sec.com/2015/03/new-banker-slave-hitting-polish-banks.html
http://securityblog.s21sec.com/2015/03/new-banker-slave-hitting-polish-banks.html

Advanced artefact analysis
Advanced static analysis

45

To access the call graph functionality use menu View->Graphs or use the Graphs toolbar.

There are four basic call graph types:

 Function calls

 Xrefs to

 Xrefs from

 User xrefs chart…

Note that creating Xrefs to or Xrefs from is possible only if, in disassembly view, the currently selected item is some

function name or a named data location (dword_XXXXXX).

Start by clicking on wWinMain function in the slave.exe sample and then choose to create Xrefs from call graph.

Note that you need to click on actual function (as on the picture below) and not on function name in function

prototype.

Now you should see WinGraph32 window with newly created call graph for wWinMain function. This Xrefs from

graph presents all functions called from wWinMain routine (local functions, library functions as well API functions).

Advanced artefact analysis
Advanced static analysis

46

Depending on the code complexity and size of your screen such graph might be more or less readable. For more

complex malware or malware using many linked libraries such graph might be barely readable.

To navigate the graph, use left-mouse button. To zoom in or zoom out, use the toolbar buttons as shown on the

screen above.

Now zoom in (or zoom to 100%) to notice the different colours of the graph nodes. Black nodes represent local

functions while pink nodes represent API calls. There might be also cyan nodes and white nodes representing

functions recognized by IDA as library functions and named data locations, respectively.

So far, you have been analysing what functions from the wWinMain were called. What if you want to check what

functions call wWinMain? You can use the Xrefs to call graph. Click on wWinMain and choose Xrefs to graph.

Advanced artefact analysis
Advanced static analysis

47

Without much of a surprise, we see that wWinMain was called from ___tmainCRTStartup routine. To get a little

more complex example, create Xrefs to graph for sub_404330.

Advanced artefact analysis
Advanced static analysis

48

Xrefs to graphs might be also used to check what functions are referencing particular memory location. As an

example go to the wWinMain function, click on dword_438120 and choose to create the Xrefs to graph.

You should see all functions referencing this memory location. This may prove to be useful if you know that at

memory location is stored some important variable (e.g. flag telling whether virtual machine was detected) and you

want to see which functions are checking that variable.

The third type of graphs are user defined graphs. In contrast to Xrefs to and Xrefs from graphs, when creating a user

defined graph you can specify additional parameters for how this graph should look. To create this graph for

wWinMain select wWinMain and choose User xrefs chart….

Advanced artefact analysis
Advanced static analysis

49

In the new window, you can specify additional graph parameters. You can hover the cursor over any parameter to

get a hint what this parameter changes. The most frequently used group of parameters are Starting direction and

Recursion depth. Using Recursion depth you can limit the number of graph nodes followed from the current location.

This might be useful when dealing with more complex code.

As an example, create a graph for wWinMain presenting only references from this function and limiting the graph

to recursion depth 2.

Advanced artefact analysis
Advanced static analysis

50

Is newly created graph clearer and easier to follow?

 Exercise
Take a few minutes to experiment with the other options of user defined graphs. Create a few graphs for functions

other than wWinMain.

The last graph type – Function calls, presents a graph of function calls for all recognized functions. This usually would

be quite a complex graph, but you can use it to detect if there are any functions in the code not called from the main

routine. This might be caused by various circumstances, such as external functions (exported in Export Table),

functions that are called indirectly and IDA failed to recognize them or functions being injected to some other

process.

Advanced artefact analysis
Advanced static analysis

51

Now that you know how to create various call graphs and what they are used for, how can you recognize important

function calls?

A good starting point is to create an Xrefs from graph for the wWinMain function (or any other function recognized

by IDA as a main function). Depending on the code complexity, you might decide to limit recursion depth. Zoom in

the graph and start looking for two types of functions:

a) Functions calling groups of similar APIs. Based on what API calls are made, you can often deduce the purpose

of such a function, for example a function calling registry-related APIs might be an installation routine, while

a function calling network-related APIs might be used to communicate with a C&C server.

b) Functions that call many local functions. This might indicate that some important program logic takes place

inside such a function. It may not always be true, but it is usually worth the time to inspect such functions.

You may also note which functions are called by many other (often unrelated) functions. Such functions usually

complete some trivial task and analysing them first might help you understand rest of the code.

As an example you will now analyse call graph of wWinMain function14.

First, notice the top group of three functions (1): sub_406410, sub_406120, sub_401B90. At this point you can

already suspect that those are important functions because they are called directly from the wWinMain and they

are calling a lot of APIs. Unfortunately due to the structure of the graph it is hard to tell which API is called by which

function. To deal with this problem, create a call graph of wWinMain with recursion depth equal to 2.

14 This graph might be slightly different, but if using the same IDA version its general structure should be very similar.

Advanced artefact analysis
Advanced static analysis

52

Then take a look at sub_401B90. We can see that this function is iterating through the process list (calls to

Process32FirstW, Process32NextW, etc.). This might mean that this function is looking for a specific process to inject

some code into it or it is using some anti-analysis techniques (e.g. trying to detect AV processes).

Next, look at sub_406410. It calls APIs such us RegSetValueExW, CreateDirectoryW, CreateFileW, MoveFileExW. It

likely indicates that this is an installation procedure. You should inspect it if you want to know how the malware

installs itself in the system.

Then take a look at sub_406120. It enumerates the registry (RegEnumValueW) and checks some module path

(GetModuleFileNameW). It is hard to tell what its purpose is, but it is likely still worth inspecting.

Now go back to the general graph (wWinMain) and take a look at function sub_402050 (2). Among the other APIs it

is also calling CreateRemoteThread and WriteProcessMemory. This tells us that this function is most likely injecting

some code to other processes (you can also notice that sub_402050 was first called from already checked

sub_401B90 which was an iterating process list).

Next, take a look at function sub_405760 (3) which is calling many other functions. This might suggest that some

important program logic is taking place inside this function.

Advanced artefact analysis
Advanced static analysis

53

If you look closer at the rest of the graph you notice several other potentially interesting functions like sub_4027E0

performing some file system operations (DeleteFileW, WriteFile, SetFileAttributesW, CreateFileW) or sub_406CA0

doing some threads operations (ResumeThread, SuspendThread, OpenThread, …).

The next thing you might consider doing would be to create separate call graphs for functions such as the previously

noticed sub_405760. However at this point it seems that the most important functions that should be analysed first

are:

 wWinMain – main routine

 sub_401B90 – iterating process list

 sub_406410 – installation routine

 sub_406120 – possible registry enumeration

 sub_402050 – process injection routine

 sub_405760 – calling many other subroutines

One more thing you might do would be to create a call graph for all functions (Function calls graph) and as

previously described, check if there are any functions not called directly from wWinMain. If there are any, you

might repeat the steps described above for each function not called directly from wWinMain.

Advanced artefact analysis
Advanced static analysis

54

 Using cross references
One of the very useful features of IDA are cross references (short: xrefs). During initial autoanalysis, for each named

object – whether it is a function, string, variable or memory location – IDA tracks all locations where this object is

referenced. Where an object reference is any assembly instruction referencing to the object, reading its value,

writing to the object, pushing object’s address onto the stack or calling object (if object is a function). Using cross

references you can learn at what addresses a given function was called, where a string was used or a certain variable

was written to. The call graphs used in the previous exercise were constructed by IDA based on cross references.

To use cross references, go to the place where a given object is defined (not referenced), click on the object name

and press <X> (or select View->Open subviews->Cross references).

As an example, go to wWinMain function.

To check where the global variable dword_438120 is used double click it to go to the memory location where this

data variable is defined.

Notice that on the right, IDA already tells you about two cross references to this variable. However to get a better

view and list of all cross references it is best to select variable and press <Ctrl+X> to open Cross references dialog.

Advanced artefact analysis
Advanced static analysis

55

By default the Cross references list consist of four columns. The first column (Direction) tells you whether the cross

reference to the object occurred before or after the object (in regard to the memory address). The second column

(Type) tells the cross reference type (r – read operation, w – write operation, o – operation on the object’s address

e.g. pushing it onto the stack). The third column (Address) gives the exact address at which the cross reference

occurred. Notice how the addresses are presented: <func_name>+<offset>, where the first part is a function name

in which the cross reference occurs and the second part is an offset to the location within this function. Finally in the

last column (Text) there is an assembly operation referencing the object.

You can also immediately jump to any cross reference by double clicking it. For example, jump to the cross reference

at the address sub_402540+C5 (if you then want to go back, simply press <Esc>).

At this address, you see that the data address is moved onto the stack (assigned to local variable var_4).

Now you will use cross references to find important functions. You can do this by first following cross references to

imported functions and secondly by following cross references to strings found by IDA. By following cross references

to API functions you are basically doing the same as when analysing call graphs in previous exercise. However since

call graphs are not always easy to read, this method also makes sure that you haven’t missed anything. Moreover if

you are only interested in specific APIs, it is easier to find them by directly following cross references than to look

for them on the call graph.

First, switch to imports view. If the window is not already, open it by choosing View -> Open subviews -> Imports. To

make searching easier, sort imported functions by name by clicking on the Name column.

Advanced artefact analysis
Advanced static analysis

56

Let’s say you want to find which function is injecting code to other processes. To do this, first find the

WriteProcessMemory function on the imports list and double click it.

Next click on the function name and open the Xrefs dialog.

Advanced artefact analysis
Advanced static analysis

57

There is only one function calling WriteProcessMemory twice – sub_402050. Note that this is the same function

you already found during call graphs analysis.

When looking at the imports list one thing that stands out is a complete lack of network related functions. It is rather

uncommon for a malware to not communicate with any servers. This suggests such functions might be loaded

dynamically at runtime. Let’s check it by following cross references to GetProcAddress function.

As suspected, there are quite a lot calls to GetProcAddress. In total there are 10 different functions calling

GetProcAddress:

 sub_401B30 – 1 call

 sub_401B50 – 1 call

Advanced artefact analysis
Advanced static analysis

58

 sub_401E70 – 2 calls

 sub_402860 – 15 calls

 sub_403120 – 1 call

 sub_4041E0 – 1 call

 sub_404330 – 2 calls

 sub_404600 – 5 calls

 sub_405390 – 10 calls

 sub_405760 – 17 calls

Now go to any cross reference in sub_402860 (or just go to this function), and take a look at calls to GetProcAddress:

Six network-related functions are dynamically loaded at runtime and their addresses saved in memory:

 InternetOpenA -> dword_438104

 InternetConnectA -> dword_43810C

 HttpOpenRequestA -> dword_438114

 HttpSendRequestA -> dword_438108

 InternetReadFile -> dword_438118

 InternetCloseHandle -> dword_438110

Now follow cross references to dword_438108 to check where HttpSendRequestA function is called:

Advanced artefact analysis
Advanced static analysis

59

You see that there is one call to HttpSendRequestA in sub_402300. Follow this cross reference to land in a function

which is evidently used to communicate with some C&C server. This function was missed by us before because in

this function the only meaningful API calls are to network functions loaded dynamically at runtime.

At this point (depending on what you want to find) you could continue analysis of cross references to other functions

from imports list.

A second way of finding important functions using cross references is to follow cross references to strings found by

IDA. You follow cross references to strings in a similar manner to following cross references to imported functions.

First you open the strings list, then you look for any strings that stand out and check where those strings are

referenced in the code.

First, switch to strings view. If strings view is not open, choose View -> Open subviews -> Strings.

Advanced artefact analysis
Advanced static analysis

60

In the strings window, you see a few interesting strings. There is some domain name: www.bizzanalytics.com. Double

click on this string and follow cross references to it:

You see there are two cross references, first one leads to sub_402300 – function you have already found to

communicate with a C&C server and the second one is a string offset written in memory. At this point it is hard to

tell what it is used for.

Advanced artefact analysis
Advanced static analysis

61

Now go back to the strings window and notice the strings named PR_Write, PR_Read, and PR_Close, which are names

of functions from the NSPR library used for network communication15. This library is used for example by Mozilla

Firefox web browser. This is typical for modern malware performing so-called MitB (Main-in-the-browser) attacks

by hooking network-related functions in a web browser and injecting malicious code into the content of some

websites (usually financial) or stealing user credentials16 17 18.

Let’s examine where those strings are referenced.

15 Netscape Portable Runtime (NSPR) https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSPR (last accessed
11.09.2015)
16 Advanced Techniques in Modern Banking Trojans https://www.botconf.eu/wp-content/uploads/2013/12/02-
BankingTrojans-ThomasSiebert.pdf (last accessed 11.09.2015)
17 Analyzing Man-in-the-Browser (MITB) Attacks http://www.sans.org/reading-
room/whitepapers/forensics/analyzing-man-in-the-browser-mitb-attacks-35687 (last accessed 11.09.2015)
18 Firefox FormGrabber https://redkiing.wordpress.com/2012/04/30/firefox-formgrabber-iii-code-injection/ (last
accessed 11.09.2015)

https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSPR
https://www.botconf.eu/wp-content/uploads/2013/12/02-BankingTrojans-ThomasSiebert.pdf
https://www.botconf.eu/wp-content/uploads/2013/12/02-BankingTrojans-ThomasSiebert.pdf
http://www.sans.org/reading-room/whitepapers/forensics/analyzing-man-in-the-browser-mitb-attacks-35687
http://www.sans.org/reading-room/whitepapers/forensics/analyzing-man-in-the-browser-mitb-attacks-35687
https://redkiing.wordpress.com/2012/04/30/firefox-formgrabber-iii-code-injection/

Advanced artefact analysis
Advanced static analysis

62

All three of these strings are referenced in two different functions: sub_405390 and sub_405760. If you jump to

either of those two functions and examine it, you will see references to strings like “HttpQueryInfoA”,

“InternetReadFile”, “InternetReadFileExA”, “InternetQueryDataAvailable” and “InternetCloseHandle” which are

network functions used in Internet Explorer web browser. This confirms our suspicion that malware is likely

performing MitB attack.

It should be noted that this is not a complete analysis of cross references to strings or to imported functions.

However at this point you should already have idea how to use cross references to find important or interesting

functions.

Using cross references to strings and imported functions, you have confirmed a few findings from the previous

exercise and found three more suspicious functions:

 sub_402300 – function likely used for communication with C&C server

 sub_405390, sub_405760 – functions probably used to set up hooks in web browser

Advanced artefact analysis
Advanced static analysis

63

 Exercise
Save the results of your current work and open a new sample dexter.exe which is a sample of Dexter malware

targeting POS systems19. Using techniques presented in this exercise try to pinpoint important functions in

disassembled code.

 Find network related functions.

 Find the installation routine.

 Find the function performing RAM scraping (reading memory of other processes).

 Find the process injection routine.

 Are there any other potentially interesting or suspicious functions?

This exercise might be conducted in a small groups. After the assigned time passes, each group should present their

findings. Are findings of each group similar?

 Summary
In this exercise you have learnt how to recognize important functions in disassembled code. To do this you first used

call graphs to track execution flow and then you followed cross references to strings and imported functions. This

way, you were able to find groups of suspicious functions such as an installation routine, process injection routine

or a function likely used to communication with a C&C server. All functions that were found are also good starting

points for further analysis.

However you should remember that the approach presented in this exercise might not always work or could be

quite difficult to apply. The first problem are samples that obfuscate their execution flow or that load all API functions

dynamically. You will see examples of such code in later exercises. The second problem might be samples that use

many statically linked libraries not recognized by IDA. In this case, you might have difficulties recognizing what parts

of the code are part of main malware code and what parts are just some library functions.

Finally, if you are looking for important functions, it is a good practice to rename each suspicious function you find.

This way it will be easier to follow which functions you have already visited and which ones you haven’t. If you

rename any functions or add comments to the code, remember to save results of your work.

19 POS malware - a look at Dexter and Decebal http://h30499.www3.hp.com/t5/HP-Security-Research-Blog/POS-
malware-a-look-at-Dexter-and-Decebal/ba-p/6654398 (last accessed 11.09.2015)

http://h30499.www3.hp.com/t5/HP-Security-Research-Blog/POS-malware-a-look-at-Dexter-and-Decebal/ba-p/6654398
http://h30499.www3.hp.com/t5/HP-Security-Research-Blog/POS-malware-a-look-at-Dexter-and-Decebal/ba-p/6654398

Advanced artefact analysis
Advanced static analysis

64

4. Functions analysis

In the previous exercise you found a group of suspicious functions. The next step is to analyse those functions in

order to better understand their functionality and what they are used for. In this exercise, you will learn the basic

principles of function analysis: how to start analysis, what to look for and how to understand a function’s role.

In general when analysing a function you want to answer three questions:

1. What are the function’s arguments?

2. Is the function returning anything?

3. What is the role of the function? To perform some operation on arguments? To perform some memory

operations? Execute other tasks?

Full function analysis strongly depends on function complexity. There are simple functions, performing only a single

or a few tasks, which are usually fairly easy to analyse. There are also very complex functions, performing a lot of

operations and using many variables or complex data structures, analysis of which is usually quite demanding and

takes a long time. Moreover if a function is calling other local functions you would often need to analyse them first

in order to understand their role in the context of our function. Fortunately a full function analysis is usually not

necessary. In many cases, a quick assessment of a function without fully understanding details of its operation should

be enough.

When starting an analysis of a function it might be helpful to answer the following questions (not necessarily in this

order):

 Are there any API calls in the function? If yes, what are they used for?

 Are there any calls to other local functions? What are they doing?

 Are there any xrefs to the analysed function? From which other functions is the function called? Are there

any arguments pushed onto the stack when the function is called? Is their type known (e.g. some handle,

buffer address, decimal value, etc.)?

 What is the function calling convention?

 How many arguments is the function using? How are they used in the code?

 Are there any local (stack) variables used? How are they used in the code?

 Are there any global variables used in the function? How are they used in the code?

 Is the function ending (no endless loop)? Is it returning any value?

 Are there any loops or switch statements in the function? Is there only one execution path?

 Are there any strings referenced in the function?

You will now proceed to analyse chosen functions from the Slave Trojan. When analysing a function remember to

always document your findings as presented in the Enhancing assembly code exercise.

 Analysis of network function
You will start the analysis with the subroutine that you suspect communicates with the C&C server.

First go to sub_402300 (or 0x402300 address). At first glance this function doesn’t seem to be very complicated.

Only a few blocks of code and one loop.

Advanced artefact analysis
Advanced static analysis

65

For convenience (if you haven’t done it already) rename sub_402300 to f_CnC_func. If you later decide this is

inappropriate you will rename it something else.

To check what functions are called within f_CnC_func you need to first deal with calls to global variables:

Advanced artefact analysis
Advanced static analysis

66

Fortunately you already know where those variables are set (please refer to the previous exercise). Using cross

references go to the place where value of dword_438104 is set (or just jump (G) to 0x402939):

Rename all global variables used to store addresses of network related functions (make sure you don’t change the

order or make a typo):

Advanced artefact analysis
Advanced static analysis

67

Now go back to f_CnC_func and reanalyse code (Options->General->Analysis->Reanalyse program). IDA should add

additional comments20:

Now you can check what functions are called within f_CnC_func. A convenient way to do this is to use Function calls

sub view which will also present where f_CnC_func is called from.

While staying in f_CnC_func, choose View->Open subviews->Function calls.

20 If at some point you notice that your disassembly is lacking some comments (except the ones added manually) in
comparison to the screenshots in this document you can try repeating this step. Also make sure that you properly
renamed global variables containing pointers to API functions.

Advanced artefact analysis
Advanced static analysis

68

In the upper part of the window, there is a list of locations where f_CnC_func was called. In the lower part of the

window there is a list of all calls made within f_CnC_func. You can double click on any of those calls to be moved to

the calling instruction.

Short analysis of this list tells us three important things. Firstly, there are no other API calls except calls to network

related functions (and a few memory allocation functions from C standard library). Secondly, there are no calls to

other local functions. Thirdly, f_CnC_func is called only once (in sub_402540 function).

Knowing this plus the fact that f_CnC_func is rather simple and short function you can assume that that f_CnC_func

is most likely used only to communicate with C&C server and is not doing any analysis of received data.

Consequently what should you be now interested is:

 What are f_CnC_func arguments?

 Is f_CnC_func returning anything?

 Is there any data sent to C&C server? How?

 Is there any data received from C&C server? What is happening to this data?

Let’s start by analysing if there are any function arguments:

Advanced artefact analysis
Advanced static analysis

69

IDA recognized this function as a function with bp-based stack frame. There are a few stack variables used in the

function but it seems there aren’t any arguments. Are there?

Just to be sure go to the place where f_CnC_func is called from following the address 0x40256C that you got from

the function calls window.

You are now at the beginning of the sub_402540. It seems there are no push instructions before a call to f_CnC_func.

However notice that ecx register is assigned with the address of var_8 variable, which is later also initialized to zero.

Notice also how eax register is tested after a call to f_CnC_func and if it equals to zero sub_402540 returns. This

suggests that f_CnC_func is returning some value in eax register and it should be nonzero on success.

Now go back to f_CnC_func to check if ecx register is used for anything.

Advanced artefact analysis
Advanced static analysis

70

Yes, you were right. Value of ecx is assigned to edi register. This means that f_CnC_func is either using the fastcall

calling convention or you might be dealing with object-oriented programming and ecx is used to pass this pointer to

a member function (thiscall calling convention). If you analyse other functions in the code you will notice that

arguments to some other functions are passed in ecx and edx registers. This means this is likely fastcall function and

ecx is used to pass pointer to variable or some data structure.

Notice that later the edi register is assigned to var_C. Rename var_C to this.

Now go to the last block of f_CnC_func (loc_40246A):

Notice that the eax register is assigned with the value of the var_14 variable. This means that the var_14 variable is

used to store the return value. Rename var_14 to retval. For convenience it is also good to rename label loc_40246A

to something like func_exit:

Advanced artefact analysis
Advanced static analysis

71

At this point you know that the f_CnC_func is taking a single argument (passed in ecx) and is returning some value

in the eax register. Now you will analyse how communication with the C&C server is taking place and what happens

to the received data.

Go to beginning of the function.

Notice how the initial return value (retval) is set to zero. Then there is a call to InternetOpenA with all parameters

set to zero. According to MSDN documentation21 this function initializes use of the WinINet functions and returns

the hInternet handle. You see that this handle is assigned to var_10 and if it is zero then there is a jump to func_exit.

For clarity rename var_10 to hInternet.

If InternetOpenA succeeds in the next step malware calls InternetConnectA to initiate connection with the

destination server.

21 InternetOpen function https://msdn.microsoft.com/en-
us/library/windows/desktop/aa385096%28v=vs.85%29.aspx (last accessed 11.09.2015)

https://msdn.microsoft.com/en-us/library/windows/desktop/aa385096%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa385096%28v=vs.85%29.aspx

Advanced artefact analysis
Advanced static analysis

72

What’s important here is that connection is made to hardcoded hostname – www.bizzanalytics.com on standard

HTTP port – 80/tcp (50h). Result of a call to InternetConnectA (connection handle) is then saved to var_18.

For clarity, rename variables and add symbolic constants. For 0x40233D, right click and select symbolic constant ->

use standard symbolic constant from the list select “INTERNET_SERVICE_HTTP”. For 0x402343 switch to decimal by

clicking on it and use shortcut key Shift+H. Also rename var_18 to hConnect.

In the next step, the malware is opening an HTTP request using HttpOpenRequestA.

Here you see that the HTTP request (GET) is made to the similarly hardcoded info.php with some hardcoded key as

a GET variable. To get full key value hover mouse cursor over szObjectName or double click it.

Advanced artefact analysis
Advanced static analysis

73

You can also see that there are some flags (dwFlags) passed to HttpOpenRequestA. Unfortunately, IDA fails if a

variable is a sum of more than one flag (symbolic constants).

Finally, a new request handle is temporarily saved to the ebx register.

Next the malware is sending an HTTP request.

Nothing special is happening here. There are no extra headers and there is no POST data (lpOptional). Notice that

request handle (hRequest) is saved to global variable dword_438124. Rename it to CnC_hRequest and check the

xrefs to it.

Advanced artefact analysis
Advanced static analysis

74

Notice that there are some references to this variable outside of the f_CnC_func. Renaming this variable might

help us in later analysis.

Next if sending HTTP requests doesn’t fail (eax will be nonzero on fail), the malware starts reading data received

from the server (InternetReadFile). You will now analyse what happens to the received data, where it is being saved

and if it is being processed anyhow (for example xor’ed).

Now take a look at the next three code blocks (0x4023A6, 0x4023D3, 0x4023DA):

In the first block there is a single call to InternetReadFile.

Then there is a loop over block [2] and [3] with an additional call to InternetReadFile in block [3]:

This is a popular scheme of downloading any data from the Internet. Malware first tries to download first part of the

server response (in block [1]) and if any data is received it continues calling InternetReadFile (in block [3]) until it fails

or number of received bytes is zero – meaning that there is no more data to be received.

Advanced artefact analysis
Advanced static analysis

75

Now let’s analyse block [1] in more detail.

At the beginning of this block there is a call to malloc allocating a memory block with size of 1 byte.

Notice the address of the newly allocated memory block is saved to the variable pointed by the edi register. But

what is the edi register? Highlight it and search where in the code its value was last set:

So it looks like edi still contains a variable pointer passed to this function as an argument and an address of allocated

memory is saved to this variable.

Going back to block [1], notice that some variable (var_8) is initialized to zero. Highlight var_8 and check where else

in the code this variable is used:

You see that var_8 is used a few times in block [3]. First in conjunction with memcpy function to specify a number

of bytes to be copied and later a number of received bytes is added to var_8. This means that var_8 is used to store

number of received bytes. Knowing all of this you can comment appropriately beginning of the block [1]:

In the second half of block [1] there is a call to InternetReadFile:

Advanced artefact analysis
Advanced static analysis

76

Here you see that received data is saved to a Buffer variable which is a memory buffer declared on the stack with

the size of 4096 bytes (1000h). Moreover the number of received bytes will be saved to the dwNumberOfBytesRead

variable.

By taking a look at the stack you can also notice that you have already identified all local variables.

Now go to block [2] – the first block of the receive loop.

As you see in block [2] there is a check if the number of received bytes in the last call to InternetReadFile is nonzero.

If it is zero you jump out of the loop to loc_402442.

Now let’s proceed with the analysis to block [3]. To make analysis easier, there are already some comments added

in the pictures below.

Advanced artefact analysis
Advanced static analysis

77

The first thing that happens in block [3] is allocation of a new memory block of size equal to length of data received

so far (recv_len) plus the length of the newly received data plus one. Then the data from previously allocated

memory block (memptr_old) is copied to the beginning of new memory block. After this, the old memory block is

freed.

In the next part, the newly received data from the buffer on the stack is copied to the end of the newly allocated

memory block (just after previously copied data).

Finally variable recv_len is updated with new length of received data and InternetReadFile is called again. Notice that

retval variable is set to 1.

As already mentioned, the loop will execute until InternetReadFile fails or the number of received bytes is zero:

Next, the block after the loop is loc_402442 in which last byte of allocated memory is zeroed.

Advanced artefact analysis
Advanced static analysis

78

After this the only thing that happens is the closing all opened handles:

Finally in func_exit the eax register is assigned with the value of retval variable and function returns.

At this point, detailed function analysis is done. However, remember that detailed function analysis is not always

necessary. Sometimes it is enough just to do quick assessment what the function is doing. It is important to set a

goal before beginning analysis.

What you have learnt about f_CnC_func:

 Returns 1 if any data was received

 Connection is made to the hardcoded URL

 No POST data is sent in the request to the C&C server

 There is no processing of received data. Function is used solely to download some data from the server.

 Received data is saved to a newly allocated memory block. A pointer to this memory is saved to the variable,

passed as a function argument.

 Analysis of WinMain
Now you will perform an analysis of wWinMain function located at address 0x406060.

Taking general look at this function, it looks rather short.

Advanced artefact analysis
Advanced static analysis

79

It also seems that wWinMain is not using any local variables nor referencing any of its arguments.

Because this function is rather simple, you will analyse it block by block.

For convenience, first go to the last block of the function (loc_40610F) and rename it as func_exit:

Now take a look at the first block of the function:

Advanced artefact analysis
Advanced static analysis

80

A couple of things take place here. First, you see a call to the sub_402860 function (line 03). If you take a quick look

at this function you will see it is used to dynamically load a few API functions:

Rename sub_402860 to f_Initialize_APIs.

Then at lines 04-07 and 09 the program is creating an unnamed mutex. The handle to this mutex is then saved to

the global variable hHandle at line 12. Rename this variable to hUnnamedMutex.

Additionally at line 11 some global variable (dword_438120) is initialized to zero. You don’t know yet what this

variable will be used for in the code but it is good to give it a temporary name, for example var_main_zero. If you

later see reference to this variable you will immediately know it was first set to zero in the wWinMain function.

Advanced artefact analysis
Advanced static analysis

81

Finally at lines 10-14, time() function is called. The time() function returns system time represented as a number of

seconds elapsed since January 1, 1970. Then, the result value is compared to variable dword_437E40 (line 15) and if

it is lower, the function quits.

What is the value of dword_437E40? If you check xrefs to it, you will see that this variable seems never to be

initialized:

However the virtual address 0x437E40 is located in an uninitialized part of the data section of slave.exe and

according to PE-COFF specification22 this memory is automatically initialized to zero.

“… SizeOfRawData - The size of the section (for object files) or the size of the initialized data on disk (for image files).

For executable images, this must be a multiple of FileAlignment from the optional header. If this is less than

VirtualSize, the remainder of the section is zero-filled. …”

Moreover since it is logical to compare time() result to zero (value -1 is returned on error) we can safely assume this

is what is taking place here.

To sum up, the first block program loads a few API functions, creates an unnamed mutex, initializes some variables

and checks system time.

22 Microsoft PE and COFF Specification https://msdn.microsoft.com/en-us/windows/hardware/gg463119.aspx (last
accessed 11.09.2015)

https://msdn.microsoft.com/en-us/windows/hardware/gg463119.aspx

Advanced artefact analysis
Advanced static analysis

82

The next code block is quite interesting.

If the time() result is greater or equal to zero, then the same result is compared to value 0x551B3500 (1427846400).

This value is Unix timestamp representation of the date 01 April 2015, 12:00am (UTC). If the time() result is greater

than this value, then main function quits. This means that the malware won’t run after this date.

In the next two code blocks, the malware tries to create a named mutex “__NTDLL_CORE__” and checks if it

succeeds. If CreateMutexW returns INVALID_HANDLE_VALUE (0xFFFFFFFF) or GetLastError returns

ERROR_ALREADY_EXISTS (0xB7) then the function quits. Creation of a named mutex is a typical malware technique

to prevent running two or more instances of the same malware on the same system.

Advanced artefact analysis
Advanced static analysis

83

In the next two code blocks, the program calls two functions: sub_406120 and sub_406410. None of those functions

seem to take any arguments and the second function is called only if the first one returns value zero (eax).

In one of the previous exercises, you already found that sub_406410 is probably installation routine. Indeed if you

take a look into it, there are calls to API functions such as: CreateDirectoryW, CreateFileW, MoveFileExW,

RegSetValueExW, as well as references to strings such as “Software\Microsoft\Windows\CurrentVersion\Run”.

Rename this function to f_InstallRoutine.

At this point you still don’t know what the purpose of the first routine sub_406120 is. However, knowing that if this

function returns a value other than zero, the installation routine won’t execute, you can suspect that sub_406120

might be checking if the malware was already installed.

In the next block, the program is creating a new thread. The thread routine is set to sub_401B90. Rename this

function to f_ThreadFunction.

Advanced artefact analysis
Advanced static analysis

84

The next three blocks, create a loop. All the loop does is to check system time and compare it to previously checked

date of 01 April 2015. If time is greater than this date, the program quits. Otherwise, the program sleeps one minute

(60,000 milliseconds) and repeats checking the date.

 Analysis of thread function
In this exercise you will do an analysis of the thread function (f_ThreadFunction - sub_401B90). However, unlike in

previous examples, you will do only a quick assessment of this function to get a general knowledge about its

functionality.

When you first go to f_ThreadFunction in IDA Free, you might notice that IDA highlighted some parts of the code in

red. This usually indicates that IDA encountered some problem when disassembling the binary and manual code

correction might be needed.

However, in this case, it should be enough to tell IDA to reanalyse the code (Options->General->Analysis-

>Reanalyze program) and IDA will fix references to local variables:

Advanced artefact analysis
Advanced static analysis

85

Starting analysis of a function, we see that the program first checks its own process ID and saves it to the local

variable var_264 (rename it to PID):

In the next code block, you see calls to CreateToolhelp32Snapshot and Process32FirstW:

This means that the thread function will be iterating over the process list. Indeed, if you take a look at the bigger

picture of the function, you will notice that the entire thread function is a big loop, iterating over processes:

Advanced artefact analysis
Advanced static analysis

86

Next, go to the block where Process32Next is called and rename the block label to get_proc_next:

Now if you take a look at the beginning of the loop (block [1]), you will see that the next process PID is compared

to the PID of current process:

If both PIDs are equal, program skips loop iteration and tries to check the next process.

Advanced artefact analysis
Advanced static analysis

87

Next, take a look at blocks [2], [3] and [4] to see the references to the process names of three popular web

browsers: “firefox.exe”, “iexplore.exe” and “chrome.exe”:

This means that malware is looking for processes of web browsers and it will probably try to inject into some code.

Next if you take a look at [5] you will also see references to names of DLL libraries (“nspr4.dll”, “nss3.dll”,

“chrome.dll”, “wininet.dll”) used by the previously mentioned web browsers:

Names of DLLs are passed as a second argument to the sub_406950 (fastcall calling convention). At this point you

don’t know what sub_406950 is used for but a quick look at it might suggest it is only used to enumerate DLLs of

web browser process to check if given library was loaded (calls to CreateToolhelp32Snapshot, Module32First,

Module32Next and portions of the code look like some string comparison).

Advanced artefact analysis
Advanced static analysis

88

Next at [6] malware is calling GetSystemInfo23 (or GetNativeSystemInfo24) which returns various system information

in SystemInfo structure (IDA automatically recognized this structure on the stack). Then one of the SystemInfo fields

(anonymous_0) is compared to value 9. But what is the anonymous_0 field in SystemInfo structure? This field is not

mentioned in Microsoft documentation25.

To check what anonymous_0 field is, first hover mouse over SystemInfo:

Here you can see this is a stack declared structure of type _SYSTEM_INFO.

23 GetSystemInfo function https://msdn.microsoft.com/en-
us/library/windows/desktop/ms724381%28v=vs.85%29.aspx (last accessed 11.09.2015)
24 GetNativeSystemInfo function https://msdn.microsoft.com/en-
us/library/windows/desktop/ms724340%28v=vs.85%29.aspx (last accessed 11.09.2015)
25 SYSTEM_INFO structure https://msdn.microsoft.com/en-
us/library/windows/desktop/ms724958%28v=vs.85%29.aspx (last accessed 11.09.2015)

https://msdn.microsoft.com/en-us/library/windows/desktop/ms724381%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms724381%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms724340%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms724340%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms724958%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms724958%28v=vs.85%29.aspx

Advanced artefact analysis
Advanced static analysis

89

Next go to Structures view (View->Open Subviews->Structures). This view presents all well-known data structures

recognized by IDA in disassembled code (it is also possible to create custom data structures).

Next find on the list _SYSTEM_INFO. structure.

To expand the structure declaration, click on _SYSTEM_INFO. name and press ‘+’ on numerical keypad.

Here you can see that anonymous_0 field is the first field in _SYSTEM_INFO structure. This means this is a union

containing information about processor architecture (wProcessorArchitecture).

Advanced artefact analysis
Advanced static analysis

90

Indeed, value 9 to which anonymous_0 field is compared represents AMD64 processor architecture26. This means

that malware was checking if it is running on 64-bit system.

The next block is quite interesting from an educational point of view. It shows that you always need to be cautious

when doing analysis because sometimes IDA might disassemble something wrongly (without any warning).

This code is executed only if malware determines that it is running on 64-bit system. The call to IsWow64Process

suggests that malware checks if web browser process is running under WOW6427.

26 SYSTEM_INFO structure https://msdn.microsoft.com/en-
us/library/windows/desktop/ms724958%28v=vs.85%29.aspx (last accessed 11.09.2015)
27 Windows subsystem allowing 32-bit applications running on 64-bit Windows system
(https://msdn.microsoft.com/en-us/library/windows/desktop/aa384249%28v=vs.85%29.aspx) (last accessed
11.09.2015)

https://msdn.microsoft.com/en-us/library/windows/desktop/ms724958%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms724958%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa384249%28v=vs.85%29.aspx

Advanced artefact analysis
Advanced static analysis

91

According to Microsoft documentation28, IsWow64Process is a stdcall function taking two arguments.

The second argument (Wow64Process) is a pointer to a BOOL variable used to return information whether given

process is running under WOW64.

In the code, Wow64Process is set to the address of var_26C variable (lea eax, [esp+280h+var_26C]). After a call to

IsWow64Process we would expect value returned in var_26C should be checked. But instead you see references to

some other variable (var_274) which haven’t been yet initialized or referenced.

One of the possible causes of this problem might be that IDA has a wrongly traced stack pointer. And since the thread

function is using an esp based stack frame this might cause IDA to wrongly interpret variables. Let’s check how IDA

traced a stack pointer.

Choose Options->General and check the Stack pointer checkbox.

28 IsWow64Process function https://msdn.microsoft.com/en-
us/library/windows/desktop/ms684139%28v=vs.85%29.aspx (last accessed 11.09.2015)

https://msdn.microsoft.com/en-us/library/windows/desktop/ms684139%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms684139%28v=vs.85%29.aspx

Advanced artefact analysis
Advanced static analysis

92

Now you should see in disassembly an additional column with the value of the stack pointer as traced by IDA. Notice

that each instruction changing the stack pointer (push, pop, etc.) is changing the value in this column and instructions

like mov, xor, add, cmp … are not changing the stack pointer:

Stdcall functions are supposed to clean the stack before return. However for some reason, it looks like

IsWow64Process is not cleaning the stack at all (the stack pointer doesn’t change even though the function is taking

two arguments).

To see the reason for this, hover mouse over IsWow64Process.

Advanced artefact analysis
Advanced static analysis

93

Looks like IDA Free doesn’t know what the proper prototype of IsWow64Process and thus IDA didn’t know how many

arguments this function is taking nor how it affects the stack pointer. Consequently, IDA assumed that the call to

this function is not changing the stack pointer at all.

You can correct this by either manually editing the prototype of the IsWow64Process or manually changing how the

call instruction is affecting the stack pointer. To demonstrate, let’s use the second method.

Click on the call to IsWow64Process and choose Edit->Functions->Change stack pointer… (Alt+K). Next enter value

0x8 (because function is taking two DWORD sized arguments):

Now IDA should correctly reference all variables making code much clearer. Notice what was previously referenced

as var_274 is now var_26C:

The correction of a stack pointer might be necessary for calls to dynamically computed addresses when IDA doesn’t

know what function is called or how it affects stack.

Going back to the thread function analysis, take a look at block [7] where the single function sub_402050 is called

just before loop end.

Advanced artefact analysis
Advanced static analysis

94

This function takes a single argument (process ID) and from the call graph for this function, you will see it calls APIs

such as WriteProcessMemory or CreateRemoteThread. This means this function is used to inject code into the

browser process.

Finally code at [8] is executed after Process32NextW returns FALSE (zero). The code sleeps for 3 seconds and then

repeats an enumeration of the entire process list (second loop).

To sum up, you have just done a quick analysis of the thread function. During this analysis you weren’t going into

details of what each instruction is doing, but rather you were trying to get a general understanding of the function.

What you have learnt is that the thread function endlessly iterates over the process list in search of the processes

of popular web browsers (Mozilla Firefox, Google Chrome and Internet Explorer) to inject some code to such a

process in sub_402050. What you haven’t checked is how detection of 64-bit process affects code injection. You

have also skipped a call to sub_401DA0 which is a function using mutexes to prevent injection of code twice to the

same process.

Additionally you have also learnt how to fix a corrupted stack pointer and how to view data structures recognized

by IDA.

 Exercise
Open the dexter.exe sample (the same as in the previous exercise) and try to analyse the following functions:

 sub_401E70 – what this function is used for? How does it return a result?

 sub_402620 – what are the function arguments and how are they used?

 sub_4022B0 – what is this function used for?

For each function do only a quick assessment in order to get general understanding of the function and its role. No

detailed analysis is necessary.

Advanced artefact analysis
Advanced static analysis

95

 Summary
In this exercise you have learnt how to approach to function analysis in disassembled code. When starting to analyse

a function it is always good to ask a few standard questions such as what arguments is this function using, what APIs

are called and so on. Answering those question might give you valuable information about the function’s purpose.

You have also learned that thorough function analysis is not always necessary. In many cases, just a quick assessment

could be enough to get a general understanding of the function.

Advanced artefact analysis
Advanced static analysis

96

5. Anti-disassembly techniques

As presented in previous exercises, static analysis tools and techniques can teach you a lot of things about malicious

code: how it operates, what are its functions, how it installs in the system or how it communicates with a C&C server.

Of course this is usually contrary to the intentions of malware creators who would often want us to be unable to

analyse code of their creations. Consequently creators of more complex malware often use various anti-disassembly

techniques which aim to make analysis of disassembled code much harder.

In this exercise you will learn some of the more popular anti-disassembly techniques. Note that since those

techniques affect disassembled code they are usually also a problem during dynamic analysis in which a debugger

needs to disassemble code as well.

 Linear sweep vs. recursive disassemblers
To understand anti-disassembly techniques you need to first learn a little more about disassemblers. In general there

are two types of disassemblers: linear sweep and recursive disassemblers.

One of the problems with disassembling binary code is code synchronization - that is to tell where each instruction

starts and how to distinguish data from executable code. The fact that x86 instructions have variable length doesn’t

make this task easier.

For example take a look at hexdump of some executable.

Highlighted bytes represent consecutive assembly instructions:

E8 34 04 00 00: call 0x401a20

E9 58 FD FF FF: jmp 0x401349

8B FF: mov edi, edi

But if you start analysis, for example, at the offset changed by two bytes this would produce completely different

assembly code.

Advanced artefact analysis
Advanced static analysis

97

Red frames mark previously disassembled instructions while highlighted bytes mark new instructions after

disassembling with changed offset.

04 00: add al, 0x0

00 E9: add cl, ch

58: pop eax

FD: std

FF: db 0xFF (incorrect)

FF 8B FF 55 8B EC: dec dword [ebx-0x1374aa01]

The difference between a linear sweep and recursive disassembler is how a disassembler follows consecutive

instructions. A linear sweep disassembler tries to disassemble all the code in a code section of an executable. The

beginning of a new instruction is always marked with the end of a previous instruction and it doesn’t depend on the

instruction type. That is, if there were some bytes injected between instructions, the disassembler would try to

interpret them as another instruction.

For example:

In this example, a linear disassembler would try to disassemble bytes 6D 73 67… as an instruction instead of

interpreting it as text string. Resulting disassembly would look as follows:

Notice that the first two instructions (push, jmp) are disassembled properly but the rest of the code is completely

different.

(Examples of linear disassemblers are WinDbg and disassembler, included in the CFF Explorer.)

Advanced artefact analysis
Advanced static analysis

98

Unlike linear disassemblers, recursive disassemblers currently consider disassembled instructions. If the instruction

is changing execution flow (jump, call or return instruction) a disassembler tries to adequately interpret this and add

the destination address to a list of locations to disassemble. For example if an instruction is an unconditional jump

then a disassembler might try to analyse the code at the address where the jump is leading to instead of analysing

bytes right after the jump instruction.

However, recursive disassemblers aren’t perfect and there are situations which might cause them problems. One of

their drawbacks is that if a part of the code is never directly referenced (neither called nor jumped to), the

disassembler might never try to analyse it. Secondly, a recursive algorithm might also not work well if a disassembler

doesn’t know the destination address of the call or jump – for example if this address is dynamically computed.

(Examples of recursive disassemblers are IDA and OllyDbg.)

 Anti-disassembly techniques
Anti-disassembly techniques are techniques which try to mislead a disassembler by creating code desynchronization

or by affecting program execution flow in some nonstandard way. As a result disassembled code usually becomes

incomplete or contains garbage instructions (junk code).

Though they are not strictly anti-disassembly techniques in this category, you can also add techniques which are not

trying to directly affect the disassembling process but rather try to make disassembled code more complex and less

clear, making static analysis more difficult. Examples of such techniques would be inserting junk instructions or

dynamic loading of API functions.

Below there is a short summary of common anti-disassembly techniques:

 Inserting garbage bytes.

This technique works by inserting random bytes in chosen parts of the code. The intention is to make a

disassembler interpret those bytes as a normal code, what would then lead to incorrect disassembly. This

technique is usually used in conjunction with some other technique.

 Return address manipulation.

This is one of several execution flow manipulation techniques. It works by changing the return address of

the current function. This way, while a disassembler is expecting a function to return to the address after a

call, the instruction the function would return to is in a completely different part of the code.

 Middle instruction jump.

In this technique one instruction (e.g. push, mov) is used to hide another instruction.

 Always taken jumps.

This technique works by using conditional jumps for which the condition will be always met. Since

disassembler will likely not know this, it will try to disassemble bytes following this instruction.

 Indirect calls based on runtime value.

If the jump or call is made to the dynamically computed address/offset then a recursive disassembler won’t

know which address should be analysed next. Additionally, if this is a call instruction, a disassembler won’t

know calling convention of the destination function and how a called function is changing the stack pointer.

 Structured Exception Handling (SEH)

Structured Exception Handling (SEH) is a mechanism normally used to handle exceptions in programs. It can

be also used to obscure execution flow by first installing an exception handler routine and then triggering

an exception in some part of the code. As a consequence, program execution will be switched to the

exception handler routine.

Advanced artefact analysis
Advanced static analysis

99

 Inserting junk code.

This technique works by inserting instructions in the code that have no direct effect on execution and doesn’t

change program result. The only aim of this technique is to make disassembled code less clear and harder

to analyse (it is usually difficult for the analyst to distinguish real instructions from the junk code).

 Dynamic API loading.

Based on what API functions the malware is calling, you can try to predict its functionality and also recognize

the important parts of the code. To make such analysis harder, malicious code frequently dynamically loads

important API functions so that they are not present by default in the import address table.

In general, to deal with anti-disassembly techniques it is necessary to have a deep understanding of the analysed

code and also know what kind of anti-disassembly techniques you can encounter. In some cases anti-disassembly

techniques can be handled manually, usually by following some specific address and forcing it to be interpreted as

a code. In other cases anti-disassembly techniques might be so extensive that the only solution is to create some

scripts or use dynamic analysis techniques.

 Analysis of anti-disassembly techniques
In this exercise you will analyse a specially prepared binary file (non-malicious) which is using various anti-

disassembly techniques.

First start by opening antidisasm.exe in IDA:

You can see here a group of calls to various functions. Each function is using different anti-disassembly techniques

and then returns some value in the eax register. The task is to tell what value is returned by each function using only

static analysis techniques.

5.3.1 Analysis of a call to loc_40101A
First go to function at 0x40101A.

Advanced artefact analysis
Advanced static analysis

100

IDA hasn’t recognized this code as a proper function. Indeed, it seems there is no return from this function because

after a call to EAX there is some junk code and loc_401045 is the beginning of the next function.

Notice that at the beginning of loc_40101A there is a strange call (call $+5).

This is very characteristic call – call to the next instruction (0x401022). What it does is pushing onto the stack return

address (0x401022) which is then loaded into eax (pop eax). That is by executing pop eax you read the virtual memory

address of this exact instruction (0x401022).

Then you add 10h to eax value and call to the address of the newly computed eax value.

At this point you know that the eax value is 0x401032 (0x401022+0x10). Unfortunately this leads us right into the

middle of the junk code and it seems there is no instruction at this address.

By now it should be obvious that junk code is likely a result of some code desynchronization. IDA didn’t know what

address was called when calling eax and as a result just tried to disassemble next instruction.

To correct this, first select all junk code and then right click it and choose undefined (or press <U>):

Advanced artefact analysis
Advanced static analysis

101

Next click on the byte at the address 0x401032 and press <C> to convert it to code. Notice also the string

“Fantastic!” right after a call to eax.

Now the code should be much clearer. You can also read return value of loc_40101A which is 0x1337.

Advanced artefact analysis
Advanced static analysis

102

To sum up, in this function you have seen two anti-disassembly techniques. First there was an indirect call to

dynamically computed address. IDA didn’t know what address was called and thus it just tried to disassemble next

instruction which happened to be inline embedded string (second technique). This resulted in creation of junk code

instead of valid assembly instructions.

5.3.2 Analysis of a call to loc_401045
The second function which you will analyse is the function at loc_401045.

At first glance even though IDA hasn’t recognized this code as a normal function you can see here a typical function

prologue and epilogue with a return instruction. You can also highlight the eax register to check where its value is

set.

It seems that eax is first set to 0x11EB and then increased by 0x1000. However what should catch our attention is

the jump instruction (jz) which seems to lead to the middle of an instruction. Notice also the red coloured cross

reference – suggesting that something is wrong here.

Advanced artefact analysis
Advanced static analysis

103

Before we start analysing where this jump leads, let’s check if and on what condition it will be taken. The last

instruction sets a zero flag before the jump is xor eax, eax which is zeroing eax register and always sets the zero flag.

This means that the jump will be always taken.

Since the jump leads to the middle of an instruction, select this instruction and convert it to data (use Undefine or

press <U>).

IDA will likely undefine more code than you intended, but this isn’t a problem since you already know the jz

destination address (0x40104B) and where the original jz instruction was located (0x401050).

Now select the byte at 0x40104B and press <C> to define code. Do the same with the byte at 0x401050 (jz

instruction). After this, you should see code similar to this one:

Advanced artefact analysis
Advanced static analysis

104

This means that in the middle of the push instruction was hidden another jump instruction.

As you see the hidden jump is again leading us into the middle of an instruction at 0x40105D (to the address

0x40105E). But this time it looks like a normal assembly desynchronization.

To proceed, go to the undefined instruction at 0x40105D and create code at the address 0x40105E. After those

operations code should look as follow:

Now you can clearly see return value set to 0x4096. Notice that after retn instruction a few garbage bytes were

added to prevent IDA from properly disassembling instructions where the eax value is being set.

Advanced artefact analysis
Advanced static analysis

105

The screenshot below shows the execution flow of a routine before making any changes to it:

To sum up, in this routine you have seen a few anti-disassembly techniques. The most notable one is the jump into

the middle of another instruction. In this scenario, a push instruction was used to conceal another jump instruction.

You have also seen usage of a conditional jump that is always taken as well as the use of garbage bytes to

desynchronize disassembled code.

5.3.3 Analysis of a call to sub_401065
The next call is made to sub_401065. This time, IDA recognized this code as a normal function:

What you see here is that the eax register is first zeroed, then some function sub_40107D is called (with argument

0x1000) and finally you add 0x1000 to eax. The question is whether sub_40107D changes eax to return some value.

Let’s take a look at sub_40107D:

Advanced artefact analysis
Advanced static analysis

106

It looks like the only thing this function is doing with eax is first loading arg_0 value (0x1000) and then adding another

0x1000. Thus after the function returns, eax should have value 0x2000. Does it mean that return value of sub_401065

is 0x3000 (0x2000+0x1000)?

As you might have suspected, it is not that easy. Take a look what happens just before sub_40107D returns:

First load to edx the stack address of the first argument and then subtract 4 bytes from edx. What does the address

stored in edx point to now? Remember stack frame structure:

arg_0 ebp+8

ret. addr. ebp+4

ebp ebp

After subtraction, edx points to the return address stored on the stack. Then, in the third line, we add 0x2B to the

return address value. This means that return address of the function was changed and sub_40107D will now return

to a different place of the code.

To check where the function will now return go back to the sub_401065:

Advanced artefact analysis
Advanced static analysis

107

The original return address should be 0x401074. But you know it was increased by 0x2B. This means that function

sub_40107D will return to the address 0x40109F (0x401074+0x2B). Switch from graph view to the text view and

search for this address.

Not surprisingly you see some junk code stored at this location. Undefine (<U>) this code and then create new code

(<C>) starting at the address 0x40109F.

You have just found final eax value which is 0xC0DE!

To sum up, in this section, you have seen a quite popular anti-disassembly technique which is return address

replacement. Malicious code trying to deceive the disassembler replaces return address in call to a certain function

so that it would point to a completely different part of the code than the disassembler expects.

5.3.4 Analysis of a call to sub_4010B2
Now you will analyse a call to subroutine sub_4010B2.

Advanced artefact analysis
Advanced static analysis

108

…

If you go to this function you will see a long disassembled code with many operations on the eax register. However

if you take a closer look at the code you might notice groups of instructions that are not doing anything (some of

them might change some flags but this is not relevant in this example).

Advanced artefact analysis
Advanced static analysis

109

This is a little simplified version of a technique, in which blocks of junk instructions having no effect on the program

execution and only making manual analysis harder are injected into real code.

The only way of dealing with such code is to try to look for any repeated pattern of junk code in disassembly. If you

notice such pattern you might try to eliminate it by writing script which would overwrite junk code with NOP

instructions or highlight it with some colour. However writing scripts in IDA is not a part of this course.

If you analyse the code a little more, you will notice that only three instructions have an effect on the final eax value:

This means that the final eax value will be 0x1500.

5.3.5 Analysis of a call to sub_40116D
The last call which you will analyse is a call to sub_40116D:

Advanced artefact analysis
Advanced static analysis

110

In this routine, the eax register is seemingly set to 0xEBFE value. However you should immediately notice the

instruction mov fs:0, esp which tells us that a new Structured Exception Handler (SEH) is being installed29.

Information about all exception handlers is stored in the list of EXCEPTION_REGISTRATION structures:

_EXCEPTION_REGISTRATION struc

 prev dd ?

 handler dd ?

 _EXCEPTION_REGISTRATION ends

This structure consists of two fields. The first field (prev) is a pointer to the next EXCEPTION REGISTRATION structure

while the second field (handler) is a pointer to exception handler function.

The pointer to the first EXCEPTION_REGISTRATION structure (list head) is always stored in the first DWORD value of

the Thread Information Block (TIB). On the Win32 platform, the TIB address is stored in FS register, thus by executing

mov fs:0, esp, you are setting the first exception handler to the EXCEPTION_REGISTRATION structure created on the

stack.

In the case of sub_40116D, the stack would look as follows (after SEH installation):

29 To get more information about SEH refer to https://www.microsoft.com/msj/0197/exception/exception.aspx (last
accessed 11.09.2015)

https://www.microsoft.com/msj/0197/exception/exception.aspx

Advanced artefact analysis
Advanced static analysis

111

The next question should be whether any exception is triggered in this function? Yes, take a look at the ecx register:

First, it is zeroed and then the program tries to write a DWORD value to the address pointed by this register.

However, because ecx points to unallocated address 0x00000000 this will cause an exception

(STATUS_ACCESS_VIOLATION – 0xC0000005) and program execution would be switched to the installed exception

handler.

But what is the address of the exception handler routine? In this example you see that the value 0x15232A1 is being

pushed onto stack as an exception handler. But this is not a valid address of any function. Indeed, notice the xor

instruction xoring the exception handler address on the stack with value 0x1122300. This means that the real

exception handler address is:

0x15232A1 xor 0x1122300 = 0x4011A1

To calculate xor value you can use IDA calculator (View -> Calculator):

Now switch from graph view to text view and search for an address 0x4011A1:

Advanced artefact analysis
Advanced static analysis

112

Repeat steps from previous exercises to convert data at 0x4011A1 to code:

What you see here is that eax is assigned with the value 0x512. Other instructions just restore stack pointer and

jumps to the end of sub_40116D.

To sum up what you have seen in this subroutine was a usage of Structured Exception Handling (SEH) to change the

execution flow of the program. SEH is commonly used as both an anti-disassembly and an anti-debugging technique.

Additionally, the address of the exception handler routine was obscured with a xor operation.

 Exercise
After completing the analysis of all anti-disassembly techniques in the sample, try to repeat this exercise but using

OllyDbg instead. This executable is not performing any malicious actions so you don’t need to worry about

accidentally executing it. When debugging in OllyDbg, try to follow execution using Step into (F7) function instead of

stepping over analysed functions.

 How does disassembled code in OllyDbg differ from the code initially disassembled by IDA?

 Was analysis easier in OllyDbg or IDA?

Advanced artefact analysis
Advanced static analysis

113

6. Training summary

In this training, students had the opportunity to learn various aspects of advanced static analysis using IDA Free. First

they learnt how to use IDA and what features it offers. Then they learnt how to find significant parts in disassembled

code and how to analyse functions. Finally, students reviewed common anti-disassembly techniques and how to

deal with them. Some of the more advanced features of IDA like scripting, creating plugins or F.L.I.R.T. signatures

were not covered in this document because they require more advanced training and some features are not

available in the free version of IDA.

Advanced artefact analysis
Advanced static analysis

114

Appendix A: Answers to exercises

Exercise 2.3
Name a few functions imported by PuTTY executable.

Click View->Open subviews->Imports:

What sections are present within executable?

Click View->Open subviews->Segments:

Sections: .text, .idata, .rdata, .data.

This can be also checked using other tools (e.g. CFF Explorer).

What do strings tell you about this binary?

Click View->Open subviews->Strings

There are many descriptive strings in the binary. In general, strings give away that you are analyzing PuTTY, a network

application using many different protocols and cryptographic functions.

 There are many strings hinting to “PuTTY” name and PuTTY version.

 There are many strings with names of network protocols, e.g. ssh, telnet, rlogin.

 There are strings pointing to cryptographic functions (AES, Blowfish, 3DES) suggesting that executable is

using some form of cryptography.

 There are various caption messages suggesting PuTTY functionality, e.g. “Options controlling proxy usage”.

Advanced artefact analysis
Advanced static analysis

115

 There are many error messages also suggesting PuTTY capabilities.

Exercise 2.6
Find function sub_4497AE. What API calls are made within this function?

Called API functions:

 RegOpenKeyA

 RegQueryValueEx

 RegCloseKey

 LoadLibraryA

 GetProcAddress

Go to the address 0x406AFB. To which function does this address belong?

Function sub_40486C.

Go to the address 0x430EAB. Is there anything special about the instructions stored at this address?

At this address there is code which is not part of any function. Probably some function wasn’t recognized by IDA as

a proper function.

Exercise 2.9
Find where variable var_8 is used and rename it.

cur_process_id – this variable is used to store ID of the current process.

Advanced artefact analysis
Advanced static analysis

116

Try to rename remaining locations: loc_44D2B1, loc_44D2DA, loc_44D36B, loc_44D3B4. What names would you

suggest for them?

loc_44D2B1 – file_loop, file_iteration, …

loc_44D2DA – get_curr_process_id, pid_check, …

loc_44D36B – check_cryptacquire_success, cryptoacquire_check, …

loc_44D3B4 – release_crypt_context, crypt_release, …

Group three graph nodes checking if functions CryptAcquireContextA, CryptGenRandom and CryptReleaseContext

were resolved correctly (0x44D36B, 0x44D374, 0x44D37C).

Can you guess what function sub_44D262 might be used for?

Function takes one argument – function pointer (ebx). Then it gathers information about file names (FindNextFileA),

current process ID (GetCurrentProcessId) and also generates block of random data (CryptGenRandom). After each

of those calls some data is received (file names, process ID and block of random dada). Then this data is passed

always to the same function (ebx).

Advanced artefact analysis
Advanced static analysis

117

Because non-uniform and random data is passed multiple times to the same function this suggests that this function

is likely used as some random data pool collector.

To confirm this guess you would need to analyze where sub_44D262 was called from. There are also two additional

function calls in func_exit block which should be likely inspected first.

Exercise 4.4
Find network related functions.

sub_402710 – calls to functions such as InternetOpenA, InternetConnectA, HttpSendRequestA. There are also

references to strings such as “http://%s%s”, “/test/gateway.php” or “193.107.17.126”.

Find installation routine.

sub_402EC0 - called from main, there are calls to CopyFileW, RegSetValueExW, DeleteFileW. It also references

strings such as “Software\\Microsoft\\Windows\\CurrentVersion\\Run”.

Find function performing RAM scraping (reading memory of other processes).

sub_403BD0 – calls to ReadProcessMemory, CreateProcess32Snapshot, Process32First, Process32Next.

Find process injection routine.

sub_403550 – calls to CreateRemoteThread.

sub_403370 – calls to WriteProcessMemory (called from sub_403550).

Are there any other potentially interesting or suspicious functions?

sub_401E70 – references strings with different operating systems names.

sub_4022B0 – references strings such as “&spec=”, “&query=”, “&ver=” which looks like some HTTP GET request

parameters.

sub_4045B0 – references strings such as “update-“, “checkin:”, “scanin”.

start (0x4036B0) – start routine.

Exercise 5.4
sub_401E70 – what is this function used for? How does it return result?

Function is used for OS identification. String containing operating system name is copied to memory buffer passed

to this function as an argument.

Advanced artefact analysis
Advanced static analysis

118

sub_402620 – what are function arguments and how are they used?

Function takes three arguments (renamed on the screenshot for clarity):

All three arguments were recognized by IDA as string pointers.

lpString2 (second argument) is processed in calls to sub_4017C0 and sub_401830 and result is copied to the

allocated buffer (lpMem). You might decide to analyze both calls to learn how they affect value of lpString2.

Short before sub_402620 returns, there are two string concatenation operations. First lpString1 is concatenated to

lpString3. Then lpMem buffer is concatenated to lpString3.

Advanced artefact analysis
Advanced static analysis

119

Based on this short analysis you can tell that function takes three string pointer arguments (arg1..arg3). Then

performs following operation written in pseudocode:

arg3 += arg1 + f(arg2)

Where f() is function somehow processing second string argument.

sub_4022B0 – what is this function used for?

In this function there are calls to functions like GetUserNameA, GetComputerNameA, sub_401E70 (which you should

already know that is returning the name of the operating system). There are also references to strings such as

“&spec=”, “&query=”, “&ver=”, “32 Bit”, “64 Bit”.

Function itself is called from sub_402710 which, as it was already found out, is a function used to communicate with

C&C server.

This suggests that this function is used to construct string with parameters to HTTP GET request containing various

information about infected system. You can do more detailed analysis to check all parameters in constructed GET

request.

Exercise 6.4
In this exercise it should be enough to debug using only Step into (F7) and read return value from EAX register just

before function end.

In this exercise for a few times you will hit part of the disassembly which wouldn’t be recognized by OllyDbg as an

assembly code:

To fix this select group of bytes starting at the current EIP location (black square), right click on the selection and

from the context menu choose: Analysis->During next analysis, treat selection as->Command.

This should fix the problem:

Advanced artefact analysis
Advanced static analysis

120

Special attention is only required in last function (0x40116D) which uses Structured Exception Handlers (SEH) to hide

some code.

When you hit the instruction at which exception occurs (at 0x40118E) OllyDbg would stop and inform you at status

bar that access violation exception has occurred:

Open SEH View (View->SEH Chain) to check if there are any extra exception handlers:

You can see that there is one exception handler defined in current module. Select it and press F2 to put breakpoint

on its address. Answer ‘Yes’ in suspicious breakpoint dialog.

Advanced artefact analysis
Advanced static analysis

121

Then press Shift+F9 to resume execution and pass exception handling to the program. You should immediately land

at exception handling code:

Tell OllyDbg to treat those instructions as a normal code (Analysis->During next analysis, treat selection as-

>Command) and continue instruction stepping.

ENISA
European Union Agency for Network
and Information Security
Science and Technology Park of Crete (ITE)
Vassilika Vouton, 700 13, Heraklion, Greece

Athens Office
1 Vass. Sofias & Meg. Alexandrou
Marousi 151 24, Athens, Greece

PO Box 1309, 710 01 Heraklion, Greece
Tel: +30 28 14 40 9710
info@enisa.europa.eu
www.enisa.europa.eu

