

www.enisa.europa.eu European Union Agency For Network And Information Security

Advanced artefact analysis
Advanced dynamic analysis

HANDBOOK, DOCUMENT FOR TEACHERS

OCTOBER 2015

http://www.enisa.europa.eu/

Advanced artefact analysis
 October 2015

02

About ENISA

The European Union Agency for Network and Information Security (ENISA) is a centre of network and
information security expertise for the EU, its member states, the private sector and Europe’s citizens.
ENISA works with these groups to develop advice and recommendations on good practice in information
security. It assists EU member states in implementing relevant EU legislation and works to improve the
resilience of Europe’s critical information infrastructure and networks. ENISA seeks to enhance existing
expertise in EU member states by supporting the development of cross-border communities committed to
improving network and information security throughout the EU. More information about ENISA and its
work can be found at www.enisa.europa.eu.

Authors
This document was created by Yonas Leguesse, Christos Sidiropoulos, Kaarel Jõgi and Lauri Palkmets in
consultation with ComCERT1 (Poland), S-CURE2 (The Netherlands) and DFN-CERT Services (Germany).

Contact
For contacting the authors please use cert-relations@enisa.europa.eu
For media enquiries about this paper, please use press@enisa.europa.eu.

Acknowledgements
ENISA wants to thank all institutions and persons who contributed to this document. A special ‘Thank You’
goes to Filip Vlašić, and Darko Perhoc.

1 Dawid Osojca, Paweł Weżgowiec and Tomasz Chlebowski
2 Don Stikvoort and Michael Potter

Legal notice
Notice must be taken that this publication represents the views and interpretations of the authors and
editors, unless stated otherwise. This publication should not be construed to be a legal action of ENISA or
the ENISA bodies unless adopted pursuant to the Regulation (EU) No 526/2013. This publication does not
necessarily represent state-of the-art and ENISA may update it from time to time.

Third-party sources are quoted as appropriate. ENISA is not responsible for the content of the external
sources including external websites referenced in this publication.

This publication is intended for information purposes only. It must be accessible free of charge. Neither
ENISA nor any person acting on its behalf is responsible for the use that might be made of the
information contained in this publication.

Copyright Notice
© European Union Agency for Network and Information Security (ENISA), 2015
Reproduction is authorised provided the source is acknowledged.

https://www.enisa.europa.eu/
mailto:cert-relations@enisa.europa.eu
mailto:press@enisa.europa.eu.

Advanced artefact analysis
 October 2015

03

Table of Contents

1. Training introduction 5

2. Introduction to OllyDbg 6

 OllyDbg interface 6

 Basic debugging and code navigation 15

 Breakpoints 22

Execution flow manipulation 29

Plugins 32

 Shortcuts 34

3. Unpacking artefacts 36

 Packers and protectors 36

3.1.1 Introduction to packers and protectors 36
3.1.2 Unpacking steps 37
3.1.3 Finding the OEP 37

 Unpacking UPX packed sample 38

 Unpacking UPX with the ESP trick 48

 Unpacking a Dyre sample 52

4. Anti-debugging techniques 63

 Anti-debugging and anti-analysis techniques 63

 Dyre - basic patching with OllyDbg 65

5. Process creation and injection 70

 Process injection and process hollowing 70

 Following child processes of Tinba banking trojan 70

5.2.1 First stage 71
5.2.2 Second stage 80

6. Introduction to scripting 87

 Introduction to OllyDbg scripting 87

 Decoding hidden strings in Tinba 88

7. Summary 95

Advanced artefact analysis
 October 2015

04

Main Objective

The aim of this training is to present methods and techniques of dynamic artefact analysis

with the use of OllyDbg3 debugger package.

Trainees will be following a code execution and unpack artefacts using the most efficient

methods. In addition they will be tracing a malicious code execution. During the process

trainees will learn how to counter the anti-analysis techniques implemented by malware

authors.

In the second part the trainees will study various code injection techniques and how to

debug hollowed processes. At the end of the training they will be presented how to

automate the debugging process.

The training is performed using the Microsoft Windows operating system.

Targeted Audience

CSIRT staff involved with the technical analysis of incidents, especially those dealing with the

sample examination and malware analysis. Prior knowledge of assembly language and

operating systems internals is highly recommended.

Total Duration 8-10 hours

Frequency Once for each team member.

3 OllyDbg http://www.ollydbg.de/ (last accessed 11.09.2015)

http://www.ollydbg.de/

Advanced artefact analysis
 October 2015

05

1. Training introduction

In this training you will learn practical elements of advanced dynamic analysis and debugging of malicious code.
Using a debugger to analyse artefacts helps you to understand how the malicious code operates and gives you more
details than the behavioural analysis. Moreover, if the original sample is packed then unpack it first with the help of
a debugger if necessary before proceeding with the static analysis.

This training begins with the introduction to the OllyDbg debugger (v1.10)4, which will be used throughout later
exercises. In the second part you will learn about packers and protectors and how to use a debugger to unpack
binary samples. In the third part you will learn about various anti-debugging and anti-analysis techniques. You will
also be presented how to perform basic code patching using a sample of Dyre malware5. The fourth part teaches
various code injection techniques and how to debug hollowed processes. Finally, the training ends with a short
introduction to debugging automatisation using OllyDbg scripting capabilities.

Except the introductory part, the samples used in this training are live malware samples. Consequently all analyses
should be done in dedicated and isolated environments. After each analysis a clean virtual machine snapshot should
be restored if not instructed otherwise. An Internet connection is not needed to complete this training.

When debugging malicious code accidental clicks might lead to an uninterrupted code execution and as a result you
might need to repeat the entire exercise. To prevent this it is advisable to take snapshots of virtual machines after
analysing major code parts or taking breaks. This way even if something goes wrong, you won’t need to repeat the
entire process because you will just need to restore the last snapshot.

4 OllyDbg http://www.ollydbg.de/ (last accessed 11.09.2015)
5 Dyre: Emerging threat on financial fraud landscape
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/dyre-emerging-
threat.pdf (last accessed 19.10.2015)

http://www.ollydbg.de/
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/dyre-emerging-threat.pdf
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/dyre-emerging-threat.pdf

Advanced artefact analysis
 October 2015

06

2. Introduction to OllyDbg

In this part you will be introduced to the OllyDbg6 interface and its basic usage. This will make you ready to complete
the rest of exercises from the Advanced Dynamic Analysis training.

You will learn:

 How to use different views in OllyDbg

 How to navigate through the code

 Different methods of tracing executed instructions

 How to create different types of breakpoints

 How to manipulate execution flow of debugged program

 How to use plugins in OllyDbg

You will use the PuTTY executable7 which is a commonly used Secure Shell (SSH) client. This way you don’t need to
worry about accidentally execution and if it terminates you can execute it again without problems.

 OllyDbg interface
First open OllyDbg debugger. Make sure to run it as Administrator.

If you are using a Windows virtual machine prepared the same way as in the Building artefact handling and
analysis environment8 training then you can also access OllyDbg using the context menu.

6OllyDbg http://www.ollydbg.de/ (last accessed 11.09.2015)
7PuTTY: A Free Telnet/SSH Client http://www.chiark.greenend.org.uk/~sgtatham/putty/ (last accessed 11.09.2015)
8Building artefact handling and analysis environmenthttps://www.enisa.europa.eu/activities/cert/training/training-
resources/technical-operational#building (last accessed 11.09.2015)

http://www.ollydbg.de/
http://www.chiark.greenend.org.uk/~sgtatham/putty/
https://www.enisa.europa.eu/activities/cert/training/training-resources/technical-operational#building
https://www.enisa.europa.eu/activities/cert/training/training-resources/technical-operational#building

Advanced artefact analysis
 October 2015

07

Now you should see the OllyDbg interface.

There are two ways to start a debugging process. Firstly, you can attach to the already running process. To do this,
choose File->Attach and then choose the process of your interest. After attaching to the running process, OllyDbg
should automatically break at the ntdll.DbgBreakPoint function.

Advanced artefact analysis
 October 2015

08

The second way is to open an executable file using standard File->Open menu. This way OllyDbg will create a new
child process with a debugged application (debuggee) and stop at the entry point of the executable (by default).

For example, open the putty.exe binary in OllyDbg. After a while OllyDbg should finish its initial analysis.

Advanced artefact analysis
 October 2015

09

The Central part of OllyDbg is the CPU window. This is the window you will use most often during an analysis. It
consists of five separate subpanels: disassembly view, registers, information panel, memory dump and stack panel.

Disassembly view (4) presents a listing with the disassembled code. It consists of four columns. The leftmost
column shows the instruction address, the second column contains the hexadecimal representation of the
instruction (machine code), the third column contains the assembly instruction and finally the fourth column is
sued to present comments and any additional information.

Registers view (5) presents the current state of CPU registers (for the currently selected thread).

Information panel (6) is used to present additional information about the instruction selected in disassembly view
(e.g. operation result, registers values).

Memory dump (7) presents a dump of the chosen memory region.

Besides the hexadecimal, you can choose other data representation formats by right-clicking on the memory dump
panel and choosing required data representation from the context menu.

Advanced artefact analysis
 October 2015

10

Take some time to check other data representations. At the end, restore the default format: Hex->Hex/ASCII (16
bytes).

Finally, stack panel (8) presents the stack state of the currently selected thread. The first column shows the memory
address while the second column contains the value stored at the given stack address. Notice how the stack grows
upward in the direction of lower memory addresses.

Besides the CPU window, OllyDbg offers few other windows used for different purposes. All windows can be
accessed with windows buttons on the toolbar or View menu.

Advanced artefact analysis
 October 2015

11

The more frequently used windows are: Executable modules, Memory map, Threads, Handles, Call stack,
Breakpoints.

The Executable modules window presents all executable modules loaded in the address space of the debugged
process. Usually, this would be a module of the executed binary and modules of loaded DLL libraries. You can double-
click on any of the modules to immediately jump to this module in the disassembly view. You can also right-click on
any of the modules to access context menu with additional operations.

For example, right-click on msvcrt and choose View names to be presented with a list of all names defined in the
msvcrt library (imports and exports).

Advanced artefact analysis
 October 2015

12

Memory map window presents the memory structure with all allocated memory regions in the address space of the
debugged process. It is useful to track memory allocation operations done by the malicious code. Similarly as in the
previous example you can right-click on any memory region to access the context menu with additional operations
(dumping memory, searching memory, changing access rights, freeing memory, etc.).

For example sometimes it is useful to open an additional dump window with a dump of the given memory region.
To do this double-click on the memory region or select it and choose Dump option from the context menu.

Another operation you might try is searching all memory regions for a particular string or byte pattern. Let’s say you
know that somewhere in the memory the string ‘wrong passphrase’ is present, but you don’t know the exact address
nor in which memory region is it located.

To solve this problem, right-click anywhere in the memory map and choose Search (Ctrl+B) from the context menu.
In the new window, type ‘wrong passphrase’ and click Ok.

Advanced artefact analysis
 October 2015

13

If the string is found OllyDbg will open a new Dump window with the position set on the string.

Here you see that the string was found at the virtual address 0x4676BC which belongs to memory region 0x45D000-
0x479FFF (putty:.rdata).

To keep searching for other occurrences of this string in this memory region click on Dump window (to make it active)
and keep pressing Ctrl+L. When there is no more occurrences, OllyDbg will signal this with the ‘Item not found’
message at the bottom of the window.

To continue searching for the string in other memory regions go back to Memory map window (make it active) and
keep pressing Ctrl+L. If there is no more occurrences, OllyDbg will signal this with the same message at the bottom
of the window.

Threads window shows all threads of the current process. If the process has more than one thread, double-clicking
on the thread would switch the context to this thread.

Advanced artefact analysis
 October 2015

14

Handles window shows all windows opened by the process handles with an additional information regarding the
handle type, value and name. This window may be useful if for example you see that some API call is referring to a
certain handle and you don’t remember what this handle is.

Finally call stack window shows all function calls made up to the current instruction in the current thread. This is
useful for checking to which function the current instruction belongs to and from where this function was called.
Note that the screenshot below presents the Call stack window during process execution, after two calls were made.
If you open the Call stack window while at the entry point, it will be empty.

One of the useful OllyDbg features is highlighting elements that have changed. A good example of this is highlighting
newly allocated memory blocks or newly loaded modules.

To present this, open the Executable modules window. If there are any red coloured elements in the window, right-
click it and choose Actualize.

Advanced artefact analysis
 October 2015

15

Next, right-click anywhere in the window and choose Insert module from the context menu (this operation is
available only with Olly Advanced plugin).

In the Open dialog, choose c:\Windows\System32\wininet.dll. This way OllyDbg will load an additional module in the
address space of the currently debugged process. Loading extra modules is sometimes useful in more advanced
debugging when you want to load the DLLs with your custom code.

Now all the newly loaded modules should be marked with red font in the Executable modules window. Notice that
besides the wininet module, a couple other DLLs were loaded. Those are the DLLs that were required by wininet.

The same rule of red-colouring new elements applies also to Memory map and various other views in OllyDbg. In
general this is useful in tracking places in the code where new modules are loaded or new memory is allocated.

 Basic debugging and code navigation
Start by loading the putty.exe sample as described in the previous exercise.

Each debugged process can be in one of the following states: paused, running, terminated, tracing and animating.

 Paused – program execution is paused, no instructions are being executed

 Running – program is freely running and debugger is not tracing its execution

 Terminated – debugged process has terminated

 Tracing – when instruction tracing was started (each executed instruction is logged)

 Animating – when instruction animation was started.

The current state of the debugged process can be read in the upper left corner of the OllyDbg window.

When the process is paused, the current position (the instruction pointer) is indicated by a black square in the
disassembly view and by the value of EIP register.

Advanced artefact analysis
 October 2015

16

Whenever you get lost, double-click on the EIP register value to be instantaneously moved to the current position in
the code. Remember that if the program has multiple threads, the current position will likely be different for each
thread.

When debugging a program you will spend most of the time on analysing disassembled instructions step-by-step.
There are two modes of instruction stepping:

 Step into (F7) – executes current instruction and moves program execution to the next instruction. If the
current instruction is a function call then the debugger steps into the call and starts stepping over
instructions of the called function.

 Step over (F8) – behaves the same as Step into except if the current instruction is a function call, the
debugger doesn’t step into this call.

If you want to let the program run freely choose Run (F9). In the result, PuTTY will create its main window and
present it to the user. If you want to pause the program execution then press F12 (Debug->Pause) while staying in
OllyDbg. You can also restart the executable by pressing Ctrl+F2 (Debug->Restart).

Other useful debug operations are:

 Run to selection (F4) – causes OllyDbg to resume execution until the selected instruction

 Execute till return (Ctrl+F9) – executes the program until return from current function

 Execute till user code (Alt+F9) – executes program until user code

Debugging actions can be also accessed through the toolbar at the top of OllyDbg.

Advanced artefact analysis
 October 2015

17

If you want to quickly pre-view the execution flow of a program (find loops, check which jumps are taken, etc.) you
might decide to use the instruction trace or instruction animation functions. Both functions come in two forms: Trace
into/Trace over and Animate into/Animate over.

To see how the instruction animation works, restart PuTTY sample (Debug->Reset) and then choose Debug ->
Animate over (Ctrl+F8). Observe what happens in the disassembly window.

You should see a short animation of executed instructions and after a few moments PuTTY’s main window should
appear.

Close PuTTY and reset the sample. Now choose Debug->Animate into. This time instead of stepping over, the
animation will step into each function call (including API calls). You can open the Call stack (Alt+K) window to observe
all called functions in the real time.

Animate into function usually takes some time until the program finishes execution. To stop it, use Pause (F12)
function.

Advanced artefact analysis
 October 2015

18

Next restart the sample again and choose Debug->Set condition.

In this dialog you can set conditions on how long the Run trace function should be running (conditions set here would
also work for animate function). If you set more than one condition, run trace will be running until one of those
conditions is met. It is important to note that if the condition is met inside the body of some called function and you
are using Trace over function, it will not work.

For example set the following two conditions.

This would make instruction tracing stop either when the execution moves outside of the memory range 0x400000-
0x500000, or when the current command would be call eax or call edi.

Now open Run trace window (View->Run trace) and then choose Debug->Trace over. Execution should soon stop
at the call edi instruction.

This would also be indicated at the OllyDbg status bar in the bottom left corner.

Advanced artefact analysis
 October 2015

19

Notice that execution hasn’t stopped on the condition of EIP register being outside of the given memory range even
though there were some API calls already made in the code. This is because you used the Trace over function and
the API calls were stepped over. If you had used the Trace into function, execution would stop at the first API call.

Now take a look at the Run trace window. It contains all executed instructions with information about the instruction
address, thread and modified registers. The last executed instruction is at the bottom of the window.

If you would like run trace to be logged to a file you should right-click on Run trace window and choose the Log to
file option from the context menu (before executing Run trace function).

At this point you should know the basic debugging operations and functions. The next important thing to learn is
how to navigate through the code.

First restart the PuTTY sample.

Whenever you see some call or jump instruction you can follow it (without executing) by clicking on this
instruction and pressing <Enter>.

In this example follow a call to putty.004545A0. You should land at the function body.

You can do the same with jump instructions.

One of the drawbacks of following calls and jumps in OllyDbg is the lack of a “Go back” function. That is, if you follow
some jumps and calls, there is no easy way of going back to the previous position in a way that IDA Pro / IDA Free9
allows. You just need to remember what code you have followed or use the Bookmarks plugin (you will learn more
about plugins in a later part of the exercise).

9 Freeware version of IDA v5.0 https://www.hex-rays.com/products/ida/support/download_freeware.shtml (last
accessed 11.09.2015)

https://www.hex-rays.com/products/ida/support/download_freeware.shtml

Advanced artefact analysis
 October 2015

20

Another way of navigating through the code is using the Go to expression feature. It can be used to change the
current position in disassembly view, memory dump or stack view – depending on which view is active.

Click on disassembly view and press Ctrl+G.

Type eip to be moved to the current location in the code (pointed by EIP register).

In Enter expression to follow dialog you can enter a wide range of expressions:

 registers: eax, ebx, ecx

 memory addresses: 0x401000

 arithmetic expressions: 0x400000+2*0x1002, eax+0x1000

 API functions names: CreateFileA, WriteProcessMemory

 Labels or other names used in program.

If the entered expression is invalid or the destination address doesn’t exist in the address space of the debugged
process you will see a proper error message.

Additionally, if you want to find the address of a certain API function, but the module in which this function is located
hasn’t been loaded yet (it is being loaded at runtime as it is going to be called) you will also see an error message
(Unknown identifier).

Another often used way of code navigation in OllyDbg is through context menus. You can click on various values in
OllyDbg (register values, immediate values, stack stored values, strings) and in the context menu there will often be
options like:

 Follow in Disassembler

 Follow in Dump

 Follow in Stack

For example, start clicking on registers values. If a register points to the existing address in the address space of the
current program, there should be the following options: Follow in Disassembler and Follow in Dump.

Advanced artefact analysis
 October 2015

21

If the register does not contain a valid address, these options won’t be available. Additionally if a register points to
the location on the stack (like in case of ESP register) there will be an option Follow in Stack.

You can do the same with values stored on stack.

Advanced artefact analysis
 October 2015

22

 Breakpoints
Breakpoints are crucial parts of any debugger. They allow to stop the program execution at a chosen moment
allowing the user to analyse specific program functions.

There are four types of breakpoints in OllyDbg10:

 Software breakpoints (INT 3 breakpoints)

 Hardware breakpoints

 Memory breakpoints

 Guarded pages

Software breakpoints work by inserting an INT 311 instruction in the place of the Instruction on which the breakpoint
is set. When the instruction is about to be executed, the interrupt is raised and the debugger steps in. The entire
process is transparent to the user.

Setting software breakpoints actually modifies memory of debugged process. Thus when the debugged process was
about to calculate the checksum of its own code, it might be different than expected. Some malicious code uses this
as one of the anti-debugging techniques to detect if they are being debugged.

To set a software breakpoint, double-click in the second column next to the instruction or select an instruction and
press F2. When the breakpoint is set this will be indicated by a red background of the instruction address.

Now press F9 (run) and the program should stop execution on this instruction (before executing it).

To remove a breakpoint, repeat the same steps as when setting it.

You can view a list of all software breakpoints in the Breakpoints window.

10 http://www.ollydbg.de/Help/i_Breakpoints.htm (last accessed 11.09.2015)
11 The INT 3 instruction is defined for use by debuggers to temporarily replace an instruction in a running program in
order to set a breakpoint. https://en.wikipedia.org/wiki/INT_(x86_instruction) (last accessed 11.09.2015)

http://www.ollydbg.de/Help/i_Breakpoints.htm
https://en.wikipedia.org/wiki/INT_(x86_instruction)

Advanced artefact analysis
 October 2015

23

You can also use this window to remove or temporarily disable chosen breakpoints.

One way of using breakpoints is to set them on API functions. This allows to detect when a certain API function is
called by malicious code and can be used to detect various operations done by malware. For example if you are
interested in communication with C&C servers it is a good idea to set breakpoints on network related functions. And
if you suspect that the process is injecting some code to other processes, you might set breakpoints on functions
such as WriteProcessMemory or CreateRemoteThread.

Now you will set a breakpoint on ShellExecuteA function.

First click on disassembly view and use Go to expression (Ctrl+G) to find the address of ShellExecuteA.

Then set breakpoint on the first instruction of ShellExecuteA (the one to which you were moved).

If the PuTTY process was paused, resume execution (F9).

Next in the PuTTY window, click the About button and then the Visit Web Site button.

Advanced artefact analysis
 October 2015

24

Now go back to OllyDbg. OllyDbg should break on a call to ShellExecuteA (on the previously set breakpoint).

Take a look at the stack view to see arguments passed to ShellExecuteA.

As you can see, after clicking Visit Web Site, PuTTY tries to open the http address
http://www.chiark.greenend.org.uk/~sgtatham/putty/ in the default system web browser.

You can also open the call stack window (View->Call stack, Clt+K) to check from where ShellExecuteA function was
called.

http://www.chiark.greenend.org.uk/~sgtatham/putty/

Advanced artefact analysis
 October 2015

25

The second type of breakpoints are hardware breakpoints. In general, instead of changing program instructions in
the memory as software breakpoints do, they use special processor registers (debug registers). On the x86
architecture there are four debug registers (DR0-DR3) used to store the linear address of breakpoints. Thus it is
possible to set four hardware breakpoints at a time. Additionally, in contrast to software breakpoints, hardware
breakpoints can be also used to break on memory read or write operations.

Hardware breakpoints are usually used when you want to detect when a certain memory address is being written
to or when you know that the malicious code is trying to detect software breakpoints.

To get more information on differences between software and hardware breakpoints refer to the Debugger flow
control 1213 articles by Ken Johnson.

Now let’s see how to set up hardware breakpoints: go to OllyDbg and restart the PuTTY sample.

Next, step over until the instruction at 0x454AF9. As you can see some dword value is being written to the memory
at the address 0x47E140.

Let’s say you want to check at what place in the code this value will be used again.

Right-click on this instruction and from the context menu choose Follow in Dump->Memory address.

12Debugger flow control: Hardware breakpoints vs software breakpoints http://www.nynaeve.net/?p=80 (last
accessed 11.09.2015)
13Debugger flow control: More on breakpoints (part 2) http://www.nynaeve.net/?p=81 (last accessed 11.09.2015)

http://www.nynaeve.net/?p=80
http://www.nynaeve.net/?p=81

Advanced artefact analysis
 October 2015

26

Now Memory Dump view should be centred on the 0x47E140 address. Select the first 4 bytes (dword) and right-click
on them. From the context menu choose Breakpoint->Hardware, on access->Dword.

Now if at any place of the code this memory address would be accessed, the hardware breakpoint will hit and the
program execution will be paused.

To view all currently set hardware breakpoints, choose Debug->Hardware breakpoints.

You can use this window to follow the memory address where the hardware breakpoint is set, or to delete the
breakpoint.

After setting up a hardware breakpoint on 0x47E140, resume the program execution (F9).

Advanced artefact analysis
 October 2015

27

Almost immediately the program should break. As the message in the status bar shows, hardware breakpoint 1 was
hit and EIP points to one instruction after 0x47E140 address was accessed.

Scroll the disassembly view one line up to see the instruction accessing 0x47E140.

You can now remove the hardware breakpoint (it is not automatically removed after the sample reload).

Hardware breakpoints can be used instead of software breakpoints, for instruction stepping or tracing. To configure
this go to Options-Debugging options->Debug and select “Use hardware breakpoints to step or trace code”. Don’t
select this option right now however, since in the remaining part of this training software breakpoints are used!

The third type of breakpoints are memory breakpoints. They can be used to detect memory read or write operations.
They are set for memory pages and it is not possible to set them only for a byte, word or dword memory range. This
makes them less accurate than hardware breakpoints but in contrast to hardware breakpoints, the number of
memory breakpoints is not limited.

Typical usage for memory breakpoints is the detection of read or write operations on large memory blocks (for
example newly allocated memory).

You can set memory breakpoints in a similar manner as hardware breakpoints by selecting some data in Memory
Dump view and then choosing Breakpoint->Memory.

Advanced artefact analysis
 October 2015

28

The second way of creating a memory breakpoint is using Memory map window.

Restart the PuTTY sample and open Memory map window. Then find PuTTY’s .resource section, right-click it and
from the context menu, choose Set memory breakpoint on access. Now if some code tries to access any data in
.resource section, the breakpoint would hit.

Next, resume the program (F9). The breakpoint should hit someplace in the system code.

If you check Call stack window you will see that the breakpoint was hit after a call to CreateDialogParamA from
which FindResourceExA was called.

Advanced artefact analysis
 October 2015

29

To remove a memory breakpoint, go to the Memory map window, right-click on the memory region on which the
memory breakpoint was set and select Remove memory breakpoint.

 Execution flow manipulation
Besides the instruction stepping and execution flow analysis, debugging also allows you to change how a program
actually executes. It is possible to change almost any aspect of program execution. OllyDbg allows you to overwrite
executed instructions, change registers values, change FLAGS register as well as modify data on the stack or at any
other memory address.

This might be useful to overcome some anti-analysis techniques or to check how malicious code would behave in
other circumstances. However, any code or register manipulation must be done with care because otherwise it may
lead to a crash of the debugged program.

Examples presented in this exercise are only intended to present how to do the execution flow manipulation and
are not conducting any meaningful change.

First, restart the PuTTY sample and step over until the first jump instruction.

The red arrow next to the instruction tells that a jump will be made (this might be different on different systems).

You can force this jump not to be taken by changing then appropriate flag in the FLAGS register.

Advanced artefact analysis
 October 2015

30

JE (jump on equality) is taken whenever the zero flag (Z) is set. To change the zero flag, double-click on the value
next to it.

Now the jump won’t be made (grey arrow).

You can also change a jump to never be made by overwriting the jump instruction with NOP instructions. To do this,
just right-click on the jump instruction and choose Binary->Fill with NOPs.

In a similar way as modifying the FLAGS register you can also modify other registers. To do this, right-click on the
register value and choose Modify.

Advanced artefact analysis
 October 2015

31

Values on the stack can be modified as well.

This time however there are two options: Modify and Edit. The difference between them is that Modify treats stack
values as numbers while Edit treats stack values as group of bytes.

Advanced artefact analysis
 October 2015

32

Besides modifying registers and data in the memory, it is also possible to change instructions that are executed. To
achieve this just select the instruction you want to modify and press <space>.

This way you can edit the instruction operands or replace the instruction with a completely different one. However
note that if a new instruction code would be longer than the code of the instruction that you are editing, then other
instructions in the code would also be affected. If the new instruction code would be shorter, then the remaining
bytes would be filled with NOP instructions.

 Plugins
One very important aspect of OllyDbg are its plugins. OllyDbg has a very big plugin base contributed by many authors.
Plugins are mainly used to introduce new features, to make debugging easier or to implement anti-anti-debugging
techniques preventing OllyDbg from being detected.

Most of the popular plugins can be downloaded from the following websites:

 Collaborative RCE Tool Library14

 Tuts 4 You15

 OpenRCE.org16

14OllyDbg Extensions http://www.woodmann.com/collaborative/tools/index.php/Category:OllyDbg_Extensions (last
accessed 11.09.2015)
15 OllyDbg 1.xx Plugins https://tuts4you.com/download.php?list.9 (last accessed 11.09.2015)
16 OpenRCE Hosted Downloads: OllyDbg Plugins http://www.openrce.org/downloads/browse/OllyDbg_Plugins (last
accessed 11.09.2015)

http://www.woodmann.com/collaborative/tools/index.php/Category:OllyDbg_Extensions
https://tuts4you.com/download.php?list.9
http://www.openrce.org/downloads/browse/OllyDbg_Plugins

Advanced artefact analysis
 October 2015

33

After downloading a plugin, unpack it and copy the plugin’s .dll library to the OlyDbg’s plugin directory (e.g.
c:\tools\Portable version\Olly_110\Plugins). The exact location of the plugins directory can be checked in the
Options->Appearance->Directories menu.

After plugin installation, restart OllyDbg. If the plugin is working, it should be available through the plugins menu.

Advanced artefact analysis
 October 2015

34

Note that plugins created for OllyDbg v1.10 are not compatible with OllyDbg 2.xx and vice versa.

There are many useful plugins for OllyDbg and it is mostly up to your preference which to use. Among the plugins
used in this training are.

 aadp4olly - tries to hide OllyDbg from most of the popular anti-debugger techniques.

 Olly Advanced – fixes some bugs in OllyDbg v1.10 and introduces new functions enhancing OllyDbg
capabilities. It also implements various anti-anti-debugging techniques.

 ODbgScript – introduces scripting assembly-like language allowing to automate certain tasks.

 OllyDumpEx – memory and PE dumping plugin. It allows to dump PE image from the memory to the
file. Frequently used for dumping unpacked binaries.

 Bookmarks – allows to insert bookmarks in the code to help quickly navigate to them later.

 Shortcuts
Shortcuts are essential parts of OllyDbg. Thanks to the shortcuts you can perform many operations much faster,
saving valuable time. This section lists the most commonly used shortcuts in OllyDbg.

Debugging:

OPERATION SHORTCUT

Run F9

Pause F12

Restart debugged app Ctrl+F2

Close debugged app Alt+F2

Step into F7

Step over F8

Execute till return Ctrl+F9

Execute till user code Alt+F9

Pass exception to the program Shift+F7/F8/F9

Advanced artefact analysis
 October 2015

35

Animate into Ctrl+F7

Animate over Ctrl+F8

Trace into Ctrl+F11

Trace over Ctrl+F12

Windows and views:

OPERATION SHORTCUT

CPU window Alt+C

Memory map Alt+M

Executable modules Alt+E

Call stack Alt+K

Breakpoints Alt+B

Other operations:

OPERATION SHORTCUT

Follow jump/call Enter

Assembly instruction Space

Edit memory Ctrl+E

Add comment ; (semicolon)

Add label : (colon)

Insert bookmark X Alt+Shift+0..9

Go to bookmark X Alt+0..9

Advanced artefact analysis
 October 2015

36

3. Unpacking artefacts

 Packers and protectors

3.1.1 Introduction to packers and protectors
Packers are tools used to obfuscate other executables (usually malware) by rewriting their code. The resulting code
is usually completely different from the original code and is impossible to analyse prior to unpacking it. After the
execution of a packed binary, its code is unpacked at runtime to its original form, and the original code starts
executing like it had never been packed.

Packers are serious problems in the IT security industry because one malware code can be packed (obfuscated) many
times, each time resulting in seemingly completely different code. This makes signature based AV engines much less
effective. Moreover, since each packer works differently there is no single unpacking algorithm.

Sometimes you might encounter names such as protector or crypter. They are often used interchangeably with the
name packer to describe the same type of the tool. Using strict definitions, a packer is a tool which compresses a
binary code making it smaller, a protector adds to the binary an additional protection layer (anti-emulation, anti-
debugging, anti-sandbox) and a crypter encrypts the original binary code. Usually, one tool implements all those
functions in one. For a convenience, only the term packer will be used in this document.

The scheme below presents a simplified version of how packers work.

The code of a packed binary is usually completely different from the code of the original binary. Packed code is often
a block of highly compressed and encrypted data (with a high entropy). For obvious reasons, execution of such data
is impossible. This is why a packer also needs to add to the binary an unpacking stub. The unpacking stub is a special
code which a sole role is to unpack and rebuild the original binary in the memory. After the execution of the packed

Advanced artefact analysis
 October 2015

37

binary, the unpacking stub starts unpacking the code. When unpacking is finished and the import address table (IAT)
is rebuilt, execution is transferred to the Original Entry Point (OEP).

When doing a malware analysis other than a behavioural or automatic analysis, it will be necessary to first unpack
the malware sample. Otherwise you won’t be able to analyse the original code. To detect if the sample was packed
and what packer was used, you might use tools such as PEiD17 or ExeInfo PE18. If the packer used to pack the sample
is well known, these tools should return its name. You can then search for an automatic unpacking tool for this
particular packer19. Remember to always use unpacking tools in isolated environments.

3.1.2 Unpacking steps
If there is no automatic unpacking tool for the sample, it needs to be unpacked manually using a debugger. In general
there isn’t a single strategy or an algorithm for how to unpack binary files. Each packer and protector is slightly
different and needs to be handled differently.

There are three stages of unpacking a binary file:

1. Finding OEP.
2. Dumping process image.
3. Rebuilding IAT and fixing EP.

When the unpacking stub starts executing, it will jump to the original entry point at some point. Finding the OEP is
the first and often the most difficult task when trying to unpack the malware. There are few techniques that might
help you finding the OEP, which will be presented in the next section.

After the OEP has been found, you need to dump the memory of the unpacked image of the original executable.
Sometimes, the packer might utilize anti-dumping techniques20: these are however not part of this training.

The last step is to rebuild the Import Address Table (IAT) and to fix the Entry Point (EP) address of the executable.
This is necessary as packers usually modify PE headers when obfuscating the original code. A modified IAT table is
often limited to just few most important entries and the EP points to the unpacking stub or some other code.

How to perform all these steps will be presented later in this training.

3.1.3 Finding the OEP
There are few techniques which will help you to recognize or find the OEP:

 Unpacking stubs often finish with indirect jumps or calls to the address stored in some register (for
example jmp eax or call eax). If you see such instruction in the code, you should consider that this might
be a jump to the OEP – especially if such an instruction is one of the last instructions in the unpacking
routine.

 Unpacking stubs are often located in the PE file section rather than the code section. Sometimes
unpacking stubs are also copied to newly allocated memory blocks outside of the original PE image.

17Binary Analysis / Editing https://tuts4you.com/download.php?view.398 (last accessed 11.09.2015)
18ExeInfo PE http://www.woodmann.com/collaborative/tools/index.php/ExeInfo_PE (last accessed 11.09.2015)
19 http://www.woodmann.com/collaborative/tools/index.php/Category:Automated_Unpackers (last accessed
11.09.2015)
20Anti-Memory Dumping Techniques http://resources.infosecinstitute.com/anti-memory-dumping-techniques/ (last
accessed 11.09.2015)

https://tuts4you.com/download.php?view.398
http://www.woodmann.com/collaborative/tools/index.php/ExeInfo_PE
http://www.woodmann.com/collaborative/tools/index.php/Category:Automated_Unpackers
http://resources.infosecinstitute.com/anti-memory-dumping-techniques/

Advanced artefact analysis
 October 2015

38

Therefore if during unpacking you see a jump to the code section you should consider that this might be
a jump to the OEP address.

 When unpacking, the code section is usually overwritten with a new code. You can use memory
breakpoints (on write) to detect unpacking loops. Then after unpacking finishes, try using memory
breakpoints (on access) to detect moments when the execution will transfer to the unpacked code.

 Before unpacking finishes the program stack and registers are often restored to the initial state. If you
see such behaviour in the unpacking routine, this might mean that soon there will be a jump to OEP.

 Compilers usually produce a similar entry point code for each created executable. Knowing how the
entry point code produced by various compilers looks like can help you to recognize the OEP in packed
samples.

 Many Windows applications at the beginning of the main routine call functions such as
GetCommandLine, GetModuleHandle, GetStartupInfo, GetVersion, GetVersionEx. If you see such calls in
the code this might mean that you have already reached the OEP. Additionally, one of the unpacking
strategies might be to put breakpoints on those functions hoping they will be called at the beginning of
the main routine.

 Unpacking UPX packed sample
UPX21 is a fairly simple and commonly used packer. Samples that have been packed with UPX can be easily unpacked
using publicly available tools, but during this exercise it will be shown how to manually unpack a UPX packed sample
(putty.exe), to show the general concept of unpacking artefacts manually.

As an initial step, the packed code needs to be detected, similarly to the steps in the ENISA training material “Artefact
analysis fundamentals”22. PEiD23 is used to identify if the sample was packed and what packer was used. In some
cases PEiD won’t properly identify if the sample was packed. In such situations, other checks and some manual
assessment may be needed (for example checking embedded strings, inspecting IAT table or inspecting list of
sections) – as described in “Artefact analysis fundamentals”.

In this case, PEiD reveals that putty_upx.exe sample was packed with UPX as seen in the following screenshot.

21UPX http://upx.sourceforge.net/ (last accessed 11.09.2015)
22 Artefact Analysis Fundamentals https://www.enisa.europa.eu/activities/cert/training/training-
resources/documents/artifact-analysis-fundamentals-handbook (last accessed 11.09.2015)
23 PeiD http://www.aldeid.com/wiki/PEiD (last accessed 11.09.2015)

http://upx.sourceforge.net/
https://www.enisa.europa.eu/activities/cert/training/training-resources/documents/artifact-analysis-fundamentals-handbook
https://www.enisa.europa.eu/activities/cert/training/training-resources/documents/artifact-analysis-fundamentals-handbook
http://www.aldeid.com/wiki/PEiD

Advanced artefact analysis
 October 2015

39

To confirm the output of PEiD and to identify packing more specifically, CFF Explorer24 is used. CFF Explorer is
designed to make the PE editing as easy as possible. Beside PE headers viewing and editing CFF Explorer contains an
integrated hex editor, simple disassembler and many other useful features. One distinct feature of UPX packed
samples are two sections UPX0 and UPX1 within PE file, as seen on the screenshot below under the section headers
part. Please note the Virtual Addresses of both sections25, they will be referred later in this exercise.

Now, when you know that the sample was packed with UPX let’s move forward towards the manual unpacking. To
do this, the sample is opened in OllyDbg. OllyDbg should report that the sample looks like compressed or packed
code and ask whether to continue with automatic analysis of this code. Answer “No”.

24 CFF Explorer suite http://www.ntcore.com/exsuite.php (last accessed 11.09.2015)
25 Actually CFF Explorer presents the Relative Virtual Addresses (RVA) in the Virtual Address column in the sections
list. To get actual Virtual Addresses of the sections, add to them the module base address (here 0x4000000) or use
the ‘Address Converter’ feature from the CFF Explorer.

http://www.ntcore.com/exsuite.php

Advanced artefact analysis
 October 2015

40

Execution of the executable should be paused at the entry point of putty_upx.exe (0x48CD50) which is located in
the UPX1 section.

In order to reach the beginning of an unpacking routine, step over the function (Shortcut key F8) five times until the
MOV EBX,DWORD PTR DS:[ESI] instruction (at the address 0x48CD6A).

At this instruction, code is being read from the memory pointed by the ESI register. Take a look at ESI (source) and
EDI (destination) registries. ESI points to the beginning of the UPX1 section while EDI points to the beginning of UPX0
(refer to previously checked Virtual Addresses in CFF Explorer). This suggests that some data will be read from UPX1,
then processed and finally written to UPX0.

To see packed code follow in the hex dump (Ctrl+G) ESI register.

Advanced artefact analysis
 October 2015

41

Then follow in the hex dump EDI register to see a clean memory where unpacked code will be stored.

Then press and hold for a few seconds the Step Over key (F8). You should observe in the hex dump the UPX0 section
(pointed by EDI) being overwritten with the unpacked code.

Now scroll down over numerous jump instructions until you see three CALL instructions (at the addresses 0x48CE8A,
0x48CEA8, 0x48CEB9). Set breakpoints at those instructions to inspect what functions are called there. Resume
execution (F9).

At this point the unpacking routine is rebuilding the original Import Address Table (IAT) of the executable. It is done
by loading necessary libraries, resolving addresses of used functions and storing them in the memory.

Put breakpoint at 0x48CEBF (outside IAT reconstruction loop) and press F9 a few times (5-10). In the stack window
you can observe what functions are being loaded.

Advanced artefact analysis
 October 2015

42

Take a look where resolved functions addresses are being stored. After a call to GetProcAddress the result is checked
if it is non-zero (OR EAX,EAX) and is written to the address pointed by EBX register (MOV DWORD PTR DS:[EBX],EAX).
Follow EBX register in hex dump.

Now remove all the breakpoints except the breakpoint outside the IAT reconstruction loop (0x48CEBF) and resume
execution (F9) to let the IAT reconstruction finish. A memory region pointed by EBX should be filled with addresses
of resolved functions. It is characteristic for the IAT table that many addresses start with 0x75, 0x76, 0x77. This is
because system libraries are usually loaded at such address ranges.

At this point it might be handy to change the hex dump view type to the address view to list all functions names (as
hinted by OllyDbg). To do this right-click the hex dump and from the context menu choose LongAddress.

Advanced artefact analysis
 October 2015

43

Next scroll down the assembly code until the characteristical JMP instruction at 0x48CEFC. Such uncoditional jump
instructions at the end of the unpacking routine often leads to the OEP thus it is always worth inspecting them (but
keep in mind this is not the only way of jumping to the OEP). Put a breakpoint at this instruction and resume the
execution (F9).

Advanced artefact analysis
 October 2015

44

After reaching the breakpoint at the JMP instruction do a single step (F7/F8) to land at the OEP. In this case you can
recognize the OEP by calls to functions such as GetVersionExA or GetModuleHandleA. Remember the address of the
OEP (0x459FE0) because it will be needed later.

Now the original (unpacked) putty.exe code is stored in the memory. In the previous steps you have observed how
the unpacking routine was converting the packed code to its original form and how the Import Address Table was
rebuilt. In the next step you will dump the unpacked process image to the executable file. To achieve this you will
use the OllyDumpEx plugin which allows to dump a process image from the memory to the executable file in PE
format.

When dumping unpacked putty.exe code use the default OllyDumpEx settings. Save dumped process as dump.exe.
Don’t close OllyDbg yet.

Advanced artefact analysis
 October 2015

45

Now if you would try to execute dump.exe you will see an Application Error. That’s because dump.exe still doesn’t
have the IAT reconstructed.

To reconstruct IAT you will use the ImpREC26 tool. Run ImpREC (as Administrator) and from the scroll down menu at
the top of the window choose the putty_upx.exe process.

26ImpREC http://www.woodmann.com/collaborative/tools/index.php/ImpREC (last accessed 10.10.2015)

http://www.woodmann.com/collaborative/tools/index.php/ImpREC

Advanced artefact analysis
 October 2015

46

Next in the “IAT Infos needed” panel enter the RVA address of the OEP (OEP address minus Image Base address, in
this case 0x459FE0-0x400000=0x59FE0) and click “IAT AutoSearch”. If the IAT is found you should see the
appropriate message box. Otherwise you might need to try and manually enter RVA and Size of the IAT.

Advanced artefact analysis
 October 2015

47

Next click “Get Imports”.

Advanced artefact analysis
 October 2015

48

Click “Show Invalid” to see if there are any invalid functions. In this case there shouldn’t be any. Click “Fix Dump”
and select dump.exe file. If everything goes right you should see a message that dump_.exe was saved successfully
(please note underscore in the name of the file name, the originale file wasn’t overwritten).

You can try to run dump_.exe to check if it runs.

 Unpacking UPX with the ESP trick
The manual unpacking of the UPX sample presented in the previous section was only intended for educational
purposes. In most situations you are not interested in following each step of the unpacking routine and you only
want to find the OEP the quickest way possible (unless there are anti-analysis or anti-debugging techniques used in
the code preventing us from reaching the OEP). In this exercise you will use a simple ESP trick that will allow us to
quickly track the address of an original entry point for a UPX packed sample.

Many packers try to preserve the state of the stack and registers from the start of the execution and restore it just
before jumping to the OEP. This way after reaching the OEP, the application sees the stack and all registers as if it
had never been packed. One way of achieving this is to push the content of all registers (using PUSHAD instruction)
at the beginning of the unpacking stub and restore it just before the jump to the OEP. You can track this by putting
a hardware breakpoint on the stack memory containing the saved registers and waiting till this memory will be
accessed.

First, the same as in the previous exercise, open putty_upx.exe in OllyDbg.

Advanced artefact analysis
 October 2015

49

Step over PUSHAD instruction (Shortcut key F8). Notice how the stack view and ESP register changes, as seen on the
following screenshot.

Follow the ESP register in the hex dump and put a hardware breakpoint (on access) on the memory region pointed
to by this register.

Advanced artefact analysis
 October 2015

50

Next resume the execution (F9) and you should immediately land just before the jump to the OEP.

Advanced artefact analysis
 October 2015

51

Remove the hardware breakpoint (Debug -> Hardware breakpoints, Delete).

Advanced artefact analysis
 October 2015

52

Now put a breakpoint on the JMP instruction (0x48CEFC), and resume the execution (F9) until you reach it. Step over
the JMP instruction (F8) and you should land at the OEP.

In the next step you would need to dump the unpacked process and reconstruct the IAT table in the same way as
was described in the previous exercise. (Since it was already done in the previous exercise it is not necessary to do
that here now.)

In this exercise you have seen that it is not always necessary to exactly follow the unpacking routine and that in
various situations simple tricks can be used to reach the OEP. In this case you used the ESP trick to track the point
where there is a jump to the original entry point. While UPX is a fairly easy packer and this trick hasn’t eased our
task significantly, there are more complex packers for which you can still use the same trick making the unpacking
task easier.

 Unpacking a Dyre sample
In this exercise the unpacking of the Dyre27 malware will be presented. Dyre is a banking trojan and was packed using
a more complex packer than UPX. Since it is a live malware sample, run it only in a controlled virtual environment
and after the analysis restore a clean snapshot of the virtual machine. It is also advisable to forbid any network
access while working on Dyre.

Open the file called voiyhabs.exe in the OllyDbg. You should see the entry point.

Put a breakpoint on ZwAllocateVirtualMemory (as described in the introduction to OllyDbg). This will allow us to
track memory allocation operations. Packers often allocate new memory blocks to put unpacked code or unpacking
stub there.

27Dyre: Emerging threat on financial fraud landscape
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/dyre-emerging-
threat.pdf (last accessed 19.10.2015)

http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/dyre-emerging-threat.pdf
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/dyre-emerging-threat.pdf

Advanced artefact analysis
 October 2015

53

Now open the Call stack window (View->Call Stack, Alt+K) and press the resume execution (F9) a few times until
you see a call to HeapCreate with flags set to 0x40000. HEAP_CREATE_ENABLE_EXECUTE28 is a symbolic constant
for 0x40000 meaning that all memory blocks from this heap will allow code execution. This suggests that this heap
will be used to store the unpacking stub or some other executable code.

Remove the breakpoint from ZwAllocateVirtualMemory and show the calling location of HeapCreate in the voiyhabs
module.

Put a breakpoint on the instruction after the HeapCreate call and resume the execution (F9). Write down the
address of the newly created heap (returned in EAX register, 0xDE0000 in this example, might be different).

28HeapCreate function https://msdn.microsoft.com/en-us/library/windows/desktop/aa366599%28v=vs.85%29.aspx
(last accessed 11.09.2015)

https://msdn.microsoft.com/en-us/library/windows/desktop/aa366599%28v=vs.85%29.aspx

Advanced artefact analysis
 October 2015

54

Remove the previously set breakpoint (0x40144D) and scroll down until you see a call to RegisterClassEx function
(0x4018DE). Put a breakpoint on this function and resume the execution (F9).

Next you will check the address of the window procedure in a registered window class. Hiding some code in a
window procedure is a common technique used by a malware to hinder analysis and change the execution flow. If
the window procedure points to an existing address it is good to put a breakpoint at this address.

The window procedure address is passed in a third field of the WndClassEx structure (lpfnWndProc) preceded by
two INT values. This means that this address is a third DWORD value in the WndClassEx structure.

typedef struct tagWNDCLASSEX {

 UINT cbSize;

 UINT style;

 WNDPROC lpfnWndProc;

 int cbClsExtra;

 int cbWndExtra;

 HINSTANCE hInstance;

 HICON hIcon;

 HCURSOR hCursor;

 HBRUSH hbrBackground;

 LPCTSTR lpszMenuName;

 LPCTSTR lpszClassName;

 HICON hIconSm;

} WNDCLASSEX, *PWNDCLASSEX;

Address of the WndClassEx structure is put as the first argument onto the stack. Follow it in the dump.

Advanced artefact analysis
 October 2015

55

Now read the address of the Window procedure from the hex dump remembering that addresses are written in
the little-endian notation. In this case the Window procedure address is 0x02100210.

Next try to follow this address in the assembly window. If you land in the existing code section, put a breakpoint at
this address. To go back to the current location you can follow the EIP register.

Next scroll down until a call to EnumDisplayMonitors function. Put a breakpoint on this call and resume the execution
(F9) or alternatively select this location and use Run to selection (F4).

BOOL EnumDisplayMonitors(

 In HDC hdc,

 In LPCRECT lprcClip,

 In MONITORENUMPROC lpfnEnum,

 In LPARAM dwData

);

Check the address of the enumeration procedure (lpfnEnum) on the stack (the third argument, in this example
0xEDE688). Notice that this address points to the memory range of the previously created heap. This suggests that
the unpacking stub is likely located there.

Advanced artefact analysis
 October 2015

56

Put a breakpoint on the enumeration procedure (in the assembly window go to the address of the enumeration
procedure – lpfnEnum and toggle a breakpoint on this address). Resume the execution (F9).

The execution should break inside the enumeration procedure. Step over (F8) two times to follow the jump.

Scroll down and put a breakpoint on the suspicious CALL EAX just before the function return (RETN). As mentioned
in the introduction, single calls to a register just before a function return might indicate calls to the OEP or some
other important part of the code. It is also worth noting that there isn’t much going on after this call. This means
that the jump to the OEP is likely taking place in this call.

Resume the execution (F9). When you hit the breakpoint on CALL EAX step into (F7) the call. You should land in
another unpacking stub function.

Step over (F8) two times.

Now scroll down to a group of three calls just before the function return. At this point you already know that after
the return (to the previous routine) there isn’t much going on in the code. This means that the jump to OEP is likely
taking place in one of this calls. Put a breakpoint on the first call and resume the execution (F9).

Advanced artefact analysis
 October 2015

57

After reaching the breakpoint step into the first function call (F7). You will see several PUSH instructions followed by
a call instruction.

When you step over (F8) to this call instruction you will see this is a call to CreateThread function.

HANDLE WINAPI CreateThread(

 _In_opt_ LPSECURITY_ATTRIBUTES lpThreadAttributes,

 In SIZE_T dwStackSize,

 In LPTHREAD_START_ROUTINE lpStartAddress,

 _In_opt_ LPVOID lpParameter,

 In DWORD dwCreationFlags,

 _Out_opt_ LPDWORD lpThreadId

);

Now take a look at the stack. The thread routine is passed as the third argument. In this example it points to
0xEE38AC.

Put a breakpoint on the thread function (lpStartAddress) and resume the execution (F9).

Advanced artefact analysis
 October 2015

58

When a breakpoint at the thread function is hit step over (F8) until a call to ECX. As you see ECX points to the memory
of the .text section of the original executable (voiyhabs.00403850). This is a good indicator that you are jumping to
the OEP. Step into the call (F7).

You should land at the OEP with overwritten code which OllyDbg hasn’t analysed properly. At this point you could
proceed to dump the process and reconstruct the IAT, but to be sure that you are at the OEP you need to tell OllyDbg
to interpret the following fragment as code and disassemble it properly.

Starting at the OEP address select a group of instructions. Next right-click on them and from the context menu
choose ‘Analysis->During next analysis, treat selection as->Command’.

Advanced artefact analysis
 October 2015

59

Now click on them once again and from the context menu choose ‘Analysis->Analyse code’.

Advanced artefact analysis
 October 2015

60

Now you can clearly see that you are most likely at the OEP - typical function prologue with the EBP based stack
frame followed by later call to GetModuleHandleA. Moreover you just jumped from a code in the allocated memory
block to the initial executable section: another indicator that you are at the original entry point.

Next you will dump the process image and reconstruct the IAT table. To dump the process use OllyDumpEx plugin
(as described previously).

Advanced artefact analysis
 October 2015

61

Now try to reconstruct the Import Address Table (RVA of the OEP: 0x3850) by using ImpRec. This time you might see
some invalid imports after clicking Get Imports and Show Invalid. Right-click on each of them and from the context
menu choose Cut thunks(s). After all invalid pointers are resolved, use Fix dump to fix the dumped executable.

Advanced artefact analysis
 October 2015

62

In this exercise you have unpacked the executable of a real malware sample, protected with a more complex packer.
You have achieved this by first tracking the memory allocation operations and then following the unpacking stub in
a newly allocated heap. It is worth noting that this isn’t the only way of unpacking this executable nor is it the
quickest method. As goes for any packed executable there are many ways of unpacking code and reaching the OEP.

Advanced artefact analysis
 October 2015

63

4. Anti-debugging techniques

 Anti-debugging and anti-analysis techniques
Malware creators usually don’t want malware analysts to be able to analyse their code. As a consequence they use
various anti-analysis techniques to make analysis as hard as possible. You can distinguish four groups of anti-analysis
techniques:

 Anti-debugging – detects if the process is being debugged

 Anti-emulation (anti-VM) – detects if the process is running in a virtual machine or in some other
emulated environment

 Anti-sandbox – detects if the process was executed in some well-known sandbox or environment
dedicated for malware analysis

 Anti-disassembly – makes disassemblers to incorrectly disassemble code

When debugging, most often you would need to cope with the anti-debugging and anti-VM techniques. Whenever
malicious code detects that it is being debugged or is running in a virtual machine, it might terminate or run
completely other (non-malicious) code instead, to mislead the analyst.

There are plenty of anti-debugging techniques29 30. Most of them can be assigned to one of the following categories:

 API related techniques – those techniques use the fact that calls to certain API functions would return
different result depending on whether the application is being debugged or not. Examples of such
functions are IsDebuggerPresent or OutputDebugString.

 Checking flags – certain flags set by an operating system in process’s data structures are different
when the process is being debugged. Examples of such flags are NtGlobalFlag and IsDebugged flag in
(PEB).

 Searching for breakpoints – it is possible for a process to search for breakpoints in its current address
space. This applies for software, hardware and memory breakpoints.

 Searching for processes (or open windows) of popular debuggers and other analysis tools (e.g.
Wireshark, Regshot, Process Explorer).

 Time based checks – a malicious code can check how much time elapsed between two different parts
of the code. If the time delay is too big it will be assumed that the application is being debugged.

 Self-debugging – a clever anti-debugging technique in which the malware starts debugging its own
processes making the analyst unable to attach a debugger to them. This technique was used by Zero-
Access trojan31.

29The “Ultimate”Anti-Debugging Reference http://pferrie.host22.com/papers/antidebug.pdf (last accessed
11.09.2015)
30Anti-debugging Techniques Cheat Sheet http://antukh.com/blog/2015/01/19/malware-techniques-cheat-sheet/
(last accessed 11.09.2015)
31ZeroAccess uses Self-Debugging https://blog.malwarebytes.org/intelligence/2013/07/zeroaccess-anti-debug-uses-
debugger/ (last accessed 11.09.2015)

http://pferrie.host22.com/papers/antidebug.pdf
http://antukh.com/blog/2015/01/19/malware-techniques-cheat-sheet/
https://blog.malwarebytes.org/intelligence/2013/07/zeroaccess-anti-debug-uses-debugger/
https://blog.malwarebytes.org/intelligence/2013/07/zeroaccess-anti-debug-uses-debugger/

Advanced artefact analysis
 October 2015

64

Except trying to detect the debugger, the malicious code is frequently also trying to detect virtualization
environments using a subset of the following techniques32:

 Detecting processes related to the virtualization software. This is one of the most common techniques.
A malicious code iterates a process list in search for processes like VBoxService.exe, VBoxTray.exe.

 Searching for VM artefacts in the registry and filesystem (strings referencing vbox, vmware, qemu).

 Checking the amount of resources available in the system. For example a malicious code might check
the size of the hard disk assuming that most modern computers should have hard disks of size at least
80GB (VMs frequently have smaller disks).

 Detecting what hardware is present in the system (e.g. VBOX HARDDISK).

 Certain assembly instructions also behave differently on the virtualized system than on bare-metal.

One of the countermeasures for anti-debugging is to use special plugins for OllyDbg like aadp4olly33 and Olly
Advanced34.

When using those plugins you need to check which anti-anti-debugging techniques should be used. You can do this
by accessing the plugin’s options dialog via Plugins menu.

In general it is a good idea to use only one plugin for a specific anti-debugging technique as otherwise it might lead
to unexpected behaviour. If a certain plugin doesn’t work or crashes, try a different one.

The screenshot below presents the anti-anti-debugging options of aadp4olly plugin.

32On the Cutting Edge: Thwarting Virtual Machine Detection
http://handlers.sans.org/tliston/ThwartingVMDetection_Liston_Skoudis.pdf (last accessed 11.09.2015)
33aadp4olly https://tuts4you.com/download.php?view.3021 (last accessed 11.09.2015)
34Olly Advanced https://tuts4you.com/download.php?view.75 (last accessed 11.09.2015)

http://handlers.sans.org/tliston/ThwartingVMDetection_Liston_Skoudis.pdf
https://tuts4you.com/download.php?view.3021
https://tuts4you.com/download.php?view.75

Advanced artefact analysis
 October 2015

65

However even when you are using such plugins you need to still be cautious for anti-VM techniques and more
sophisticated anti-debugging techniques. One way to check if the malicious code is using anti-VM or anti-debugging
techniques is to try and run it freely (under debugger) and then using a behavioural analysis techniques to check if
the malware behaves as expected.

In a typical scenario malware would create one or more child processes, install itself somewhere in the system and
finally generate some network traffic to communicate with its C&C server. If you don’t see such behaviour it might
mean that the malware has detected the debugger or VM or just that the malware you are analysing doesn’t behave
in this way.

 Dyre - basic patching with OllyDbg
A recent version of the Dyre trojan uses an interesting anti-sandbox mechanism. It checks the number of processor
cores visible by the system35 and if it determines that the number of cores is less than two it stops the execution.
Since the most modern systems run on multi-core CPUs it won’t affect them while it would still prevent the execution
on a poorly configured sandbox running on virtual machines with only one CPU attached.

In this exercise you will use the previously unpacked Dyre sample and patch it to allow code execution also on one
core system. If you haven’t finished the previous exercise or something went wrong, use the unpacked_dyre.exe
sample provided.

If your virtual machine has only one CPU configured you can start Process Explorer/Process Monitor and try to
execute the unpacked Dyre sample. You will observe that the sample quits almost immediately and nothing much

35 Dyre http://www.seculert.com/blog/2015/04/new-dyre-version-evades-sandboxes.html (last accessed 11.09.2015)

http://www.seculert.com/blog/2015/04/new-dyre-version-evades-sandboxes.html

Advanced artefact analysis
 October 2015

66

seems to be happening. The screenshot below shows the Process Tree view as created by Process Monitor tool
(Tools->Process tree).

Now open the unpacked Dyre in OllyDbg.

If you step over (F8) a few times you will notice that at the first jump instruction (JB) the program is jumping to the
ExitProcess routine.

Advanced artefact analysis
 October 2015

67

If you take a closer look at the code just before the jump, you notice that Dyre is checking the number of CPU cores
as pointed by the Process Environment Block (PEB)36. The Process Environment Block is a special system structure
containing various information about the running process. It is stored in user space memory and pointed to by the
FS segment.

If the value is less than two it terminates the process.

To patch this behaviour click on CMP instruction and press space (or select Assemble from context menu). Replace
value ‘2’ with ‘1’.

Select modified commands and from the context menu choose Copy to executable -> All modifications and then
Copy All in the dialog window.

36PEB-Process-Environment-Block http://www.aldeid.com/wiki/PEB-Process-Environment-Block (last accessed
11.09.2015)

http://www.aldeid.com/wiki/PEB-Process-Environment-Block

Advanced artefact analysis
 October 2015

68

In the new window from the context menu choose Save file and save the patched executable.

Now try running the patched executable while observing its behaviour in Process Explorer or Process Monitor
(process tree).

Advanced artefact analysis
 October 2015

69

If everything is done correctly you should see that the Dyre process is creating a new child process which uses
significantly more time. This means that you have successfully patched the Dyre executable and likely no other anti-
analysis check is preventing it from running anymore.

Advanced artefact analysis
 October 2015

70

5. Process creation and injection

 Process injection and process hollowing
Modern malware is frequently using some form of code injection into other processes. Whichever technique is used,
the goal is almost always the same: to disguise the malicious code and to make the analysis more difficult.

Process replacement – also known as process hollowing37, is a technique in which the process image in the memory
is replaced with a new image containing malicious code. Usually the new process is created in suspended state using
some legitimate binary (e.g. explorer.exe or notepad.exe). Then its memory is overwritten with the malicious code,
a new entry point is set and the process is resumed. This way the user will see only well-known processes and if a
malicious process is found it won’t point to the initial malicious file but to the legitimate binary from which it was
created.

A typical process hollowing scheme is executed as follow:

1. Creation of a new process in the suspended state (CreateProcess, CreateProcessInternal)
2. Unmapping a new process’s image from the memory (NtUnmapViewOfSection)
3. Allocating memory in the new process (VirtualAllocEx)
4. Writing malicious code to the newly allocated memory (WriteProcessMemory)
5. Setting a new entry point address of the main thread in the hollowed process (GetThreadContext,

SetThreadContext)
6. Resuming the main thread of the hollowed process (ResumeThread)

Process injection - in this technique the malicious code is injected into an already running process as a separate
thread. This way, while the original process is still doing its work, the malicious code will be running at the same time
in a separate thread. Most often the malware injects its code into the explorer.exe process, which is always running
in Windows systems and will hardly ever be terminated by the user.

There are a couple of methods38 how to inject code into other processes. One of the most frequently used methods
is using the WriteProcessMemory and CreateRemotheThread functions:

1. Malicious code iterates over the process list to find a process to which it will be injected
(CreateToolhelp32Snapshot, Process32First, Process32Next)

2. Opening a destination process handle (OpenProcess)
3. Allocating memory in the selected process address space (VirtualAllocEx)
4. Writing malicious code to the newly allocated memory (WriteProcessMemory)
5. Creating a remote thread in the chosen process (CreateRemoteThread)

 Following child processes of Tinba banking trojan
In this exercise you will follow child (hollowed) processes created by the Tinba loader till you reach the main Tinba
payload. The sample to be analysed is a file “doc o likwidacji _ doc_TK2015.exe” which was sent to users during the
malware campaign in 2015.

37Process Hollowing http://www.autosectools.com/process-hollowing.pdf (last accessed 11.09.2015)
38Three Ways to Inject Your Code into Another Process http://www.codeproject.com/Articles/4610/Three-Ways-to-
Inject-Your-Code-into-Another-Proces (last accessed 11.09.2015)

http://www.autosectools.com/process-hollowing.pdf
http://www.codeproject.com/Articles/4610/Three-Ways-to-Inject-Your-Code-into-Another-Proces
http://www.codeproject.com/Articles/4610/Three-Ways-to-Inject-Your-Code-into-Another-Proces

Advanced artefact analysis
 October 2015

71

From the results of the behavioural analysis it is known that the Tinba loader is creating two child processes shortly
after execution. The first one is a copy of the original loader executable while the second one is the EXPLORER.exe
process. Please note that in contrast to some other malware, this Tinba variant isn’t injecting code into the existing
explorer.exe instance but is creating a new instance of said process.

5.2.1 First stage
In the first stage Tinba loader follows the typical process hollowing scheme. That is, it first creates a new process
from its own executable (suspended). Then it unmaps memory sections and creates new sections with the unpacked
code. Following it sets a new entry point address and resumes the process.

First open OllyDbg and load the malware sample “doc o likwidacji _ doc_TK2015.exe”. Ignore the error about bad
format of the executable.

Now you should land in the entry point at 0x401300.

Advanced artefact analysis
 October 2015

72

Insert breakpoints on the following functions:

 CreateProcessW

 SetThreadContext

 WriteProcessMemory

 ResumeThread

Resume the process execution (F9). After a short while you should land at the CreateProcessW breakpoint. As you
can see either in the stack window or the call stack window (Alt+K) a new process is created in suspended state
(CREATE_SUSPENDED) and is created using the original executable image.

Advanced artefact analysis
 October 2015

73

Step over (F8) a few times till you go past return and land back in the loader code. You should land on the instruction
TEST EAX, EAX.

Scroll down in the assembly code and you should see calls to functions such as GetThreadContext,
ReadProcessMemory, ZwUnmapViewOfSection, VirtualAllocEx, WriteProcessMemory, SetThreadContext,
ResumeThread. This is typical for the process hollowing technique.

Now you could step over the code (F8) and follow how exactly the process hollowing is taking place. Sometimes this
would be necessary, especially when the malware uses some anti-debugging techniques or some other nonstandard
approaches. In this case it is enough to just follow previously set breakpoints on SetThreadContext,
WriteProcessMemory and ResumeThread.

Resume the execution (F9). The execution should break on WriteProcessMemory. Take a look at the arguments
passed via stack to the WriteProcessMemory function.

Advanced artefact analysis
 October 2015

74

You see that the loader overrides 17920 bytes at the address 0x400000 of the previously created child process. If
you follow in the dump source buffer (0x213000039) you will see typical PE headers with likely some unpacked code.

At this point you could decide to dump a new PE image to disk for later analysis but skip this step and start debugging
the child process.

Resume the execution (F9) two times until you break on SetThreadContext function. This function is used by the
malware to set a new entry point address of the initial thread of the suspended process (before it will be resumed).
Write down the address of the context structure put on the stack (0x420000 - pContex) and follow it in the dump.

39 This address might be different.

Advanced artefact analysis
 October 2015

75

The entry point of the newly created process is stored in its EAX register40. Its value can be read from the context
structure at the address pContext+0xB041. In this case the entry point address is 0x00401000 (remember about little-
endian notation). Write down the address of the entry point, it will be needed later.

Resume the execution (F9) until you land at the breakpoint on ResumeThread. If you had stepped over this function,
the child process would be resumed and you would miss the chance to follow its code. You also can’t just attach
OllyDbg to the child process because OllyDbg doesn’t allow to be attached to suspended processes.

To cope with this problem you will use a simple trick. You will override the first two bytes at the entry point of the
child process with 0xEBFE. This opcode translates to a JMP instruction to itself. This way after resuming the process
the initial thread will be stuck in the endless loop giving us a chance to attach OllyDbg to the child process.

To override the child process memory you can use Process Hacker42 tool.

Open Process Hacker and find the suspended child process. Right-click on it and open Properties window.

40 EAX value in the context of newly created process, don’t mistake it with the EAX value in OllyDbg which is the value
of EAX register in the context of currently debugged process.
41struct CONTEXT http://www.nirsoft.net/kernel_struct/vista/CONTEXT.html (last accessed 11.09.2015)
42 Process Hacker http://processhacker.sourceforge.net/ (last accessed 11.09.2015)

http://www.nirsoft.net/kernel_struct/vista/CONTEXT.html
http://processhacker.sourceforge.net/

Advanced artefact analysis
 October 2015

76

In the Properties window switch to Memory tab and find a memory block where the entry point is located (0x401000
-> memory block 0x400000). Right-click on it and choose Read/Write Memory option.

In the new window go to the entry point address at offset 0x1000 (addresses are relative to 0x400000).

Advanced artefact analysis
 October 2015

77

Write down the first two bytes at this offset (0x64A1) and override them with (0xEBFE). Click Write and close the
window.

Now switch back to OllyDbg and step over (F8) till return from ResumeThread function.

Advanced artefact analysis
 October 2015

78

Now you can minimize OllyDbg. In the Process Hacker window you can also notice that the child process was
resumed and is now using a considerable amount of CPU time. This is the result of the endless loop you created in
this process. Note the process identifier (PID) of the child process (in decimal).

Start a new OllyDbg instance and attach it to the child process (File->Attach). Note that OllyDbg presents process
PIDs in the hexadecimal format. If you are unsure which of “doc o likwidacji…” entries is the child process, just try
attaching to both of them. Since the parent process is already being debugged it will be possible to attach to only
one process – the real child process.

Advanced artefact analysis
 October 2015

79

Ignore the error message (the same as previously). You should land somewhere in ntdll.

In the assembly window go to the address 0x401000 (EP). You should see the previously injected 0xEBFE bytes. Put
a breakpoint on this instruction and resume the process (F9).

Advanced artefact analysis
 October 2015

80

After you land at the breakpoint select JMP instruction and press Ctrl+E to edit it. Replace EB FE bytes with the
original 64 A1.

After confirmation OllyDbg will automatically reanalyse the code, changing it significantly.

Now you are in the entry point of the second stage.

5.2.2 Second stage
Second stage loader creates a new instance of the EXPLORER.exe process and injects the malicious code into it. But
instead of entirely overriding the EXPLORER.exe code it also uses the file mapping mechanism to share a portion of
its code with the new process.

First when still paused at the entry point of the second stage, create a snapshot of the virtual machine (name it
‘Tinba – second stage’). In case of anything going wrong you wouldn’t need to repeat the entire process.

Next put breakpoints on the following functions:

 CreateProcessInternalW

 GetThreadContext

 SetThreadContext

 WriteProcessMemory

 ResumeThread

Advanced artefact analysis
 October 2015

81

Resume the execution (F9). Shortly you should land at the CreateProcessInternalW call. Right-click on the assembly
code and select ‘Analyze this!’ (while using the OllyDbg plugin). Next open the Call stack window (View -> Call
stack, Alt+K).

As you can see CreateProcessInternalW was indirectly called as a result of a call to CreateProcessA. As before, a new
process is created in a suspended state, but this time explorer.exe is used as a source image for the new process.
Such usage of a well-known system process is a typical malware deception mechanism.

Continue the execution (F9) till you land at the GetThreadContext breakpoint. In this case the malware uses this
function to check the address of an entry point of the EXPLORER.exe process.

Advanced artefact analysis
 October 2015

82

Note the address of the pContext structure (in this example it is 0x12FAAC) and follow it at the dump. Next step over
(F8) till return from GetThreadContext and read EXPLORER.exe entry point from the pContext+0xB0 address.
Alternatively you can just find explorer.exe executable on the disk and check its entry point address with some PE
editor (e.g. CFF Explorer). In this situation EP is located at the address 0x4AA8DF.

Resume the execution (F9) till the breakpoint on WriteProcessMemory.

Notice that this time only a very small portion of the code (256 bytes) is written to the child process memory
(there are also no subsequent calls to WriteProcessMemory that could write rest of the malicious code). What’s
also important is that the code is overridden at the exact address of the previously checked entry point –
0x4AA8DF. This suggests that the entry point address won’t be changed this time (and indeed it isn’t).

Follow the source buffer in the dump address (in this case 0x411026).

Notice names of functions such as MapViewOfFile and OpenFileMapping. This suggests that the rest of the code will
be transferred using the file mapping mechanism.

Knowing that the above buffer will be written to the exact address of an entry point, this time you will do 0xEBFE
trick before the memory is written to the child process. Please note that this step should be done before stepping
over the WriteProcessMemory function.

Advanced artefact analysis
 October 2015

83

Select the first two bytes of the source buffer (E8 C2) and press Ctrl+E. Replace them with bytes EB FE.

Next step over WriteProcessMemory function till the user code. You should land at TEST EAX, EAX instruction.

As suspected in the loader there are calls to the CreateFileMappingA and the MapViewOfFile function, which will be
used to share the code with the child process EXPLORER.exe. Now you might step over those functions to check their
arguments.

Continue the execution (F9) until ResumeThread breakpoint. Now since 0xEBFE trick was already applied you can
safely step over (F8) the ResumeThread function.

Minimize OllyDbg window and check in Process Hacker if explorer.exe process was resumed properly.

Advanced artefact analysis
 October 2015

84

Next open a new instance of OllyDbg and attach it to the EXPLORER.exe process.

After attaching to EXPLORER.exe override EB EF bytes at the entry point as described in the previous section (original
bytes were E8 C2). If you don’t remember the address of an entry point you can use Debug -> Execute till user code
(Alt+K) function.

Advanced artefact analysis
 October 2015

85

Now you are at the entry point of the code injected to EXPLORER.exe but this still isn’t the main Tinba payload. To
reach the payload put a breakpoint on OpenFileMappingA and resume the execution (F9).

After reaching the OpenFileMappingA breakpoint step over (F8) till the user code or choose Debug->Execute till user
code (Alt+F9). You should land at the PUSH EBX instruction.

As you see, the malware first opens the file mapping object (OpenFileMappingA), then maps the file mapping object
into the address space (MapViewOfFile), allocates a memory block (VirtualAlloc) and finally copies the mapped data
to the locally allocated memory block (REP MOVS instruction).

To reach the final payload step over (F8) the return instruction (RETN). Don’t worry if the address would be different
from the one on the screenshot. What’s important is that after a return you should see a group of four call
instructions.

Advanced artefact analysis
 October 2015

86

Now create a snapshot called ‘Tinba’. This snapshot will be used in the later exercises.

Advanced artefact analysis
 October 2015

87

6. Introduction to scripting

 Introduction to OllyDbg scripting
When debugging malicious code you sometimes encounter the problem of repetitive and/or tedious tasks. This
might be the case when unpacking pieces of code obfuscated with the same packer or performing multiple repetitive
actions in some malicious code. One of the solutions to this problem is to automate certain tasks through scripting.
In OllyDbg you can do this using the ODbgScript plugin43.

A detailed reference about the scripting language is provided with ODbgScript package in the README.txt file44. In
general the language is very similar to the assembly language with a few additional commands. Every operation you
can do in OllyDbg (except functions provided by other plugins) you can also do in using script.

The list below presents some of the operations you can do with ODbgScript:

 Check and modify registers

 Manipulate the program memory and stack

 Dump memory blocks

 Add breakpoints to the code

 Control program execution (instruction stepping)

 Execute assembly instructions in the context of a debugged program

 Perform arithmetic operations

 Acquire information about instructions and modules

 Search the program memory for specific instructions or patterns

OllyDbg scripts are often used for unpacking binary samples. There are online repositories45 46 where you can find
scripts dedicated to various packers.

The code below presents an example script which first prints the result of XORing EAX with EDX (without affecting
the values in the registers) and then prints the first ten Fibonacci numbers47 in a loop.

; printing result of EAX^EDX

var result

mov result, eax

xor result, edx

log result

; fibonacci(10)

var i, n, k

mov i, 3

mov n, 1

43 ODBGScript http://sourceforge.net/projects/odbgscript/ (last accessed 11.09.2015)
44 ODBGScript http://sourceforge.net/projects/odbgscript/files/English%20Version/README.txt/view (last accessed
11.09.2015)
45OllyDbg OllyScripts http://www.openrce.org/downloads/browse/OllyDbg_OllyScripts (last accessed 11.09.2015)
46OllyScript - Scripts https://tuts4you.com/download.php?list.53 (last accessed 11.09.2015)
47Fibonacci number https://en.wikipedia.org/wiki/Fibonacci_number (last accessed 11.09.2015)

http://sourceforge.net/projects/odbgscript/
http://sourceforge.net/projects/odbgscript/files/English%20Version/README.txt/view
http://www.openrce.org/downloads/browse/OllyDbg_OllyScripts
https://tuts4you.com/download.php?list.53
https://en.wikipedia.org/wiki/Fibonacci_number

Advanced artefact analysis
 October 2015

88

mov k, 1

log "1: 1"

log "2: 1"

fibonacci_loop:

 xchg n, k

 add k, n

 eval "{i}: {k}"

 log $RESULT,""

 add i, 1

 cmp i, 10.

 jbe fibonacci_loop

This script is mostly self-explanatory. Variables are declared using the var keyword and can be used to store numbers
or strings. $RESULT is a special variable used to store a result of previously executed command. All numbers used in
the script are by default treated as hexadecimal numbers. To use a decimal number you must add a dot suffix to the
number (for example 10. == A, 11. == B).

How to execute ODbgScripts in OllyDbg will be presented in the next exercise in which you will also learn how to use
scripting to automatically decode all hidden strings in the previously analyzed Tinba sample.

 Decoding hidden strings in Tinba
This exercise starts where the previous exercise ended. If necessary, restore the snapshot named Tinba created
when you reached the main Tinba payload.

Step into (F7), the first call instruction (actually this call would never return, everything important is taking place
inside this call).

Next step into the seventh call instruction (F7).

Advanced artefact analysis
 October 2015

89

Take a look at the first call instruction. You should notice two interesting things about it. Firstly, the call is jumping
into a middle of an instruction (there is no disassembled instruction at 0x7717B7). Secondly, instructions after this
call don’t make much sense.

What you see here is an anti-disassembly technique used by this Tinba variant. To see how it works step into this
call (F7).

You should land at another call instruction followed by a second call to LoadLibraryA.

If you had scrolled up in disassembly window the code would desynchronize.

What happened here is that the call that you stepped into was only used to push onto the stack address pointing to
the data right after the call instruction (return address).

This call would actually never return and the address pushed onto the stack would be used as a first argument for
the next called function.

The function called in the next instruction takes three arguments (arg1-arg3). This functions is used to decrypt arg2
number of bytes stored at the address pointed by arg1 and save decrypted data to the address pointed by arg3. This
isn’t presented in this document but you can check this by yourself by stepping into this function.

Advanced artefact analysis
 October 2015

90

Now follow in dump arg3.

And step over (F8) a call.

Take a look at the memory dump. A memory at the address pointed by arg3 was overwritten with a decrypted text
string. Now this string will be used as an argument for a LoadLibraryA call.

What this mean is that Tinba stores encoded strings in-between normal assembly instructions. To decode such a
string it uses the call instruction to push the address of encrypted data onto the stack and then calls the decoding
routine.

This technique is used in several places of Tinba code and it always uses the same scheme:

OFFSET INSTRUCTION CODE INSTRUCTION COMMENT

0x0 50 PUSH EAX pushing dst. address (for decoded data)

0x1 87 44 24 04 XCHG DWORD PTR [ESP+4], EAX

0x5 6A ? PUSH <n> pushing data length

0x7 E8 ? 00 00 00 CALL (0xB+n) pushing src. address (5) onto the stack

0xB <variable length encoded data> -

0xB+n E8 ? ? ? ? CALL <decode_func> calling decode function

Question marks in the instruction code column represent a single byte with a variable value.

If you would like to find all encoded strings and decode them at once you can use OllyScript to automate this task.

The algorithm would be as follow:

1. Allocate memory for decoded data <dst>
2. Find next byte pattern “50 87 44 24 04 64 ?”.
3. If pattern not found -> STOP.
4. Get encrypted data length <n> (push instruction operand)
5. Get encrypted data address <src>
6. Get decoding routine address
7. Call decoding routine in context of debugged process – decode(<src>, <n>, <dst>)
8. Output decoded string (<dst>).

Advanced artefact analysis
 October 2015

91

9. Jump to step 2.

To use OllyScript create script.osc file with the following code:

var base

var labels

; checking memory base of Tinba payload

gmemi eip, MEMORYBASE

mov base, $RESULT

; allocating memory for results

alloc 1000

mov labels, $RESULT

; printing header information

eval "Memory base: 0x{base}"

log "--------------"

log "Searching for encoded strings."

log $RESULT,""

log "--------------"

search_loop:

 ; searching for byte pattern

 find base, #50874424046A??#

 cmp $RESULT,0

 je end_loop

 mov base,$RESULT

 mov push_addr,base+5.

 mov call_addr,base+7.

 mov data_addr,base+12.

 ; finding data length

 gopi push_addr,1,DATA

 mov len,$RESULT

 ; finding decode routine address

 gci call_addr,DESTINATION

 gci $RESULT,DESTINATION

 mov decode_addr, $RESULT

 ; executing decode routine

 exec

 pushad

 push {labels}

 push {len}

 push {data_addr}

 call {decode_addr}

 popad

 ende

 gstr labels

 mov string, $RESULT

 fill labels, len, 0

Advanced artefact analysis
 October 2015

92

 ; printing result

 eval "{data_addr} ({len} bytes) -> {string}"

 log $RESULT,""

 add base,7

 jmp search_loop

end_loop:

 log "--------------"

 free labels

 pause

Commands used in this script were:

 alloc {size} – allocates {size} bytes of memory and returns address in $RESULT

 eval {expression} – evaluates string expression with variables, returns string in $RESULT

 exec, ende – executes assembly instructions between exec and ende in context of the debugged
process

 fill {addr}, {len}, {value} – fills {len} bytes at address {addr} with specified {value}

 find {addr}, {pattern} – searches memory for {pattern} starting at address {addr}

 free {addr} – frees allocated memory at the address {addr}

 gci {addr}, DESTINATION – gets destination address of jump/call/return instruction

 gmemi {addr}, MEMORYBASE – gets base address of memory block to which {addr} belongs

 gopi {addr},{n},DATA – gets value of {n}th operand for instruction at address {addr}

 gstr {addr} – reads null terminated string from memory at specified address {addr}

 je, jmp – standard jump instructions

 log {str} – outputs provided string {str} in Script Log Window

 mov {dest}, {src} – standard mov instruction

To get more detailed information about each command, refer to ODbgScript reference in the README.txt file.

To use this script first make sure that the EIP register points to the Tinba payload (for example you haven’t followed
in any API call).

Then open ODbgScript Script Window and Log Window.

Advanced artefact analysis
 October 2015

93

Next load script.osc in Script Window by right-clicking it and choosing Load Script->Open.

When the script is loaded press <space> to resume script execution or right-click on script and from the context
menu choose Resume.

At the same time take a look at Script Log Window where the decoded strings should be printed.

Now that you know all encoded strings you can do typical string analysis to guess some of Tinba’s functionality. For
example on the strings list you can find strings such as data_before, data_end, data_inject, data_after which tell
that Tinba is using webinjects technique known from other banking trojans.

Advanced artefact analysis
 October 2015

94

Each printed line has the following message format:

{address} ({data_length}) -> {decoded_string}

Where {address} is an address where decoding instructions were found. This means that you can use printed
messages to localize at what part of the code each string was used.

Additionally you could create a more advanced script, which would not only decode strings but also rewrite the
Tinba code in such a way that it would reference to already decoded strings instead of decoding them at runtime.

Advanced artefact analysis
 October 2015

95

7. Summary

In this training you have learnt the principles of malicious code debugging. Debugging usually requires a lot of
patience and thinking outside the box. Various anti-debugging and anti-analysis techniques make this process much
harder, but at the same time, debugging is often the quickest and easiest way of finding how a given sample really
works.

When debugging, there are usually multiple ways of achieving the same goal: to unpack a binary sample, to check
what its functions are or how it operates. The real skill is in how to achieve those goals in the quickest possible way
without spending too much time on the analysis. This can be learnt only through regularly analysing malware
samples, because that’s when you learn different code patterns and get a better understanding of the system
internals.

ENISA
European Union Agency for Network
and Information Security
Science and Technology Park of Crete (ITE)
Vassilika Vouton, 700 13, Heraklion, Greece

Athens Office
1 Vass. Sofias & Meg. Alexandrou
Marousi 151 24, Athens, Greece

PO Box 1309, 710 01 Heraklion, Greece
Tel: +30 28 14 40 9710
info@enisa.europa.eu
www.enisa.europa.eu

