

www.enisa.europa.eu European Union Agency For Network And Information Security

Mobile Threats Incident
Handling (Part II)
Toolset, Document for students

1.0

SEPTEMBER 2015

http://www.enisa.europa.eu/

Mobile Threats Incident Handling (Part II)
1.0 | September 2015

02

About ENISA

The European Union Agency for Network and Information Security (ENISA) is a centre of network and
information security expertise for the EU, its member states, the private sector and Europe's citizens.
ENISA works with these groups to develop advice and recommendations on good practice in information
security. It assists EU member states in implementing relevant EU legislation and works to improve the
resilience of Europe's critical information infrastructure and networks. ENISA seeks to enhance existing
expertise in EU member states by supporting the development of cross-border communities committed to
improving network and information security throughout the EU. More information about ENISA and its
work can be found at www.enisa.europa.eu.

Authors
This document was created by Yonas Leguesse, Christos Sidiropoulos, and Lauri Palkmets in consultation
with S-CURE1 (The Netherlands), ComCERT2 (Poland), and DFN-CERT Services3 (Germany).

Contact
For contacting the authors please use cert-relations@enisa.europa.eu.
For media enquires about this paper, please use press@enisa.europa.eu.

1 Don Stikvoort, Michael Potter, and Alan Robinson
2 Tomasz Chlebowski, Mirosław Maj, Piotr Szeptyński, and Michał Tatar
3 Mirko Wollenberg

https://www.enisa.europa.eu/
mailto:cert-relations@enisa.europa.eu
mailto:press@enisa.europa.eu.

Mobile Threats Incident Handling (Part II)
1.0 | September 2015

03

Legal notice
Notice must be taken that this publication represents the views and interpretations of the authors and
editors, unless stated otherwise. This publication should not be construed to be a legal action of ENISA or
the ENISA bodies unless adopted pursuant to the Regulation (EU) No 526/2013. This publication does not
necessarily represent state-of the-art and ENISA may update it from time to time.

Third-party sources are quoted as appropriate. ENISA is not responsible for the content of the external
sources including external websites referenced in this publication.

This publication is intended for information purposes only. It must be accessible free of charge. Neither
ENISA nor any person acting on its behalf is responsible for the use that might be made of the
information contained in this publication.

Disclaimer
ENISA does not endorse or recommend any commercial products, processes or services. Therefore, any
and every mention of commercial products, processes, or services within this course material, cannot be
construed as an endorsement or recommendation.

This course material provides links to other Internet sites for informational purposes and the
convenience of its users. When users select a link to an external web site, they are subject to the privacy
and security policies of the owners/sponsors of the external site.

Copyright Notice
© European Union Agency for Network and Information Security (ENISA), 2015
Reproduction is authorised provided the source is acknowledged.

Mobile Threats Incident Handling (Part II)
1.0 | September 2015

04

Table of Contents

1. What Will You Learn? 6

 Mobile forensics 6

 Network forensic 6

 Mobile malware reverse-engineering 6

2. Exercise Task 7

 Task 2.1: Analysis of sample application's permissions on an Android device 7

2.1.1 Introduction 7
2.1.2 Details 7
2.1.3 Task walk-through 7

 Task 2.2: Analysis of sample application's Mach-o header on an iOS device 8

2.2.1 Introduction 8
2.2.2 Details 8
2.2.3 Task walk-through 8

 Task 3.1: A quick evaluation of knowledge regarding mobile devices 9

 Task 4.1: Logical data extraction from Android devices 10

2.4.1 Introduction 10
2.4.2 Tools used 10
2.4.3 Details 10
2.4.4 Task walk-through 10

 Task 4.2: File system extraction from Android devices 14

2.5.1 Introduction 14
2.5.2 Tools used 14
2.5.3 Details 14
2.5.4 Task walk-through 14

 Task 4.3: Manual file carving 17

2.6.1 Introduction 17
2.6.2 Tools used 17
2.6.3 Details 17
2.6.4 Task walk-through 17

 Task 4.4: RAM memory dump from Android device 20

2.7.1 Introduction 20
2.7.2 Tools used 20
2.7.3 Details 21
2.7.4 Task walk-through 21
2.7.5 Dumping RAM memory 21
2.7.6 Examining memory dump with Volatility 25
2.7.7 Using Autopsy 28

 Task 4.5: iOS – iPhone Backup Analyser 2 34

Mobile Threats Incident Handling (Part II)
1.0 | September 2015

05

2.8.1 Introduction 34
2.8.2 Details 34
2.8.3 Task walk-through 34

 Task 4.6: Brute-forcing Android encryption mechanisms 37

2.9.1 Introduction 37
2.9.2 Details 37
2.9.3 Task walk-through 37

 Task 5.1: Analysing pcap data and proxy logs of Android.Trojan.SLocker.DZ 39

2.10.1 Introduction 39
2.10.2 Tools used 39
2.10.3 Details 39
2.10.4 Task walk-through 40
2.10.5 Task walk-through with mitmproxy logs 42

 Task 5.2: Analysing pcap data and proxy logs of iOS.Oneclickfraud 45

2.11.1 Introduction 45
2.11.2 Tools 45
2.11.3 Details 45
2.11.4 Test walk-through 45

 Task 6.1: Analysing Android.Trojan.SLocker.DZ 47

2.12.1 Introduction 47
2.12.2 Tools 47
2.12.3 Details 47
2.12.4 Task walk-through 47

 Task 6.2: Analysing iOS.Oneclickfraud 50

2.13.1 Introduction 50
2.13.2 Tools 50
2.13.3 Details 50
2.13.4 Task walk-through 50

3. References 52

Mobile Threats Incident Handling (Part II)
1.0 | September 2015

06

1. What Will You Learn?

 Mobile forensics
Mobile forensics are a set of complex techniques aiming at the delivery of digital evidence based on data
extracted from mobile devices. As such, it utilises approaches, technologies and tools known from computer
forensics. Some of the concepts and solutions are common for both, while others are specifically for mobile
forensics. Mobile forensic investigations (and digital forensic investigations in general) can be split into
several phases: identification of a target mobile device, its seizure and data acquisition, examination and
analysis, reasoning and reporting. Over the course of the investigation, activity must be documentation and
gather evidence properly and securely stored.

This exercise will focus on the following phases: data acquisition (excluding physical approach) and
examination and analysis (in terms of mobile device contents, application-specific data, malware and
network communications).

 Network forensic
Mobile network connectivity through technologies like GSM, UMTS, LTE is not commonly used in computer
environments and thus has to be dealt with in a special way in a lab situation. One way is to use specialised
commercial systems4 available to law enforcement agencies. Alternatives are open-source implementations
of management and data forwarding applications which, when combined with software defined radio (SDR)
hardware, can be used to create a closed mobile network suitable for analysis.

The students will be given prepared samples of malware traffic captured with tcpdump5 and mitmproxy6 for
analysis. After the exercise and accompanying studies the students should be aware of tools and techniques
to build an environment to capture and analyse network traffic generated by mobile malware.

 Mobile malware reverse-engineering
In this exercise the task will be to analyse malicious applications developed for mobile platforms (Android,
iOS) and use a variety of tools to identify information leading to the development of countermeasures.
Extracting the applications from a mobile device will not be part of this exercise.

We will demonstrate the analysis of two mobile malware applications (Android.Trojan.SLocker.DZ for
Android and iOS.Oneclickfraud) using a couple of publically available tools and make the students acquainted
with them.

4 Cellular Intercept and Cellular Monitoring technologies give Law Enforcement and Government Agencies a technological edge,
http://www.cellularintercept.com/, last accessed on: 2015-09-14
5 Tcpdump: network traffic sniffer, http://www.tcpdump.org/, last accessed on: 2015-09-14
6 MitM Proxy: An interactive console program that allows traffic flows to be intercepted, inspected, modified and replayed,
https://mitmproxy.org/, last accessed on: 2015-09-14

http://www.cellularintercept.com/
http://www.tcpdump.org/
https://mitmproxy.org/

Mobile Threats Incident Handling (Part II)
1.0 | September 2015

07

2. Exercise Task

 Task 2.1: Analysis of sample application's permissions on an Android device

2.1.1 Introduction
In this task, the students will use native Linux instrument called AAPT7 which allows to take a look into
permissions of the sample application. The AAPT tool can be used to list, add or remove resource files from
apt packages (i.e. Android applications). If can also dump specific data from the packages.

2.1.2 Details
In the exercise directory (/home/enisa/D2/2.6_T1) students will find an APK application file
com.androidream.secretdiary.free.apk. For the analysis of this file students will have to use the pre-installed
AAPT tool.

2.1.3 Task walk-through
In this section a possible approach to permissions' analysis is explained.

2.1.3.1 Take a look for tool's options by running aapt.

Figure 1

2.1.3.2 Use command "aapt d permissions" to view the permissions of
com.androidream.secretdiary.free.apk application.

Figure 2

7 Build System Overview, http://developer.android.com/sdk/installing/studio-build.html, last accessed on: 2015-09-14

http://developer.android.com/sdk/installing/studio-build.html

Mobile Threats Incident Handling (Part II)
1.0 | September 2015

08

Compare permissions granted to this application to all available permissions for Android applications8 and
describe what this specific application can do.

 Task 2.2: Analysis of sample application's Mach-o header on an iOS device

2.2.1 Introduction
In this simple task the students will use tool called OTOOL which allows to take a look into Mach-O header
of the sample iOS application. This application is available only for Mac OS X platform.

2.2.2 Details
You will have to use the otool on sample iOS application. You will find information about the FAT header to
identify the supported CPU architecture to run an application. It's important to know how to run the
application if it's needed to put the application into a sandbox.

2.2.3 Task walk-through
Students will need to download .IPA file directly from an iPhone or from the Internet. After that they will
need to unzip .IPA file then check information from the FAT file header.

2.2.3.1 Unzip .IPA file.

Figure 3

8 Android applications permissions, http://developer.android.com/preview/features/runtime-permissions.html, last accessed on: 2015-09-14

http://developer.android.com/preview/features/runtime-permissions.html

Mobile Threats Incident Handling (Part II)
1.0 | September 2015

09

2.2.3.2 Use otool to check FAT header.

Figure 4

Compare FAT_MAGIC value with Mach-O documentation9 and answer the question: is the binary for a 32-
bit platform, 64-bit platform, or are the binaries universal?

 32-bit (ARMv6, ARMv7) – 0xFEEDFACE

 64-bit – 0xFEEDFACF

 Universal binaries – 0xCAFEBABE

 Task 3.1: A quick evaluation of knowledge regarding mobile devices
Please answer the following questions. Only one answer is correct in each question.

1. What information is contained in the IMEI number?
a) The manufacturer's code

b) Name of operator

c) The number of home network

d) None of the above

2. The ICCID number is:

a) The number identifying the SIM card

b) The serial number of the SIM card

c) Number, which can be read without knowing the PIN

d) All of the above

3. The IMSI identifies:

a) Subscriber

b) Phone

c) The SIM card

9 Universal Binaries and 32-bit/64-bit PowerPC Binaries,
https://developer.apple.com/library/mac/documentation/DeveloperTools/Conceptual/MachORuntime/index.html#//apple_ref/c/tag/fat_header,
last accessed on: 2015-09-14

https://developer.apple.com/library/mac/documentation/DeveloperTools/Conceptual/MachORuntime/index.html#//apple_ref/c/tag/fat_header

Mobile Threats Incident Handling (Part II)
1.0 | September 2015

10

d) The telephone

4. To disable communication capabilities of a seized mobile device which is turned on:

a) Insert the device into the overvoltage bag

b) Separate it from the network by pulling out SIM card

c) Turn it off

d) Put it in a Faraday's bag and analyse as soon as possible

5. How to check the IMEI of a device which is turned on?

a) By entering *#06#

b) By entering *##06#

c) By entering *#08#

d) By entering *##08#

6. What does "post mortem" extraction mean?

a) Device is bricked

b) Device is turned off

c) Extraction will damage the device

d) Device is turned on

7. How can the integrity of electronic evidence be ensured?

a) By burning extracted data to a read-only medium

b) By a checksum

c) By following chain of custody

d) All of the above

 Task 4.1: Logical data extraction from Android devices

2.4.1 Introduction
In this task the students will use the AF Logical OSE tool to make a logical extraction from Android device.
The trainer will give a short introduction to the usage of the Android AVD's and AF Logical OSE tool.

2.4.2 Tools used
 AVD

 AF Logical OSE

2.4.3 Details
Students have to prepare the Android Virtual Machine with the Android AVD tool. After that, they'll have to
fill some data into Android Virtual Machine and once that is done, students can make a logical extraction. If
they are any problems with creation of Virtual Machine and / or populating it with sample data students can
use AVD called Android_VM_ENISA.

2.4.4 Task walk-through
The following steps explain how to make a logical extraction of an Android device.

Mobile Threats Incident Handling (Part II)
1.0 | September 2015

11

2.4.4.1 Create new AVD machine. Open Linux Terminal and type android. You will see the SDK Manager
window. Navigate to Tools and go to Manage AVDs. Click on Create and create a new AVD as
shown in the picture below.

Figure 5 AVD Manager

Figure 6 Create new AVD

2.4.4.2 Fill in sample data (e.g. add some contacts, try to send few SMS messages, try to call any
number, open Internet browser, save some images on the internal memory and send some
images by MMS message).

Mobile Threats Incident Handling (Part II)
1.0 | September 2015

12

2.4.4.3 On Android Virtual Machine go to Settings -> Developer options and turn on USB debugging.

Figure 7 Enable USB debugging

2.4.4.4 Run the aflogical-ose command via terminal. By running this command you will push to the
device a small application which tries to download data from the device.

Figure 8 aflogical-ose command

Mobile Threats Incident Handling (Part II)
1.0 | September 2015

13

2.4.4.5 On the device's screen it can be seen types of information for downloading from the device
memory. Click on capture and wait until you "Data extraction completed" message appears.

Figure 9

2.4.4.6 Now you need to get back into the terminal window and press enter to download data to the
local hard disk.

Figure 10 aflogical-ose pull data from device

2.4.4.7 After that you have to find a folder called aflogical-data on your hard drive. In this folder you will
find another folder named by the date and time of the extraction and when you will go deeper
then you will find *.csv files with resources downloaded from the phone.

Mobile Threats Incident Handling (Part II)
1.0 | September 2015

14

 Task 4.2: File system extraction from Android devices

2.5.1 Introduction
In this task the students will use adb and dd tools to make a file system extraction from Android device. The
trainer will give a short introduction into the usage of the Android AVD's and used specific commands.

2.5.2 Tools used
 AVD

 adb

 cat, dd, su, sudo

2.5.3 Details
Students have to prepare the Android Virtual Machine with the Android AVD tool. After that they'll have to
fill some data into Android Virtual Machine and once that's done students can make logical extraction. If
they are any problems with creation of Virtual Machine and / or populating it with sample data students can
use AVD called Android_VM_ENISA.

2.5.4 Task walk-through

2.5.4.1 Firstly we connect the device through usb and enable usb debugging in the phone settings.

2.5.4.2 To identify the partition layout we connect to the device through adb shell and list partitions
through /proc/partitions.

Mobile Threats Incident Handling (Part II)
1.0 | September 2015

15

Figure 11 /proc/partitions

Mobile Threats Incident Handling (Part II)
1.0 | September 2015

16

2.5.4.3 Alternatively to better understand the mount points we list partitions by name.

Figure 12 Partitions By Name

2.5.4.4 Next, extract the system.img to the root of the sdcard.

Figure 13 Backup of system.img to file

Mobile Threats Incident Handling (Part II)
1.0 | September 2015

17

2.5.4.5 Finally we pull the system.img locally to further investigate.

Figure 14

 Task 4.3: Manual file carving

2.6.1 Introduction
In this task, the students will use wxHexEditor tool to perform file carving from a file system imaged of an
Android device. The trainer will give a short introduction into the usage of the wxHexEditor and tells
something about file signatures.

2.6.2 Tools used
 wxHexEditor

2.6.3 Details
This exercise refers to Task 2 above. Now that students have dumped a partition from Android Virtual
Machine, the goal is to find some JPG file in the partition image.

2.6.4 Task walk-through
A file signature is data used to identify or verify the content of a file. In particular, it may be a so called magic
number which identifies the format of the file. Generally a short sequence of bytes (most magic numbers
are 2–4 bytes long) is placed at the beginning of the file.

Manual file carving is the process of reconstructing files by scanning the raw image of the disk looking for
file signatures and its contents, and reassembling them. This is usually done by examining the header (the
first few bytes) and footer (the last few bytes) of a file.

Mobile Threats Incident Handling (Part II)
1.0 | September 2015

18

2.6.4.1 Open wxHexEditor by typing in Linux Terminal command wxHexEditor and open one of partition
file by clicking on File -> Open.

Figure 15

2.6.4.2 You need to find a header of a JPG file which is FF D8 FF (list of all known file signatures can be
found on the Internet). It is important, that the header is a few bytes ahead of an ASCII string
"JFIF". Use search tool ("Edit -> Find -> Find All") directly from wxHexEditor.

Figure 16

Mobile Threats Incident Handling (Part II)
1.0 | September 2015

19

2.6.4.3 Save the offset address of a JPG file header.

Figure 17

2.6.4.4 Now you need to find a hex value of FF D9 which is a JPEG files' footer. Try to locate the nearest
occurrence after the header identified in the previous step.

Figure 18

Mobile Threats Incident Handling (Part II)
1.0 | September 2015

20

2.6.4.5 When you find the header and trailer of JPG file you have to mark hexadecimal code from
header to footer (you need to know offset addresses).

Figure 19

2.6.4.6 Now you choose "Save As Dump" and save this file as TEST.JPG. After that you will be able to see
the picture.

It's worth to mention that file carving can be done automatically with commercial tools, such as Micro
Systemation's XACT, or open-source ones, e.g. foremost.

 Task 4.4: RAM memory dump from Android device

2.7.1 Introduction
In this task the students will use tools to make a RAM memory extraction from Android device. After that
students will use Volatility and Autopsy tools to analyse RAM dump file.

2.7.2 Tools used
 Android SDK10

 Android NDK11

 LiME12

 Dwarfdump13

 Volatility14

 Autopsy15

10 Android SDK, http://developer.android.com/sdk/index.html, last accessed on: 2015-09-14
11 Android NDK, http://developer.android.com/tools/sdk/ndk/index.html, last accessed on: 2015-09-14
12 LiME: Linux Memory Extractor, https://github.com/504ensicslabs/lime last accessed on: 2015-09-14
13 Libdwarf and Dwarfdump, http://wiki.dwarfstd.org/index.php?title=Libdwarf_And_Dwarfdump, last accessed on: 2015-09-14
14 Volatility: RAM dump analyser, https://code.google.com/p/volatility/wiki/, last accessed on: 2015-09-14
15 Autopsy® is a digital forensics platform and graphical interface to The Sleuth Kit® and other digital forensics tools,
http://www.sleuthkit.org/autopsy/, last accessed on: 2015-09-14

http://developer.android.com/sdk/index.html
http://developer.android.com/tools/sdk/ndk/index.html
https://github.com/504ensicslabs/lime
http://wiki.dwarfstd.org/index.php?title=Libdwarf_And_Dwarfdump
https://code.google.com/p/volatility/wiki/
http://www.sleuthkit.org/autopsy/

Mobile Threats Incident Handling (Part II)
1.0 | September 2015

21

2.7.3 Details
This exercise will explain how to:

 Perform Android device memory forensics with Volatility,

 Set up Android build environment,

 Cross-compile of Android kernel,

 Use the Android Emulator,

 Acquire memory from Android devices with LiME module,

 Build Volatility profile for Android,

 Run Volatility commands against Android memory dumps.

2.7.4 Task walk-through

2.7.5 Dumping RAM memory

git clone https://android.googlesource.com/kernel/goldfish

Figure 20 Download of kernel source code

2.7.5.1 The android kernel has different versions that are split into branches. You can check the
branches by issuing git branch –a inside the kernel source folder.

Figure 21 Kernel branches

2.7.5.2 For this exercise the android kernel version 2.6.29 is going to be used. To do this students are
going to create a new branch named lime tracking the 2.6.29 kernel source. Issue the following
command:

git branch --track lime remotes/origin/android-goldfish-2.6.29

https://android.googlesource.com/kernel/goldfish

Mobile Threats Incident Handling (Part II)
1.0 | September 2015

22

git checkout lime

Figure 22 Create branch lime and checkout

2.7.5.3 In order to compile the kernel you will need the configuration file. Usually the configuration file
for the kernel is included by the OEM in the source. Additionally if the kernel that is built in the
device supports it, it can be extracted from it by pulling the /proc/config.gz file. In this case
students will use the included configuration file in arch/arm/configs/goldfish_armv7_defconfig .
First you will need to set the environment variables to compile the kernel as shown below:

enisa@enisa-vm:~/goldfish$ export ARCH=arm

enisa@enisa-vm:~/goldfish$ export SUBARCH=arm

enisa@enisa-vm:~/goldfish$ export CROSS_COMPILE=/usr/share/android-

ndk/toolchains/arm-linux-androideabi-4.6/prebuilt/linux-x86_64/bin/arm-

linux-androideabi-

Mobile Threats Incident Handling (Part II)
1.0 | September 2015

23

2.7.5.4 Afterwards students will create the initial configuration file from the goldfish default
configuration.

Figure 23 Initial config file creation

2.7.5.5 Next edit the configuration file to enable module loading. Open .config file and edit line 115 as
shown below:

Figure 24 Configuration change

Mobile Threats Incident Handling (Part II)
1.0 | September 2015

24

2.7.5.6 Compile the kernel issuing make command. When finished the compiled kernel should be in
arch/arm/boot/zImage.

Figure 25 Kernel Compilation

2.7.5.7 Now you can start the emulator with the kernel you have just compiled issuing the following
command.

enisa@enisa-vm:~/goldfish$ emulator -avd Nexus -kernel

arch/arm/boot/zImage

2.7.5.8 Next you need to download the lime module and compile it.
enisa@enisa-vm:~$ git clone https://github.com/504ensicsLabs/LiME

Figure 26 Download lime source

2.7.5.9 Edit the Makefile accordingly.
enisa@enisa-vm:~/LiME/src$ diff Makefile ~/Makefile

25a26,27

> KDIR_GOLDFISH := ~/goldfish

> CCPATH :=/usr/share/android-ndk/toolchains/arm-linux-androideabi-

4.6/prebuilt/linux-x86_64/bin/

33,35c35,38

< $(MAKE) -C /lib/modules/$(KVER)/build M=$(PWD) modules

< strip --strip-unneeded lime.ko

< mv lime.ko lime-$(KVER).ko

> $(MAKE) ARCH=arm CROSS_COMPILE=$(CCPATH)/arm-linux-androideabi- -C

$(KDIR_GOLDFISH) EXTRA_CFLAGS=-fno-pic M=$(PWD) modules

> mv lime.ko lime-goldfish.ko

Then compile the module issuing make

Mobile Threats Incident Handling (Part II)
1.0 | September 2015

25

Figure 27 Module compilation

2.7.5.10 Next push the compiled module to the running emulator and set the memory dump path.
Afterwards you can pull the memory dump as show below:

Figure 28 LiMe memory dump.

2.7.6 Examining memory dump with Volatility

2.7.6.1 Build a Volatility Profile
Volatility uses profiles to properly analyse RAM dump. For Android an already prepared profile called
LinuxGolfish-2_6_29ARM should be used. If the students want to create their own profiles, they should refer
to another exercise by ENISA: https://www.enisa.europa.eu/activities/cert/training/training-
resources/documents/advanced-artifact-handling-handbook (Section 2.2.2.3, Task 1.2.3 Building a Volatility
profile).

https://www.enisa.europa.eu/activities/cert/training/training-resources/documents/advanced-artifact-handling-handbook
https://www.enisa.europa.eu/activities/cert/training/training-resources/documents/advanced-artifact-handling-handbook

Mobile Threats Incident Handling (Part II)
1.0 | September 2015

26

2.7.6.2 Examine the Memory Dump with Volatility
Since Android is based on Linux, students can use any of the Linux-related Volatility commands16 to analyse
the memory dump. Mostly used commands for Android are explained below. The descriptions are copied
from Volatility project website:

 linux_pslist
This plugin prints the list of active processes starting from the init_task symbol and walking the task_struct-
>tasks linked list. It does not display the swapper process. If the DTB column is blank, the item is likely a
kernel thread.

Figure 29 linux_pslist

 linux_proc_maps
This plugin prints details of process memory, including heaps, stacks, and shared libraries.

16 Volatility: A command reference for Linux, https://code.google.com/p/volatility/wiki/LinuxCommandReference23, last accessed on: 2015-09-14

https://code.google.com/p/volatility/wiki/LinuxCommandReference23

Mobile Threats Incident Handling (Part II)
1.0 | September 2015

27

Figure 30 linux_proc_maps

 linux_arp
This plugin prints the ARP table.

Figure 31 linux_arp

 linux_ifconfig
This plugin prints the active interface information, including IPs, interface name, MAC address, and
whether the NIC is in promiscuous mode or not (sniffing).

Figure 32 linux_ifconfig

 linux_route_cache
This plugin enumerates the data in the routing table cache. It can show you which systems a machine
communicated with in the past.

Mobile Threats Incident Handling (Part II)
1.0 | September 2015

28

Figure 33 linux_route_cache

 linux_mount
This plugins mimics of the output of /proc/mounts on a running Linux system. For each mountpoint it
prints the flags, mounted source (drive, network share, etc) and the director it is mounted on.

Figure 34 linux_mount

2.7.7 Using Autopsy
The Autopsy allows to analyse files extracted from an Android device. It supports physical dumps from most
of Android devices (please note that in this exercise physical acquisition methods are not explained) as well
as raw memory dump files.

Mobile Threats Incident Handling (Part II)
1.0 | September 2015

29

2.7.7.1 To run Autopsy you need to start the Autopsy service as a root user.

Figure 35

2.7.7.2 When the service is started, open web browser and type this address:
http://localhost:9999/autopsy.

Figure 36

http://localhost:9999/autopsy

Mobile Threats Incident Handling (Part II)
1.0 | September 2015

30

2.7.7.3 To create new case click on NEW CASE. To open existing one, click OPEN CASE. When you create
a new case you have to fill in information such as "Case name" and "Investigator names".
Description is optional.

Figure 37

2.7.7.4 Next you'll be prompted to add a host i.e. device subject to investigation.

Figure 38

Mobile Threats Incident Handling (Part II)
1.0 | September 2015

31

Figure 39

2.7.7.5 Next you'll be prompted to add an image of the host / device.

Figure 40

Mobile Threats Incident Handling (Part II)
1.0 | September 2015

32

Figure 41

2.7.7.6 Next step is to choose proper file system of the added image. Choose "raw" for the RAM
memory dump.

Figure 42

Mobile Threats Incident Handling (Part II)
1.0 | September 2015

33

2.7.7.7 Once completed you'll be presented with the following screen which allows to run analysis, add
another image file, close the file or – among other options – check image's integrity.

Figure 43

2.7.7.8 Since the image subject to analysis if a raw image, some functionalities may not be available. As
an example, try and search for keyword "@enisa.europa.eu" which – in this case – was used for
the e-mail address set up on the Android system. Try to locate e-mail account's password.

Figure 44

Mobile Threats Incident Handling (Part II)
1.0 | September 2015

34

Figure 45

 Task 4.5: iOS – iPhone Backup Analyser 2

2.8.1 Introduction
In this task, the students are given a set of files from iTunes backup system for analysis with iPhone Backup
Analyser 2 (iPBA2). This software allows the user to browse through the content of an iPhone/iPad backup
made by iTunes (or other software able to perform iOS devices' backup).

2.8.2 Details
As explained on iPBA2 project website, it parses the backup directory and shows decoded file system tree.
Each file can be clicked to see its properties, such as:

 Real name and name in the backup directory

 File UNIX permissions

 Data hash (as calculated by iOS)

 User and group ID

 Modify time, access time, creation time

 File type (from magic numbers)

Any built-in viewer will allow to browse through known file formats e.g.:

 ASCII viewer

 PLIST structure browser

 SQLITE browser

 HEX viewer

2.8.3 Task walk-through
This section will explain possible ways to analysis of data stored in iOS backup.

Mobile Threats Incident Handling (Part II)
1.0 | September 2015

35

2.8.3.1 Open iPBA2 and open folder ef2662a6b74953ed19d5aa3c25cfcd0019ed43ee.

Figure 46

2.8.3.2 You can use predefined PLUGINS to view some data and create reports from predefined
REPORTS tools.

2.8.3.3 Take a look at the following option: CameraRollDomain -> Media/DCIM/100APPLE.

Figure 47

Mobile Threats Incident Handling (Part II)
1.0 | September 2015

36

2.8.3.4 You can view or even export simple JPG file from backup. Please export few JPG files from
backup.

2.8.3.5 Let's take a look of JPG files which you exported by another tool called exiftool. This is a
software which allows to read EXIF data. Try to locate GPS co-ordinates.

Figure 48

2.8.3.6 Now you are able to see GPS position where this image file was most presumably taken. Open
any website that allows to search GPS position (e.g. https://maps.google.com) and the co-
ordinates into search field. You need to change word "deg" to a degree symbol (i.e. °) with a
combination of ALT + 248 on keyboard.

Figure 49

https://maps.google.com/

Mobile Threats Incident Handling (Part II)
1.0 | September 2015

37

2.8.3.7 Now take a look into AppDomain. This is a list of installed applications. Locate folder Documents
for application WhatsApp (net.wshatsapp.WhatsApp). Here you can find an SQLite databases
used by WhatsApp instant messenger. Open database called ChatStorage.sqlite in SQLite viewer.
Try to find ZWAMESSAGE table which contains messages history.

Figure 50

 Task 4.6: Brute-forcing Android encryption mechanisms

2.9.1 Introduction
In this task, the students will try the process of cracking the PIN used to encrypt Android device (Ice Cream
Sandwich and Jelly Bean) using brute force methods.

2.9.2 Details
Students will have to prepare a recovery partition for Android device. After that they will be able to
download necessary files which will be used during cracking process.

2.9.3 Task walk-through
This section will show possible approaches to brute-force attacks against PIN-based encryption of Android
devices. The task requires students to use a physical device, since AVD emulators won't support fastboot
mode.

Mobile Threats Incident Handling (Part II)
1.0 | September 2015

38

2.9.3.1 First you need to put the phone in recovery mode so that it can boot a custom recovery image.
If the device already has a custom recovery image with root address installed, you can skip this
step. There's and easy way to accomplish this with adb. If you have a device with adb enabled,
simply connect it to PC (make sure you pass it through if running in a virtual machine), run a
terminal and issue the following command:

Figure 51

2.9.3.2 Next, boot the device from a rooted recovery image. For this purpose, a Clockwork Mod17 image
is used, but you can use any device-compatible recovery image with root and adb enabled.
Please, note where you saved the recovery image. From a terminal, run fastboot and make sure
you can communicate with the device.

Figure 52

2.9.3.3 Now that you checked that you can communicate with the device over fastboot, boot it using
the recovery image.

Figure 53

2.9.3.4 Your device should be in a recovery mode now. Next, pull the needed necessary header and
footer data so that you can brute-force the encryption PIN. Their location varies device by
device so choose the steps for your particular device type.

Figure 54

17 ROM Manager: ROMs and Recovery Images, http://www.clockworkmod.com/rommanage, last accessed on: 2015-09-14

http://www.clockworkmod.com/rommanage

Mobile Threats Incident Handling (Part II)
1.0 | September 2015

39

2.9.3.5 Now that you have everything you need you'll run the Android Brute Force Encryption cracking
program against the header and footer files. By default, a 4-digit numeric passcodes will be used
but you can change the number of digits at your will remembering that the longer the PIN, the
more time is necessary to brute-force it.

Figure 55

After a while you will be able to see PIN code.

 Task 5.1: Analysing pcap data and proxy logs of Android.Trojan.SLocker.DZ

2.10.1 Introduction
In this task the students are given a set of files (PCAP, mitmproxy) created during observing activity by an
Android device infected with the Android.Trojan.Slocker.DZ ransomware. The students will use Wireshark
and the text editor of their choice to search for patterns indicating malicious behaviour and analyse and
describe this.

2.10.2 Tools used
 Wireshark

 MITMProxy

2.10.3 Details
There are two files in the traces subdirectory of the exercise environment named:

F836F5C6267F13BF9F6109A6B8D79175.pcap and F836F5C6267F13BF9F6109A6B8D79175.log.

Mobile Threats Incident Handling (Part II)
1.0 | September 2015

40

2.10.4 Task walk-through
This section will contain possible ways to analyse the given information and identify the answers to the
requests in the table:

2.10.4.1 Open the PCAP file in Wireshark. After loading the PCAP file you will see the list of packets
captured. Only a subset of these packets are part of the malware communication, to identify
these we can use some of the tools Wireshark provides.

Figure 56

Mobile Threats Incident Handling (Part II)
1.0 | September 2015

41

2.10.4.2 Open the list of conversations (Statistics → Conversations → Tab IPv4). In this list you will find all
conversations contained in the network traffic dump accompanied by additional information
regarding starting point in time, amount of data transferred and duration of the connection. This
does not show the malicious traffic by itself but delivers an overview and some details regarding
the information to be analysed.

Figure 57

2.10.4.3 Open the list of endpoints (Statistics → Endpoints → Tab IPv4). In this list the geo-location of the
conversation endpoints is added to the list.

Figure 58

Mobile Threats Incident Handling (Part II)
1.0 | September 2015

42

2.10.4.4 Open the Protocol Hierarchy (Statistics → Protocol Hierarchy). The previous approaches have
given no clear indicator for malicious behaviour or even a hint for which connections should be
inspected in more detail. Thus you have to try to dig deeper and find information regarding the
protocols used in the dump. In this case you'll find interesting information regarding JSON data
which has been transmitted in clear-text.

Figure 59

2.10.4.5 Apply a filter to the captured traffic (Right-click on the selected entry → Apply as Filter →
Selected).

2.10.4.6 Use TCP stream analysis (Right-click → Follow TCP Stream). Using this feature provides a human-
readable presentation of the HTTP traffic. Indicators of malicious traffic can be clearly identified,
for example the deception phrase in the payload of the first server response.

Figure 60

2.10.5 Task walk-through with mitmproxy logs
For the creation of the following screenshots Honeyproxy18 was used. The project is based on MITMProxy
and creates a web interface to inspect and analyse the traffic captured. Unfortunately it is not under active
development as of the time of preparation of this exercise.

18 HoneyProxy — a man-in-the-middle SSL proxy & traffic analyser, http://honeyproxy.org/, last accessed on: 2015-09-14

http://honeyproxy.org/

Mobile Threats Incident Handling (Part II)
1.0 | September 2015

43

2.10.5.1 Overview of the web interface and the captured data.

Figure 61

2.10.5.2 Close view of the malware requests.

Figure 62

2.10.5.3 Request showing the message displayed to the victim.

Figure 63

Mobile Threats Incident Handling (Part II)
1.0 | September 2015

44

2.10.5.4 Request showing the transmitted information.

Figure 64

Mobile Threats Incident Handling (Part II)
1.0 | September 2015

45

 Task 5.2: Analysing pcap data and proxy logs of iOS.Oneclickfraud

2.11.1 Introduction
In this task the students are given a set of files (PCAP, mitmproxy) created during observing activity by an
iOS device infected with the iOS.Oneclickfraud malware. The students will use Wireshark and the text editor
of their choice to search for patterns indicating malicious behaviour and analyse and describe these.

2.11.2 Tools
 Wireshark

2.11.3 Details
There are two files in the traces subdirectory of the exercise environment named:

71972F763EB5EAEB87681D2615E9E68E.pcap and 71972F763EB5EAEB87681D2615E9E68E.log.

2.11.4 Test walk-through
The general approach to identify the malign traffic in the PCAP file is identical to Task 5.1. Following we will
show the screenshots unique to Task 5.2. There is no walk-through with proxy logs as the server is not
responding to the malware requests.

2.11.4.1 List of conversations.

Figure 65

Mobile Threats Incident Handling (Part II)
1.0 | September 2015

46

2.11.4.2 List of endpoints.

Figure 66

2.11.4.3 TCP Stream.

Figure 67

Mobile Threats Incident Handling (Part II)
1.0 | September 2015

47

 Task 6.1: Analysing Android.Trojan.SLocker.DZ

2.12.1 Introduction
In this task the students will analyse an Android.Trojan.SLocker.DZ APK file. They will have to answer a couple
of questions which will lead them to the identification of various characteristics of this trojan malware.

2.12.2 Tools
 AndroGuard

 apktool

2.12.3 Details
In the exercise directory students will find an APK file F836F5C6267F13BF9F6109A6B8D79175.apk. For the
analysis of this file they can use the pre-installed AndroGuard, apktool and the text editor of their choice
(there are several available on the system). In the next section students will find questions they have to
answer during the analysis to identify the behaviour of the application.

2.12.4 Task walk-through
In this section, we will walk through a possible approach to analyse the malware and extract requested
information.

2.12.4.1 Decode the APK file with the following command:
apktool d F836F5C6267F13BF9F6109A6B8D79175.apk -o

F836F5C6267F13BF9F6109A6B8D79175

Figure 68

2.12.4.2 Search for permissions in the AndroidManifest:
grep permission

F836F5C6267F13BF9F6109A6B8D79175/AndroidManifest.xml

Figure 69

Mobile Threats Incident Handling (Part II)
1.0 | September 2015

48

Figure 70

2.12.4.3 Search for the package name in the AndroidManifest:
grep package F836F5C6267F13BF9F6109A6B8D79175/AndroidManifest.xml

Figure 71

2.12.4.4 Search for the intents in the AndroidManifest.

Figure 72

Mobile Threats Incident Handling (Part II)
1.0 | September 2015

49

2.12.4.5 Control the assets directory.

Figure 73

2.12.4.6 View the contents of the HTML file:
w3m F836F5C6267F13BF9F6109A6B8D79175/assets/tab1.html

Figure 74

2.12.4.7 Search for IP addresses in the dataset:
grep -Eor '[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}'

F836F5C6267F13BF9F6109A6B8D79175/*

Figure 75

Mobile Threats Incident Handling (Part II)
1.0 | September 2015

50

2.12.4.8 Inspect the strings.xml file:
less F836F5C6267F13BF9F6109A6B8D79175/res/values/strings.xml

Figure 76

 Task 6.2: Analysing iOS.Oneclickfraud

2.13.1 Introduction
In this task the students will use class-dump-z to analyse iOS.Oneclickfraud. As in Task 6.1 they will have to
answer some questions regarding the characteristics. The trainer will give a short introduction into the usage
of the disassembler.

2.13.2 Tools
 class-dump-z

2.13.3 Details
In the exercise directory, students will find an iOS application file 71972F763EB5EAEB87681D2615E9E68E.
For the analysis of this file they will have to use the pre-installed class-dump-z disassembler. In the next
section they will find questions they have to answer during the analysis to identify the behaviour of the
application.

2.13.4 Task walk-through
In this section a possible approach how to analyse the malware and extract the requested information will
be shown.

Mobile Threats Incident Handling (Part II)
1.0 | September 2015

51

2.13.4.1 Identify the file and unzip it:
file 71972F763EB5EAEB87681D2615E9E68E

unzip 71972F763EB5EAEB87681D2615E9E68E

Figure 77

2.13.4.2 Use strings to gather information:
strings -a Payload/EroEroMovie.app/embedded.mobileprovision

Figure 78

Figure 79

Figure 80

Mobile Threats Incident Handling (Part II)
1.0 | September 2015

52

3. References

 Build System Overview
http://developer.android.com/sdk/installing/studio-build.html

 Android applications permissions
http://developer.android.com/preview/features/runtime-permissions.html

 Universal Binaries and 32-bit/64-bit PowerPC Binaries
https://developer.apple.com/library/mac/documentation/DeveloperTools/Conceptual/MachORuntim
e/index.html#//apple_ref/c/tag/fat_header

 File signatures table
http://www.garykessler.net/library/file_sigs.html

 Android SDK
http://developer.android.com/sdk/index.html

 Android NDK
http://developer.android.com/tools/sdk/ndk/index.html

 LiME: Linux Memory Extractor
https://github.com/504ensicslabs/lime

 Libdwarf and Dwarfdump
http://wiki.dwarfstd.org/index.php?title=Libdwarf_And_Dwarfdump

 Build a Volatility Profile
https://code.google.com/p/volatility/wiki/AndroidMemoryForensics#Build_a_Volatility_Profile

 Volatility: RAM dump analyser
https://code.google.com/p/volatility/wiki/

 Autopsy® is a digital forensics platform and graphical interface to The Sleuth Kit® and other digital
forensics tools
http://www.sleuthkit.org/autopsy/

 LiME: Linux Memory Extractor
https://github.com/504ensicslabs/lime

 Volatility: A command reference for Linux
https://code.google.com/p/volatility/wiki/LinuxCommandReference23

 ROM Manager: ROMs and Recovery Images
http://www.clockworkmod.com/rommanage

 HoneyProxy: a man-in-the-middle SSL proxy & traffic analyser
http://honeyproxy.org/

http://developer.android.com/sdk/installing/studio-build.html
http://developer.android.com/preview/features/runtime-permissions.html
https://developer.apple.com/library/mac/documentation/DeveloperTools/Conceptual/MachORuntime/index.html#//apple_ref/c/tag/fat_header
https://developer.apple.com/library/mac/documentation/DeveloperTools/Conceptual/MachORuntime/index.html#//apple_ref/c/tag/fat_header
http://www.garykessler.net/library/file_sigs.html
http://developer.android.com/sdk/index.html
http://developer.android.com/tools/sdk/ndk/index.html
https://github.com/504ensicslabs/lime
http://wiki.dwarfstd.org/index.php?title=Libdwarf_And_Dwarfdump
https://code.google.com/p/volatility/wiki/AndroidMemoryForensics#Build_a_Volatility_Profile
https://code.google.com/p/volatility/wiki/
http://www.sleuthkit.org/autopsy/
https://github.com/504ensicslabs/lime
https://code.google.com/p/volatility/wiki/LinuxCommandReference23
http://www.clockworkmod.com/rommanage
http://honeyproxy.org/

ENISA
European Union Agency for Network
and Information Security
Science and Technology Park of Crete (ITE)
Vassilika Vouton, 700 13, Heraklion, Greece

Athens Office
1 Vass. Sofias & Meg. Alexandrou
Marousi 151 24, Athens, Greece

PO Box 1309, 710 01 Heraklion, Greece
Tel: +30 28 14 40 9710
info@enisa.europa.eu
www.enisa.europa.eu

