

European Union Agency for Network and Information Security

www.enisa.europa.eu

Developing countermeasures
(signatures, indicators of compromise)

Toolset, Document for students
December 2014

Developing countermeasures (signatures, indicators of compromise)
Toolset, Document for students

December 2014

Page ii

About ENISA

The European Union Agency for Network and Information Security (ENISA) is a centre of network
and information security expertise for the EU, its member states, the private sector and Europe’s
citizens. ENISA works with these groups to develop advice and recommendations on good practice in
information security. It assists EU member states in implementing relevant EU legislation and works
to improve the resilience of Europe’s critical information infrastructure and networks. ENISA seeks
to enhance existing expertise in EU member states by supporting the development of cross-border
communities committed to improving network and information security throughout the EU. More
information about ENISA and its work can be found at www.enisa.europa.eu.

Authors

This document was created by Lauri Palkmets, Cosmin Ciobanu, Yonas Leguesse, and Christos
Sidiropoulos in consultation with DFN-CERT Services1 (Germany), ComCERT2 (Poland), and S-CURE3
(The Netherlands).

Contact

For contacting the authors please use cert-relations@enisa.europa.eu

For media enquires about this paper, please use press@enisa.europa.eu.

Acknowledgements

ENISA wants to thank all institutions and persons who contributed to this document.

1 Klaus Möller, and Mirko Wollenberg
2 Mirosław Maj, Tomasz Chlebowski, Krystian Kochanowski, Dawid Osojca, Paweł Weżgowiec, and Adam Ziaja
3 Michael Potter, Alan Robinson, and Don Stikvoort

http://www.enisa.europa.eu/
mailto:cert-relations@enisa.europa.eu
mailto:press@enisa.europa.eu

Developing countermeasures (signatures, indicators of compromise)
Toolset, Document for students

December 2014

Page iii

Legal notice

Notice must be taken that this publication represents the views and interpretations of the authors and
editors, unless stated otherwise. This publication should not be construed to be a legal action of ENISA or
the ENISA bodies unless adopted pursuant to the Regulation (EU) No 526/2013. This publication does not
necessarily represent state-of the-art and ENISA may update it from time to time.

Third-party sources are quoted as appropriate. ENISA is not responsible for the content of the external
sources including external websites referenced in this publication.

This publication is intended for information purposes only. It must be accessible free of charge. Neither
ENISA nor any person acting on its behalf is responsible for the use that might be made of the information
contained in this publication.

Copyright Notice

© European Union Agency for Network and Information Security (ENISA), 2014

Reproduction is authorised provided the source is acknowledged.

Developing countermeasures (signatures, indicators of compromise)
Toolset, Document for students

December 2014

Page iv

Table of Contents

1 Objective and Description 2

2 General description 2

3 Exercise Course 2

3.1 Introduction 2

4 Developing Snort signatures 3

4.1 Introduction 3

4.2 Snort syntax 3
4.2.1 Keywords 3
4.2.2 Perl Compatible Regular Expressions (PCRE) excursion 4

5 Students task 1 5

6 Students task 2 6

7 Developing Yara patterns 8

7.1 Yara 8

7.2 Developing Yara patterns 9

8 Summary 19

9 References 19

Developing countermeasures (signatures, indicators of compromise)
Toolset, Document for students

December 2014

Page 1

Main Objective

In this exercise the students will learn how to leverage information

gathered during analysis into actionable signatures. Both network and

system oriented signatures will be discussed.

Targeted Audience

CERT Technical specialists. The exercise will use information gathered

during previous exercises 'Artifact analysis fundamentals’ and

‘Advanced artifact analysis’, these are likewise recommended as

prerequisites.

Total Duration Approx. 8.0 hours

Time Schedule

Introduction to Snort rules, and Yara patterns. 3 hours

Task 1: Developing Snort rules 2.0 hours

Task 2: Developing Yara patterns 2.0 hours

Summary of the exercise 0.5 hour

Frequency Once per team

Developing countermeasures (signatures, indicators of compromise)
Toolset, Document for students

December 2014

Page 2

1 Objective and Description

The exercise begins with an introduction to Yara and Snort signature creation. Additionally, the
exercise covers signature syntax, descriptions of methods, how to make best use of different
options, and the main differences between the two tools.

Further, students will create Yara and Snort signatures, based on a set of results of malware analysis
conducted in previous exercises. After the creation of signatures, verification is performed. Yara
signatures are checked by analysing the files, and performing a verification to see if the samples
belong to the same family of malware samples identified (no false positive hits). Snort signatures will
be verified based on the set of network traffic capture (PCAP) files prepared earlier. Similar to the
Yara, students should look into capture files and identify suspicious traffic, and avoid false positive
hits.

Students will learn how to leverage on information gathered during analysis into actionable
signatures. Both network and system oriented signatures will be discussed.

The training is intended for CERT technical specialists. This exercise will use information gathered
during analysis conducted in the previous exercises.

2 General description

The goal of this exercise is to enable students to use information gathered during malware analysis
for the purpose of identifying compromised systems using automated tools. To accomplish this, two
approaches have been chosen to describe identification patterns of malware behaviour. Both are
open source, they are implemented in various tools, and they are used in the wild. One of the tools
(Yara) focuses on system evidence. The other (Snort4) focuses on patterns found in network traffic.

The information used in the signatures is derived from analysis in previous exercises.

This exercise starts with an introduction to the two formats, and will provide some background
information like tools which use the formats to identify compromised systems or alternative
approaches to achieve the same goal.

After the introduction, each format will be handled in a separate task. The trainer will provide one
example to convert analysis information into an actionable pattern in each task. Afterward, the
students will use the information gathered from the previous exercises to write signatures and test
them in a hands-on setting.

3 Exercise Course

3.1 Introduction

 Developing malware signatures from information gathered during the analysis step is an important
part of the incident response process as it defines the line between detection and
reaction/correction. Being able to transform identified characteristics of malware behaviour (both
system and network related) into signatures and patterns, which can be used by off the shelf
software to identify compromised systems, supports an organisation’s recovery from an incident.

4 Open source network intrusion prevention and detection system http://snort.org/

http://snort.org/

Developing countermeasures (signatures, indicators of compromise)
Toolset, Document for students

December 2014

Page 3

4 Developing Snort signatures

4.1 Introduction

There will be three mandatory parts for this exercise and some optional add-ons. The first example
will be guided by the trainer to demonstrate the process and to provide the students with a hands-
on example. There are two different tasks for the students, one provided with information gathered
during the analysis in the previous exercise and one based on information gathered by network
based analysis tools (MITMProxy, Tcpdump, and Wireshark).5

The necessary information for all three tasks is placed in the corresponding subdirectory of the
training material. This is to provide the trainer with the possibility of starting the exercise with a
clean sheet for all students or to be able to use the tasks without prerequisite exercises.

In all tasks Snort is used to test the signatures.

4.2 Snort syntax

The Snort website provides a thorough documentation of the rules syntax.6 Here we will focus on
the basic structures and explain the main parts of the approach in the trainers example walk-
through.

Parts of a rule: Rule headers, Rule options

Parts of the rule headers: Action(s), Protocol(s), IP Address(es), Port(s), Direction(s)

Parts of the rule options: General, Payload, Non-Payload, Post-Detection

4.2.1 Keywords

There are keywords which are often used to define and narrow down the length of rules. The most
important are documented below and more can be found in the official Snort documentation:7

Flow
Defines the direction and state of the traffic on which the rule will be activated.

Content
Contains a pattern that is searched for in the packet payload. It can be manipulated by further
keywords following in the rule options.

Nocase
Deactivates case matching for the previous 'content' keyword in the rule.

Offset
Marks the position in the packet to start searching for the pattern defined in the previous 'content'
keyword.

Depth
Defines how far an IDS should search for a pattern in a packet as defined in the previous 'content'
declaration.

5 Tools are covered in exercises 1 and 2 of this set.
6 Writing Snort Rules http://manual.snort.org/node27.html
7 Payload Detection http://manual.snort.org/node32.html

http://manual.snort.org/node27.html
http://manual.snort.org/node32.html

Developing countermeasures (signatures, indicators of compromise)
Toolset, Document for students

December 2014

Page 4

Pcre
This keyword can be used to write patterns in regular expressions.

Classtype
Classtype contains a single or combined word to classify the type of event which has triggered the
rule.

Sid
Each rule is identified by a unique Snort rule identifier (sid). Sid’s above 1.000.000 can be used for
local rules.

Msg
This option contains a description of the event which will be logged and gives an analyst an
impression regarding the nature of an incident.

Reference
Rule writers can include links and pointers to vulnerability databases (CVE, OSVDB, general URL).

4.2.2 Perl Compatible Regular Expressions (PCRE) excursion
The Perl Compatible Regular Expressions library provides a set of functions as an API to enable
applications to use the Perl syntax to define regular expressions. The usage of this library allows the
snort operator to define very flexible matching rules. For example, the following rule tries to match
Kelihos download activity and uses PCRE to match the binary names of a certain set of malware
samples:

Example:
alert http $HOME_NET any -> $EXTERNAL_NET any (msg:"ET TROJAN

Possible Kelihos.F EXE Download Common Structure 2";

flow:to_server,established; content:"/mod"; depth:4; nocase;

http_uri; content:".exe"; nocase; http_uri; fast_pattern:only;

pcre:"/^\/mod[12]\/[^\/]+?\.exe$/Ui"; content:!"User-Agent|3a|";

http_header; nocase; content:"Host|3a|"; depth:5; http_header;

reference:md5,9db28205c8dd40efcf7f61e155a96de5; classtype:trojan-

activity; sid:2018395; rev:3;)

The following is an explanation of the PCRE syntax of this example:

pcre:"/^\/mod[12]\/[^\/]+?\.exe$/Ui"

The expression itself is contained between / markings, followed by post-expression modifiers U and
i. The latter tells Snort to match the expression without regard to case and the former to match the
decoded URI.

The ^ marks the beginning of the URI string. The backslash “escapes” the following slash, meaning
to use a literal / followed by the string mod and the digit 1 or 2. Afterwards we have another escape
slash. The expression in the squared bracket modified by +? means all further slashes and the
content in between will be matched exactly.
The term \.exe$ signifies the string “.exe” being the end of the line.

Developing countermeasures (signatures, indicators of compromise)
Toolset, Document for students

December 2014

Page 5

5 Students task 1

The students will analyse a Ramnit8 sample. Following the information will be presented to the
trainer.

Cuckoo Sandbox report can be used along with PCAP file (/home/enisa/enisa/ex5/malware/ramnit/).

Trainees should sort the collected data and comment where feasible.
Hostname IP Comment

awrcaverybrstuktdybstr.com 66.228.49.83 HTTPS connection

google.com 74.125.227.200 74.125.227.197 74.125.227.193
74.125.227.199 74.125.227.206 74.125.227.192
74.125.227.201 74.125.227.194 74.125.227.198
74.125.227.195 74.125.227.196

Benign, possibly used to check
connectivity

awecerybtuitbyatr.com 66.228.49.83 HTTPS connection

There is only sparse network related information available. We have two odd host names, which are
directly related to the malware function, but the traffic itself is SSL encrypted. If data gathered by
MITMProxy is available, this would enhance the analysis but not necessarily improve the rule’s
quality. So students are left with using the following option:

DNS requests to one or both of awrcaverybrstuktdybstr.com and awecerybtuitbyatr.com domains.

Rule header: alert udp $HOME_NET any -> $EXTERNAL_NET 53

The payload matching the hexadecimal presentation has been chosen as it is better in resource
efficiency (no translation from ASCII by Snort) and more accurate as there would be no encoding
errors:

(msg:”ENISA EXERCISE outgoing ramnit DNS request”; classtype:trojan-

activity; content:”|11 61 77 65 63 65 72 79 62 74 75 69 74 62 79 61

74 72 03 63 6f 6d 00 00 01 00 01|”; sid:10000010;)

Change to the directory: /home/enisa/enisa/ex5 to test the rule.

Invoke rule2alert like this:

python addons/rule2alert-read-only/r2a.py -v -c

snort/snort.test.conf -m 192.168.0.0/16 -e 192.0.2.53/32 -f

snort/enisa-snort-rule-2.rules -w snort/enisa-exercise-test2.pcap

Check the file with Wireshark.

8Ramnit Goes Social http://www.seculert.com/blog/2012/01/ramnit-goes-social.html

http://www.seculert.com/blog/2012/01/ramnit-goes-social.html

Developing countermeasures (signatures, indicators of compromise)
Toolset, Document for students

December 2014

Page 6

Note the warning regarding a malformed DNS packet, after that invoke Snort and let it read the
PCAP you created:

snort -d -c snort/snort.test.conf -q -A console -k none -r

snort/enisa-exercise-test-2.pcap

You should see the following output:

08/20-11:42:19.673960 [**] [1:10000010:0] ENISA EXERCISE outgoing

ramnit DNS query [**] [Classification: A Network Trojan was

Detected] [Priority: 1] {UDP} 192.168.0.1:21837 -> 192.0.2.1:53

The created rule matches the traffic; nevertheless, further refinement for efficiency and protocol
comprehension is recommended.

Content: ”|01 00 00 01 00 00 00 00 00 00|”; offset:2;

The hex content signifies a recursive DNS query. Offset tells Snort to start matching the payload 2
bytes after the start of the packet payload.

Distance:0; content:"|00 01 00 01|"; distance:0;

Distance:0 lets Snort match the pattern only if directly after the previous match the following hex
code 00 01 00 01 matches.

The complete rule is presented as follows.

alert udp $HOME_NET any -> $EXTERNAL_NET 53 (msg:"ENISA EXERCISE

outgoing ramnit DNS query"; classtype:trojan-activity; content:"|01

00 00 01 00 00 00 00 00 00|"; offset:2; content:"|11 61 77 65 63 65

72 79 62 74 75 69 74 62 79 61 74 72 03 63 6f 6d 00|"; distance:0;

content:"|00 01 00 01|"; distance:0; sid:10000011;)

6 Students task 2

In this task, the Cuckoo report will not contain a clear indication of network activity. The following
solution is based on information collected by running the UNIX tool 'strings' on the malware binary.

Figure 1: Student task 1 Wireshark screenshot

Developing countermeasures (signatures, indicators of compromise)
Toolset, Document for students

December 2014

Page 7

There is only actionable information in the 'strings' output.

cd /home/enisa/enisa/ex5/malware/poisonivy/ && strings -a malware-

poisonivy.exe

The '-a' switch forces a scan of the whole file instead of initialized sections. This is of course only
necessary when, e.g. scanning an ELF binary on Linux, but is mentioned here for completeness.

During the analysis of the strings output an interesting host name can be detected.

In this case, this is the only actionable item to be found is domain name, so this is used in order to
create a rule.

Hostname IP Comment

thecrusher.no-ip.biz n/a, dynamic no-ip provides dynamic DNS services under the domain no-ip.biz

alert udp $HOME_NET any -> $EXTERNAL_NET 53

For this step, it is recommended to convert the string 'thecrusher.no-ip.biz' into hexadecimal9 as it
increases resource efficiency (no translation from ASCII by Snort) and is more accurate as it avoids
encoding errors:

thecrusher.no-ip.biz - 74 68 65 63 72 75 73 68 65 72 2e 6e 6f 2d

69 70 2e 62 69 7a

Example: (msg:”ENISA EXERCISE outgoing Poison Ivy DNS request”;
classtype:trojan-activity; content:”|74 68 65 63 72 75 73 68 65

72 2e 6e 6f 2d 69 70 2e 62 69 7a|”; sid:10000020;)

Navigate to the directory: /home/enisa/enisa/ex5 and invoke rule2alert like this.

9Hex To ASCII Converter http://dolcevie.com/js/converter.html

Figure 2: Student task 2 strings command

Figure 3: Students task 2 strings output

http://dolcevie.com/js/converter.html

Developing countermeasures (signatures, indicators of compromise)
Toolset, Document for students

December 2014

Page 8

python addons/rule2alert-read-only/r2a.py -v -c

snort/snort.test.conf -m 192.168.0.0/16 -e 192.0.2.53/32 -f

snort/enisa-snort-rule-3.rules -w snort/enisa-exercise-test3.pcap

Review the file with Wireshark application and note the warning regarding malformed DNS packet.

Invoke Snort and let it read your created PCAP: snort -d -c snort/snort.test.conf -q
-A console -k none -r snort/enisa-exercise-test-3.pcap

You should see the following output: 08/22-10:51:37.672281 [**] [1:10000020:0]
ENISA EXERCISE outgoing Poison Ivy DNS query [**] [Classification: A

Network Trojan was Detected] [Priority: 1] {UDP} 192.168.0.1:57192 -

> 192.0.2.1:53

The created rule matches the traffic, nevertheless a refinement in terms of efficiency and protocol
comprehension is recommended.

Example: alert udp $HOME_NET any -> $EXTERNAL_NET 53 (msg:"ENISA

EXERCISE outgoing Poison Ivy DNS query"; classtype:trojan-activity;

content:"|01 00 00 01 00 00 00 00 00 00|"; offset:2; content:"|74 68

65 63 72 75 73 68 65 72 2e 6e 6f 2d 69 70 2e 62 69 7a|"; distance:0;

content:"|00 01 00 01|"; distance:0; sid:10000021;)

7 Developing Yara patterns

In this task description we use excerpts from the official Yara documentation
(http://yara.readthedocs.org/en/latest/index.html).

7.1 Yara

Yara is a tool aimed at but not limited to helping malware researchers to identify and classify
malware samples. With Yara descriptions of malware families can be created based on textual or
binary patterns. Each description or rule consists of a set of strings and a boolean expression which
determines its logic.

Figure 4: Student task 2 Wireshark screenshot

http://yara.readthedocs.org/en/latest/index.html

Developing countermeasures (signatures, indicators of compromise)
Toolset, Document for students

December 2014

Page 9

Yara was installed during the ‘Building artifact handling and analysis environment’ exercise as one of
the Cuckoo sandbox dependencies. For this exercise, create the directory yara in /home/enisa/.

$ mkdir /home/enisa/yara

$ cd /home/enisa/yara

7.2 Developing Yara patterns10

Yara rules are easy to write and understand, and they have a syntax that resembles the C language.

Example Yara rule:

rule ExampleRule

{

 strings:

 $my_text_string = "text here" /* Text strings are enclosed on double quotes just like in the C
language */

 $my_hex_string = { E2 34 A1 C8 23 FB } /* Hex strings are enclosed by curly brackets, and they
are composed by a sequence of hexadecimal numbers that can appear contiguously or separated
by spaces */

 $my_regexp = /md5: [0-9a-zA-Z]{32}/ /* Regular expressions are defined in the same way as
text strings, but enclosed in backslashes instead of double-quotes, like in the Perl programming
language */

 condition:

 $my_text_string or $my_hex_string or $my_regexp

}

Each rule in Yara starts with the keyword rule followed by a rule identifier – in the above example
the identifier is “ExampleRule”.

Rules are generally composed of two sections: strings definition and condition. The strings definition
section can be omitted if the rule doesn’t rely on any string, but the condition section is required.
Decimal numbers are not allowed in hex strings. You can add comments to your YARA rules just as if
it was a C source file, both single-line and multi-line C-style comments are supported. Conditions are
nothing more than Boolean expressions as found in all programming languages.

Yara keywords: all, and, any, ascii, at, condition, contains, entrypoint, false, filesize, fullword, for,

global, in, import, include, int8, int16, int32, matches, meta. nocase, not, or, of, private, rule, strings,

them, true, uint8, uint16, uint32, wide.

10We use the introduction to developing Yara patterns from Victor M. Alvarez in the first paragraphs, the
original text can be found in the official Yara documentation at:
https://github.com/plusvic/yara/blob/master/docs/writingrules.rst

https://github.com/plusvic/yara/blob/master/docs/writingrules.rst

Developing countermeasures (signatures, indicators of compromise)
Toolset, Document for students

December 2014

Page 10

In this exercise we will use malware sample “aop.exe” from previous exercise. Create a directory

called malware and copy the file “aop.exe” to /home/enisa/yara/malware directory:

$ cd /home/enisa/yara

$ mkdir malware

$ cp /home/enisa/enisa/ex5/malware/aop.exe malware/

At the beginning we will need to extract strings from this sample. To obtain the list of all strings
under the Linux “strings” tool can be used.

$ strings malware/aop.exe | more

Figure 5: Strings found in aop.exe file

We will build the first simple rule, create a file called ‘enisa.yara’ using any text editor of your choice
(we use nano in this example):

$ cd /home/enisa/yara

$ nano enisa.yara

rule ENISA

{

 strings:

 $foo1 = "fG&G"

 $foo2 = "KvYkC"

 $foo3 = "3|+.-"

 $foo4 = "P5'tr"

Developing countermeasures (signatures, indicators of compromise)
Toolset, Document for students

December 2014

Page 11

 $foo5 = "7PQW"

 condition:

 $foo1 and $foo2 and $foo3 and $foo4 and $foo5

}

Figure 6: Editing /home/enisa/yara/enisa.yara file

(The file with that rule can be found in /home/enisa/enisa/ex5/rules/1.yara.)

Our rule will have the name “ENISA” and will be matched only when all the strings will occur in the
file according to the conditions specified.

Our rule is done. Now we need to check for hits by typing the following commands in the console:

$ cd /home/enisa/yara/

$ yara enisa.yara malware/aop.exe

ENISA aop.exe

Developing countermeasures (signatures, indicators of compromise)
Toolset, Document for students

December 2014

Page 12

Figure 7: Patterns producing a hit in aop.exe examination

 (The file with that rule can be found in /home/enisa/enisa/ex5/rules/2.yara.)

Output:

ENISA aop.exe

This output means that there is a hit in rule “ENISA” and file “aop.exe”. No output means that there
is no hit.

We can also write the condition part in easier way such as all of ($foo*):

rule ENISA

{

 strings:

 $foo1 = "fG&G"

 $foo2 = "KvYkC"

 $foo3 = "3|+.-"

 $foo4 = "P5'tr"

 $foo5 = "7PQW"

 condition:

 all of ($foo*)

}

(The file with that rule can be found in /home/enisa/enisa/ex5/rules/2.yara.)

This is equivalent to the previous rule. The difference is the ‘condition’ part where we replaced a
logical conjunction of five named strings to be matched with a short construction requiring a match
of all the strings defined in the section that begin with ‘foo’.

Developing countermeasures (signatures, indicators of compromise)
Toolset, Document for students

December 2014

Page 13

Beside the string definition and condition sections, rules can also have a metadata section where
you can put additional information about your rule. The metadata section is defined with the
keyword meta and contains identifier/value pairs:

rule ENISA

{

 meta:

 author = "ENISA"

 description = "malware"

 strings:

 $foo1 = "fG&G"

 $foo2 = "KvYkC"

 $foo3 = "3|+.-"

 $foo4 = "P5'tr"

 $foo5 = "7PQW"

 condition:

 all of ($foo*)

}

(The file with that rule can be found in /home/enisa/enisa/ex5/rules/3.yara)

Note that the identifier/value pairs defined in the metadata section cannot be used in the condition
section. Their only purpose is to store additional information about the rule.

Our example malware is packed with UPX, we can do one single rule for both – packed and
unpacked malware.

To make a copy and unpack malware type the following command in the console:

$ cd /home/enisa/yara/malware

$ cp aop.exe aop2.exe

$ sudo apt-get install upx

$ upx -d aop2.exe

Developing countermeasures (signatures, indicators of compromise)
Toolset, Document for students

December 2014

Page 14

Figure 8: Decompression of aop2.exe file

‘upx –d’ means decompress in the example above. Now we have packed the file “aop.exe” with UPX
and unpacked “aop2.exe”.

To find common strings in both files, type the command:

$ comm -1 -2 <(strings aop.exe | sort) <(strings aop2.exe | sort)

Figure 9: The strings common to both files

Command comm -1 -2 shows what lines are in common in both strings while <(strings aop.exe |
sort) returns a list of strings from “aop.exe”, then sorts it. Output sends as a string to compare.

Now we have list of strings that are in both binaries. As mentioned above, we can now build a single
rule that matches both files.

$ cd /home/enisa/yara

Developing countermeasures (signatures, indicators of compromise)
Toolset, Document for students

December 2014

Page 15

$ nano enisa.yara

Replace content enisa.yara file with the following content:

rule ENISA

{

 strings:

 $ = "~0;~,}"

 $ = "5866"

 $ = "7PQW"

 $ = "<At;<Bt7"

 $ = "M263"

 $ = "m3W gP"

 $ = "n ux"

 $ = "U&OR"

 $ = "?_Xran@std@@YAXXZ"

 condition:

 all of them

}

(The file with that rule can be found in /home/enisa/enisa/ex5/rules/4.yara)

As we are not referencing any string individually, we do not need to provide a unique identifier for
each of them. In those situations, you can declare anonymous strings with identifiers consisting only
in the $ character.

Now we can test the rule by typing the following command in the console:

$ yara -r enisa.yara malware

Note the ‘-r’ option conducts recursive search of the directories.

Figure 10: Testing the rule shows two hits

Unpacked malware has more unique character strings. For example, we can find strings like
prsionaljrq, prsionyta and providesmid.

Such unique names like "prsionaljrq, prsionyta and providesmid" usually distinctly identify a
particular malware family. We can write rules which may detect new versions of this malware.

Developing countermeasures (signatures, indicators of compromise)
Toolset, Document for students

December 2014

Page 16

rule ENISA

{

 strings:

 $ = /prsionaljrq/i

 $ = /prsionyta/i

 $ = /providesmid/i

 condition:

 any of them

}

(The file with that rule can be found in /home/enisa/enisa/ex5/rules/5.yara)

We use simple regular expressions for case insensitive (“i” char after end of regexp – after “/”)
strings.

But this rule can generate false positives which will match, for example, an HTML file with saved
news about this malware. To prevent this we add hex values:

rule ENISA

{

 strings:

 $mz = { 4d 5a } /* DOS header */

 $dos = { 54 68 69 73 20 70 72 6f 67 72 61 6d 20 63 61 6e 6e

6f 74 20 62 65 20 72 75 6e 20 69 6e 20 44 4f 53 20 6d 6f 64 65 } /*

DOS stub */

 $s = /prsionaljrq/i

 $s = /prsionyta/i

 $s = /providesmid/i

 condition:

 $mz and $dos and any of ($s*)

}

(The file with that rule can be found in /home/enisa/enisa/ex5/rules/6.yara)

The above values were obtained by the command:

$ cd /home/enisa/yara/malware

$ hexdump -C aop2.exe | more

Developing countermeasures (signatures, indicators of compromise)
Toolset, Document for students

December 2014

Page 17

Illustration 1: Hexadecimal dump of the executable file

00000000 4d 5a 90 00 03 00 00 00 04 00 00 00 ff ff 00 00

|MZ..............|

00000010 b8 00 00 00 00 00 00 00 40 00 00 00 00 00 00 00

|........@.......|

00000020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

|................|

00000030 00 00 00 00 00 00 00 00 00 00 00 00 08 01 00 00

|................|

00000040 0e 1f ba 0e 00 b4 09 cd 21 b8 01 4c cd 21 54 68

|........!..L.!Th|

00000050 69 73 20 70 72 6f 67 72 61 6d 20 63 61 6e 6e 6f |is

program canno|

00000060 74 20 62 65 20 72 75 6e 20 69 6e 20 44 4f 53 20 |t be

run in DOS |

00000070 6d 6f 64 65 2e 0d 0d 0a 24 00 00 00 00 00 00 00

|mode....$.......|

These values are characteristic for Windows binary files.

You can also create a less accurate rule using an automatic tool like YaraGenerator from
https://github.com/Xen0ph0n/YaraGenerator. In this exercise, the yaraGenerator.py file is in the
/home/enisa/enisa/ex5/ directory.

YaraGenerator depends on the python-pefile module. This module should be already installed as a
result of the previous exercise. Otherwise you need to install it.

https://github.com/Xen0ph0n/YaraGenerator

Developing countermeasures (signatures, indicators of compromise)
Toolset, Document for students

December 2014

Page 18

Copy the yaraGenerator.py script to /home/enisa/yara and create a directory called modules with
two files: exe_blacklist.txt and exe_regexplacklist.txt.

$ cd /home/enisa/yara

$ cp /home/enisa/enisa/ex5/yaraGenerator.py /home/enisa/yara

$ mkdir modules/ && touch modules/exe_blacklist.txt ; touch

modules/exe_regexblacklist.txt

To generate the rule, type the following command:

$ python yaraGenerator.py -v -a ENISA -r ENISA -d malware -f exe

malware/

Illustration 2: Rule generated by the yaraGenerator

The settings used above are:

usage: yaraGenerator.py [-h] -r RULENAME [-a AUTHOR] [-d

DESCRIPTION]

 [-t TAGS] [-v] -f InputDirectory

Developing countermeasures (signatures, indicators of compromise)
Toolset, Document for students

December 2014

Page 19

YaraGenerator

positional arguments:

 InputDirectory Path To Files To Create Yara Rule From

optional arguments:

 -h, --help show this help message and exit

 -r RULENAME, --RuleName RULENAME

 Enter A Rule/Alert Name (No Spaces + Must

Start with

 Letter)

 -a AUTHOR, --Author AUTHOR

 Enter Author Name

 -d DESCRIPTION, --Description DESCRIPTION

 Provide a useful description of the Yara

Rule

 -t TAGS, --Tags TAGS Apply Tags to Yara Rule For Easy Reference

 (AlphaNumeric)

 -v, --Verbose Print Finished Rule To Standard Out

 -f , --FileType Select Sample Set FileType choices are:

unknown, exe,

 pdf, email, office, js-html

8 Summary

This exercise focused on the technical aspects of converting actionable information found during the
analysis of malware samples into rules and patterns, that can be deployed to intrusion detection
systems (both network- and host-based).

The students learned how to dissect usable information for different pattern matching methods, and
how to write simple signatures/rules. During the conclusion of the exercise, the trainer should focus
on the process of collecting and sorting information, and identifying actionable information.

9 References
1. The pattern matching Swiss knife for malware researchers https://plusvic.github.io/yara/

(accessed 16. October 2014)

2. SNORT – Open source network intrusion prevention and detection system http://snort.org/

(accessed 16. October 2014)

3. SURICATA http://suricata-ids.org/ (accessed 16. October 2014)

https://plusvic.github.io/yara/
http://snort.org/
http://suricata-ids.org/

Developing countermeasures (signatures, indicators of compromise)
Toolset, Document for students

December 2014

Page 20

4. The Bro Network Security Monitor https://www.bro.org/ (accessed 16. October 2014)

5. Bro Research Projects https://www.bro.org/research/index.html (accessed 16. October

2014)

6. A Practical Application of SIM/SEM/SIEM Automating Threat Identification

https://www.sans.org/reading-room/whitepapers/logging/practical-application-sim-sem-

siem-automating-threat-identification-1781 (accessed 16. October 2014)

7. Remotely Triggered Black Hole Filtering— Destination Based and Source Based

http://web.archive.org/web/20060113035842/http://www.cisco.com/warp/public/732/Tec

h/security/docs/blackhole.pdf (accessed 16. October 2014)

8. ENISA Report on Digital Honeypots: Cyber security according to Winnie the Pooh: new

report by EU Agency ENISA on ‘digital trap’ honeypots to detect cyber-attacks creates a buzz

http://www.enisa.europa.eu/media/press-releases/new-report-by-eu-agency-enisa-on-

digital-trap-honeypots-to-detect-cyber-attacks (accessed 16. October 2014)

9. Malicious DNS World Activity http://exposure.iseclab.org/ (accessed 16. October 2014)

10. Writing Snort Rules http://manual.snort.org/node27.html (accessed 16. October 2014)

11. Payload Detection http://manual.snort.org/node32.html (accessed 16. October 2014)

12. Scapy http://www.secdev.org/projects/scapy/ (accessed 16. October 2014)

13. Ramnit Goes Social http://www.seculert.com/blog/2012/01/ramnit-goes-social.html

(accessed 16. October 2014)

14. Hex To ASCII Converter http://dolcevie.com/js/converter.html (accessed 16. October 2014)

15. Writing YARA rules https://github.com/plusvic/yara/blob/master/docs/writingrules.rst

(accessed 16. October 2014)

16. YARA homepage http://plusvic.github.io/yara/ (accessed 16. October 2014)

17. YARA manual https://googledrive.com/host/0BznOMqZ9f3VUek8yN3VvSGdhRFU/YARA-

Manual.pdf (accessed 16. October 2014)

18. OpenIOC home page http://www.openioc.net/ (accessed 16. October 2014)

19. OpenAppID Install Video (How to install snort with OpenAppID on a clean Ubuntu system)

http://blog.snort.org/2014/03/openappid-install-video.html (accessed 16. October 2014)

20. SNORT Manual: Writing Snort Rules http://manual.snort.org/node27.html

21. PCRE – Perl Compatible Regular Expressions http://www.pcre.org/ (accessed 16. October

2014)

22. Writing Snort Rules Correctly http://blog.joelesler.net/2010/02/writing-snort-rules-

correctly.html (accessed 16. October 2014)

23. Offset, Depth, Distance, and Within http://blog.joelesler.net/2010/03/offset-depth-

distance-and-within.html (accessed 16. October 2014)

24. Analysing a Hack from A to Z http://www.windowsecurity.com/articles-

tutorials/misc_network_security/Analyzing-Hack-Part1.html (accessed 16. October 2014)

25. An Easy Way to Test Your Snort Rules http://www.lteo.net/blog/2012/10/26/an-easy-way-

to-test-your-snort-rules/ (accessed 16. October 2014)

26. rule2alert https://code.google.com/p/rule2alert/ (accessed 16. October 2014)

https://www.bro.org/
https://www.bro.org/research/index.html
https://www.sans.org/reading-room/whitepapers/logging/practical-application-sim-sem-siem-automating-threat-identification-1781
https://www.sans.org/reading-room/whitepapers/logging/practical-application-sim-sem-siem-automating-threat-identification-1781
http://web.archive.org/web/20060113035842/http:/www.cisco.com/warp/public/732/Tech/security/docs/blackhole.pdf
http://web.archive.org/web/20060113035842/http:/www.cisco.com/warp/public/732/Tech/security/docs/blackhole.pdf
http://www.enisa.europa.eu/media/press-releases/new-report-by-eu-agency-enisa-on-digital-trap-honeypots-to-detect-cyber-attacks
http://www.enisa.europa.eu/media/press-releases/new-report-by-eu-agency-enisa-on-digital-trap-honeypots-to-detect-cyber-attacks
http://exposure.iseclab.org/
http://manual.snort.org/node27.html
http://manual.snort.org/node32.html
http://www.secdev.org/projects/scapy/
http://www.seculert.com/blog/2012/01/ramnit-goes-social.html
http://dolcevie.com/js/converter.html
https://github.com/plusvic/yara/blob/master/docs/writingrules.rst
http://plusvic.github.io/yara/
https://googledrive.com/host/0BznOMqZ9f3VUek8yN3VvSGdhRFU/YARA-Manual.pdf
https://googledrive.com/host/0BznOMqZ9f3VUek8yN3VvSGdhRFU/YARA-Manual.pdf
https://googledrive.com/host/0BznOMqZ9f3VUek8yN3VvSGdhRFU/YARA-Manual.pdf
http://www.openioc.net/
http://blog.snort.org/2014/03/openappid-install-video.html
http://manual.snort.org/node27.html
http://www.pcre.org/
http://blog.joelesler.net/2010/02/writing-snort-rules-correctly.html
http://blog.joelesler.net/2010/02/writing-snort-rules-correctly.html
http://blog.joelesler.net/2010/03/offset-depth-distance-and-within.html
http://blog.joelesler.net/2010/03/offset-depth-distance-and-within.html
http://www.windowsecurity.com/articles-tutorials/misc_network_security/Analyzing-Hack-Part1.html
http://www.windowsecurity.com/articles-tutorials/misc_network_security/Analyzing-Hack-Part1.html
http://www.lteo.net/blog/2012/10/26/an-easy-way-to-test-your-snort-rules/
http://www.lteo.net/blog/2012/10/26/an-easy-way-to-test-your-snort-rules/
https://code.google.com/p/rule2alert/

Developing countermeasures (signatures, indicators of compromise)
Toolset, Document for students

December 2014

Page 21

PO Box 1309, 710 01 Heraklion, Greece
Tel: +30 28 14 40 9710
info@enisa.europa.eu
www.enisa.europa.eu

ENISA
European Union Agency for Network and Information Security
Science and Technology Park of Crete (ITE)
Vassilika Vouton, 700 13, Heraklion, Greece

Athens Office
1 Vass. Sofias & Meg. Alexandrou
Marousi 151 24, Athens, Greece

