
 

 

European Union Agency for Network and Information Security    

 

www.enisa.europa.eu 

 

 

 

 

 

 

 

Processing and storing artifacts 

Artifact analysis training material 
November 2014



Processing and storing artifacts 
Artifact analysis training material 
 
November 2014  

 

Page  ii 

About ENISA 

The European Union Agency for Network and Information Security (ENISA) is a centre of network and 
information security expertise for the EU, its member states, the private sector and Europe’s citizens. 
ENISA works with these groups to develop advice and recommendations on good practice in 
information security. It assists EU member states in implementing relevant EU legislation and works 
to improve the resilience of Europe’s critical information infrastructure and networks. ENISA seeks to 
enhance existing expertise in EU member states by supporting the development of cross-border 
communities committed to improving network and information security throughout the EU. More 
information about ENISA and its work can be found at www.enisa.europa.eu. 

Authors  

This document was created by Lauri Palkmets, Cosmin Ciobanu, Yonas Leguesse, and Christos 
Sidiropoulos in consultation with DFN-CERT Services1 (Germany), ComCERT2 (Poland), and S-CURE3 
(The Netherlands). 

Contact 

For contacting the authors please use cert-relations@enisa.europa.eu  

For media enquires about this paper, please use press@enisa.europa.eu 

Acknowledgements 

ENISA wants to thank all institutions and persons who contributed to this document. A special ‘Thank 
You’ goes to Todor Dragostinov from ESMIS, Bulgaria. 

 

 

 

 

 

 

                                                           
1 Klaus Möller, and Mirko Wollenberg 
2 Mirosław Maj, Tomasz Chlebowski, Krystian Kochanowski, Dawid Osojca, Paweł Weżgowiec, and Adam Ziaja 
3 Michael Potter, Alan Robinson, and Don Stikvoort 

http://www.enisa.europa.eu/
mailto:cert-relations@enisa.europa.eu
mailto:press@enisa.europa.eu


Processing and storing artifacts 
Artifact analysis training material 
 
November 2014  

 

Page  iii 

 
  

Legal notice 

Notice must be taken that this publication represents the views and interpretations of the authors and 
editors, unless stated otherwise. This publication should not be construed to be a legal action of ENISA or the 
ENISA bodies unless adopted pursuant to the Regulation (EU) No 526/2013. This publication does not 
necessarily represent state-of the-art and ENISA may update it from time to time.  

Third-party sources are quoted as appropriate. ENISA is not responsible for the content of the external 
sources including external websites referenced in this publication.  

This publication is intended for information purposes only. It must be accessible free of charge. Neither ENISA 
nor any person acting on its behalf is responsible for the use that might be made of the information contained 
in this publication.  

Copyright Notice 

© European Union Agency for Network and Information Security (ENISA), 2014 

Reproduction is authorised provided the source is acknowledged.  



Processing and storing artifacts 
Artifact analysis training material 
 
November 2014  

 

Page  iv 

Table of Contents 

1 General description 2 

2 Task 1 – Spamtrap configuration and usage 3 

2.1 Installing Shiva dependencies 3 

2.2 Installing Shiva honeypot 8 

2.3 Shiva configuration 9 

2.4 Running Shiva honeypot 10 

2.5 Testing Shiva honeypot 11 

3 Task 2 – Building storage for the artifacts 14 

3.1 Installing Viper 14 

3.2 Running and using Viper 15 

3.3 Writing a Viper module 18 

3.4 Patching Viper API and building upload script 20 

3.5 Patching the Shiva honeypot 23 

4 Task 3 – Spam content analysis methods 24 

4.1 Sending spam messages 24 

4.2 Checking spam messages in the database 26 

4.3 Checking raw spam 28 

4.4 Checking spam in Viper 30 

5 Exercise summary 30 

6 Bibliography 31 

 



Processing and storing artifacts 
Artifact analysis training material 
 
November 2014  

 

Page  1 

Main Objective 

Present the trainees various methods of potentially malicious artifacts 

acquisition methods with emphasis on artifacts collected through spam 

monitoring. Teach how to set up spam collecting environment and 

artifacts repository. The exercise also provides knowledge how to 

modify and patch created system to better suit environment needs. 

Targeted Audience 

The exercise is dedicated to CERT staff involved in new threats detection 

and analysis. The exercise should be also helpful to CERT staff involved 

in malicious artifacts analysis as it presents how to create and use 

artifacts repository. 

Total Duration 4.5 hours 

Time Schedule 

Introduction to the exercise 0.5 hours 

Task 1: Spam trap configuration and usage 1.0 hours 

Task 2: General methods for building the storage for 

artifacts 
1.5 hours 

Task 3: Spam content analysis methods 1.0 hours 

Summary of the exercise 0.5 hours 

Frequency 
It’s advised to organise this training when new team members who are 

involved in threat detection or malicious artifact analysis join a CERT. 

  



Processing and storing artifacts 
Artifact analysis training material 
 
November 2014  

 

Page  2 

1 General description 

The aim of this exercise is to show participants different methods of collecting, sorting and storing 
artifacts. During the exercise trainees will obtain artifacts from spam emails, and then store them in 
the configured storage. 

In the first phase, participants will configure Shiva honeypot4, which will be used to collect unwanted 
electronic mail. Next, students will test the spam trap by starting the provided script. If everything is 
working, participants will create and test a simple artifacts repository based on the Viper5 project. 
Then students will learn how to modify Viper and Shiva code to extend their functionality. 

In the second phase, when Shiva and Viper are configured, students will start a script to generate spam 
messages. Then students will carry out analysis of the received e-mails. 

In this exercise students will learn: 

a) How to configure a spamtrap based on Shiva honeypot? 

b) How to create an artifacts repository using Viper? 

c) How to extend Shiva and Viper functionality? 

d) How to analyse spam messages collected by Shiva? 

 
Figure 1: Architecture of the system which will be built during this exercise. 

  

                                                           
4 https://github.com/shiva-spampot/shiva 
5 http://viper.li/ 

https://github.com/shiva-spampot/shiva
http://viper.li/


Processing and storing artifacts 
Artifact analysis training material 
 
November 2014  

 

Page  3 

2 Task 1 – Spamtrap configuration and usage 

In this step the participants install and configure Shiva honeypot6, which is a high interaction SMTP 
honeypot specifically designed for spam collection and analysis. Shiva consists of two primary 
modules: shivaReceiver and shivaAnalyzer. The first one acts as a typical SMTP server allowing to 
receive and store e-mails containing spam. The second module performs preliminary spam analysis to 
detect similar messages (based on fuzzy hashing7) as well as extracting any attachments or uniform 
resource locators (URLs) contained in the spam messages. 

2.1 Installing Shiva dependencies 

Shiva honeypot is a Python project using Lamson Python Mail Server as a backend. Shiva also depends 
on an Exim4 mail server to relay e-mails (not used in the exercise) and a MySQL database to store the 
results. 

First stop InetSim service: 

Stopping INetSim 

$ sudo service inetsim stop 

Next install basic Shiva dependencies required by its installation script: 

Installing Shiva dependencies 

$ sudo apt-get install g++ make automake autoconf python-dev python-

virtualenv exim4-daemon-light libmysqlclient-dev libffi-dev 

Then install ssdeep 2.10 from packages specially built for this exercise – default ssdeep version in the 
Ubuntu repository is too old and doesn’t work with Shiva. 

ssdeep 2.10 installation 

$ cd /home/enisa/enisa/packages/extra 

$ sudo dpkg -i libfuzzy* ssdeep* 

Install MySQL database which is used by Shiva to store the analysed spam e-mails. When asked for a 
new password please provide password “enisa”. It will be needed later. 

MySQL database installation 

$ sudo apt-get install mysql-server 

                                                           
6 https://github.com/shiva-spampot/shiva 
7 http://jessekornblum.com/presentations/htcia06.pdf 

https://github.com/shiva-spampot/shiva
http://jessekornblum.com/presentations/htcia06.pdf


Processing and storing artifacts 
Artifact analysis training material 
 
November 2014  

 

Page  4 

 

Figure 2. Setting root password for MySQL database [enisa]. 

 

Figure 3. Confirming MySQL root password [enisa]. 

At the time of the writing of this document, Shiva honeypot doesn’t provide any GUI interface to view 
and analyse stored results. All results are stored in the database. To make viewing the results easier, 
install phpMyAdmin. When asked to automatically reconfigure the web server, choose apache2 (select 
with space). When asked for a new phpMyAdmin password, set the password to “enisa”. 

phpMyAdmin installation 

$ sudo apt-get install phpMyAdmin 



Processing and storing artifacts 
Artifact analysis training material 
 
November 2014  

 

Page  5 

 
Figure 4. phpMyAdmin configuration - choosing web server [apache2] 

 
Figure 5. phpMyAdmin configuration - automatic database configuration [Yes] 



Processing and storing artifacts 
Artifact analysis training material 
 
November 2014  

 

Page  6 

 
Figure 6. phpMyAdmin configuration – providing MySQL database root password [enisa] 

 
Figure 7. phpMyAdmin configuration – setting up phpMyAdmin root password [enisa] 



Processing and storing artifacts 
Artifact analysis training material 
 
November 2014  

 

Page  7 

 
Figure 8. phpMyAdmin configuration – confirming phpMyAdmin password 

Then configure Apache webserver to listen only on eth2 interface (192.168.56.10). In this way, no 
unauthorized person nor any malware running on the Winbox machine would be able to access the 
local phpMyAdmin instance. 

Changing apache2 listen address 

$ cd /etc/apache2 

$ sudo sed -i 's/^Listen .*/Listen 192.168.56.10:80/' ports.conf 

$ sudo apachectl restart 

Then check if phpMyAdmin is working by starting a web browser in the host/native system and going 
to the address http://192.168.56.10/phpmyadmin. To login to phpMyAdmin use root username and 
the previously provided phpMyAdmin password (enisa). 



Processing and storing artifacts 
Artifact analysis training material 
 
November 2014  

 

Page  8 

 
Figure 9. phpMyAdmin login screen (http://192.168.56.10/phpmyadmin/) 

PhpMyAdmin is a graphical user interface frontend to the MySQL database where Shiva honeypot 
stores the results. PhpMyAdmin allows to manage the database as well as to view the data stored in 
the database. The students will use it later in the exercise to view results created by the Shiva spam 
honeypot. 

After successfully installing all dependencies, the InetSim can be started again. InetSim and Apache2 
will now listen on two separate interfaces (10.0.0.1, eth1 – InetSim and 192.168.56.10, eth2 – 
Apache2). 

Starting INetSim 

$ sudo service inetsim start 

2.2 Installing Shiva honeypot 

Copy and unpack Shiva source code to /opt/ directory and then start the installation. You need to issue 
chmod +x command to installation files prior the installation 

Copying Shiva code 
$ cd /opt/ 

$ sudo cp -a /home/enisa/enisa/ex2/source/shiva . 

$ sudo chown –R enisa:enisa shiva 

$ cd shiva 

$ ./install.sh 

During the installation, you will be asked whether to store analysed data in the database – answer 
‘Yes’. 



Processing and storing artifacts 
Artifact analysis training material 
 
November 2014  

 

Page  9 

 
Figure 10. Shiva installation - database question [Yes] 

Depending on the machine and system resources, this process might take up to a few minutes. If 
everything goes fine, you should see a message informing you that the installation is complete and 
you can start using the Shiva honeypot. 

Message informing about successful Shiva installation 
[+] Setting up Shiva Analyzer done! 

 

[*] Creating necessary folders and updating configuration 

files..... 

 

[+] All done - phew!!!. Refer to User Manual to further customize 

exim MTA, shiva.conf configuration file and starting honeyp0t 

In case of any errors during the installation, remove the newly created shiva directory 
(/opt/shiva/shiva), resolve any problems and start installation script again. 

2.3 Shiva configuration 

After installation, go to the newly created shiva directory and open the shiva.conf configuration file 
with your favourite editor (vim, nano). 

Shiva configuration 
$ cd /opt/shiva/shiva 

$ $EDITOR shiva.conf 

Change the listening host and port of the shivaReceiver module ([receiver] section). It’s an address on 
which the main SMTP process will be listening for incoming spam messages. For the purpose of the 
exercise you can leave 127.0.0.1 as a listening host but otherwise it should be set to the external IP 
address. 

shiva.conf 
[receiver] 

listenhost : 127.0.0.1 

listenport : 25 

Disable spam relaying. In normal situation (as it was explained in exercise introduction) a user might 
decide to relay certain spam messages. By default Shiva allows a limited number of e-mails to redirect 



Processing and storing artifacts 
Artifact analysis training material 
 
November 2014  

 

Page  10 

in each time period. For the purpose of the exercise, relaying should be disabled; we don’t want to 
relay any spam messages to the outside world. 

shiva.conf 
[analyzer] 

relay : False 

Set the scheduler time to 5 minutes. This is a time period at which scheduler starts analysing new e-
mails and then pushes results to the database. In a normal case situation, to optimise performance, 
you may consider setting this time longer. The scheduler shouldn’t be set to less than 4 minutes due 
to certain race conditions in Shiva source code. 

shiva.conf 
[analyzer] 

scheduler time : 5 

Configure database access in the [database] section. By default Shiva honeypot uses MySQL database 
and created two instances of databases. One for temporary results (ShivaTemp) and one for the final 
database (Shiva). 

shiva.conf 
[database] 

localdb : True 

host : 127.0.0.1 

user : root 

password : enisa 

Disable additional notifications and the hpfeeds sharing feature. 

shiva.conf 
[hpfeeds] 

enabled : False 

 

[notification] 

enabled : False 

After saving the configuration file, the last step is to setup DB scheme and reconfigure local mail 
transfer agent (MTA) service (exim4). It can be done with dbcreate.py and setup_exim4.sh scripts. 

Setting up DB and exim4 
$ cd /opt/shiva/shiva 

$ python2 ./dbcreate.py 

confpath:  /opt/shiva/shiva/../shiva/shiva.conf 

Temporary database created. 

Main database created. 

$ sudo ./setup_exim4.sh 

 * Stopping MTA for restart   [ OK ] 

 * Restarting MTA             [ OK ] 

2.4 Running Shiva honeypot 

Shiva consists of two distinct modules: shivaReceiver and shivaAnalyzer. The first one is responsible 
for receiving spam while the second one does some basic spam analysis and stores the results in the 



Processing and storing artifacts 
Artifact analysis training material 
 
November 2014  

 

Page  11 

database. In normal operations it’s best to run both modules - except in situations where you collect 
spam in distributed environments or where certain hosts are intended to collect spam only while other 
hosts perform analyses. 

To start shivaReceiver: 

Starting shivaReceiver 
$ sudo su 

# cd /opt/shiva/shiva/shivaReceiver/ 

# source bin/activate 

(shivaReceiver)# cd receiver/ 

(shivaReceiver)# lamson start 

(shivaReceiver)# deactivate 

# exit 

Next start shivaAnalyzer: 

Starting shivaAnalyzer 
$ cd /opt/shiva/shiva/shivaAnalyzer/ 

$ source bin/activate 

(shivaAnalyzer)$ cd analyzer/ 

(shivaAnalyzer)$ lamson start 

(shivaAnalyzer)$ deactivate 

 
Figure 11. Checking if Shiva processes are running. 

2.5 Testing Shiva honeypot 

To test if Shiva was properly configured and is working, a special script should be used. This script will 
send a test e-mail to the Shiva local port and then students will view in logs if a new message was 
processed and was correctly added to the database. 

First open two additional console windows in your host system and connect in both of them to Styx 
using ssh. If you are familiar with the screen tool, instead of opening two new windows you can start 
the screen and open two new tabs. 

Connecting to Styx VM with ssh on Host-Only port 
$ ssh enisa@192.168.56.10 

Then, in the first additional window, view Shiva Receiver logs: 

Viewing Receiver logs 
$ cd /opt/shiva/shiva/shivaReceiver/receiver 

$ tail –f logs/lamson.log 

mailto:enisa@192.168.56.10


Processing and storing artifacts 
Artifact analysis training material 
 
November 2014  

 

Page  12 

 
Figure 12. Viewing shivaReceiver logs. 

In the second additional window, view Shiva Analyzer logs: 

Viewing Analyzer logs 
$ cd /opt/shiva/shiva/shivaAnalyzer/analyzer 

$ tail –f logs/lamson.log 

 
Figure 13. Viewing shivaAnalyzer logs. 

When the preview of Receiver and Analyzer logs is open, start the test-shiva script in the primary 
window to send the test e-mails. 

Sending test e-mails 
$ /home/enisa/enisa/ex2/scripts/spam-script/test-shiva 

At the same time, observe the Receiver and Analyzer logs. In both windows there should appear 
information about new messages being processed. 



Processing and storing artifacts 
Artifact analysis training material 
 
November 2014  

 

Page  13 

 
Figure 14. shivaReceiver logs informing about new messages being received. 

 
Figure 15. shivaAnalyzer logs informing about new messages being received and analyzed. 

Wait until you see messages in the Analyzer log about the shivamaindb module being called and new 
records being pushed to the database (up to 5 min – schedulertime). Then you have to wait till 
shivamaindb finishes work and pushes records to the main DB. In this exercise it should take no more 
than 30s, normally up to 3.5min. 

 
Figure 16. Information about shivamaindb module start in shivaAnalzyer logs. 

Next log in to the phpMyAdmin at address http://192.168.56.10/phpmyadmin (root: enisa) and 
browse to the Spam table in the Shiva database. 



Processing and storing artifacts 
Artifact analysis training material 
 
November 2014  

 

Page  14 

 
Figure 17: Viewing Shiva test e-mail in phpMyAdmin. 

The live view of the Receiver and Analyzer logs in this step in two additional windows wasn’t required. 
Logs could be also viewed in a single window afterwards (after sending test e-mails). The two 
additional windows were used to better visualize how the Shiva honeypot is working. 

3 Task 2 – Building storage for the artifacts 

In this task, participants will set up storage for the received artifacts such as malware samples or 
suspicious URLs. Samples storage will be based on the Viper project8 which is a tool intended to ease 
organization and collection of malware samples. Viper organises samples in separate projects which 
can be used to represent samples associated with different campaigns or obtained from different 
sources. 

One of the advantages of Viper is that it can be easily customised – users can write their own scripts 
performing certain analyses on the samples. In this exercise, participants will write a simple Viper 
module allowing automatic upload of certain samples to the analysis VM. 

At the end of the task, participants will also apply patches to Viper and the previously configured Shiva 
extending Viper API functionality and allowing automatic uploads of binary samples caught by Shiva 
to Viper. 

Connecting to Styx VM with ssh on Host-Only port 
$ ssh enisa@192.168.56.10 

3.1 Installing Viper 

Viper installation is very simple. To install Viper just copy its source code to the install directory, install 
all the requirements and it should be ready to use. No further configuration is needed. 

Viper installation 
$ cd /opt 

$ sudo cp -a /home/enisa/enisa/ex2/source/viper . 

                                                           
8 http://viper.li/   

mailto:enisa@192.168.56.10
http://viper.li/


Processing and storing artifacts 
Artifact analysis training material 
 
November 2014  

 

Page  15 

$ cd viper/ 

$ sudo pip install -r requirements.txt 

3.2 Running and using Viper 

Viper can be started either in the global workspace (anonymous) or in the named workspace (called 
project). The general idea behind project workspaces is to allow users create separate distinct groups 
of malware samples. A malware sample is visible only within the workspace of the project to which it 
was added. 

To start Viper go to its directory and simply run ./viper.py. Please note it’s necessary to first switch to 
Viper’s directory because Viper tries to read its database relative to the current working directory. 

Starting Viper 
$ cd /opt/viper 

$ ./viper.py -p enisa-test 

 
Figure 18. Main Viper prompt 

After starting Viper, the user is presented with a prompt where he can type various commands. All 
available commands can be listed by typing help. Commands are divided into two groups: commands 
and module commands. Normal commands are used to manage samples and the repository (adding 
new samples, finding samples, adding notes, adding tags, etc.). Module commands are used to 
perform various analyses on specific samples such as checking file type, extracting strings and imports, 
scanning for Yara signatures or sending a sample to cuckoo analysis. 

Next, open in Viper new sample (/home/enisa/enisa/ex2/samples/putty.exe) using the open 
command. 



Processing and storing artifacts 
Artifact analysis training material 
 
November 2014  

 

Page  16 

 
Figure 19. Opening putty.exe test sample in Viper 

After opening a sample a new session is created. The sample itself isn’t stored in the local repository 
yet. To store it in the repository, the student must use the store command: 

 
Figure 20. Permanently storing putty.exe sample in Viper database 

To list all open sessions use the sessions command. Each session is associated with a single opened 
file. 

 
Figure 21. Listing sessions in Viper 

All samples in the repository can be listed using the find command. The student can further narrow 
search results using various search criteria such as file name, file type, md5 sum, tags, etc. No regular 
expressions or wildcards are possible in the current version. 



Processing and storing artifacts 
Artifact analysis training material 
 
November 2014  

 

Page  17 

 
Figure 22. Using find command in Viper 

The user can also add notes or tags to each sample. Notes can be used to report interesting findings 
about the sample or just to state its origin. Tags can be used to further organize various types of 
samples (e.g. by malware family, by its origin, etc.). 

 
Figure 23. Adding and viewing notes. 

 
Figure 24. Adding and viewing tags. 

Now you should be familiar with basic repository management. Next, take your time and experiment 
with various module commands. List of all commands that are available after typing help. Each 
command has separate help info available with ‘-h’ option. 

Finding all strings matching hostname or IP address:  



Processing and storing artifacts 
Artifact analysis training material 
 
November 2014  

 

Page  18 

 
Figure 25. Finding strings matching IPs and hostnames. 

Printing list of PE32 sections with its sizes, RVA and entropy: 

 
Figure 26. Viewing PE sections and their entropy of an executable file. 

To exit Viper use the command `exit`. 

3.3 Writing a Viper module 

In this step we will write a Viper module allowing to directly upload samples to the analysis VM 
(Winbox). To send samples we will use the FTP protocol and the FTP server already installed on the 
Winbox. All samples will be uploaded to ftp://10.0.0.2/sample/ where 10.0.0.2 is assumed Winbox IP 
address. 

First go to Viper’s modules directory and create a new module file. 

Creating Viper module 
$ cd /opt/viper/modules 

$ $EDITOR lab-send.py 

Then write the following code: 

lab-send.py 
import re 

import getopt 

import ftplib 

 

from viper.common.out import * 

from viper.common.abstracts import Module 

from viper.core.session import __sessions__ 

 

DEFAULT_HOST = '10.0.0.2' 

 

class LabSend(Module): 

    cmd = 'lab-send' 

    description = 'Sends the file to the analysis VM (by ftp)' 

    authors = ['DO'] 



Processing and storing artifacts 
Artifact analysis training material 
 
November 2014  

 

Page  19 

 

    def run(self): 

        if not __sessions__.is_set(): 

            print_error("No session opened") 

            return 

 

        def usage(): 

            print("usage: lab-send [-h] [-H=host]") 

 

        def help(): 

            usage() 

            print("") 

            print("Options:") 

            print("\t--help (-h)\tShow this help message") 

            print("\t--host (-H)\tSpecify an host (default: 10.0.0.2)") 

            print("") 

 

        try: 

            opts, argv = getopt.getopt(self.args, 'hH:', ['help', 'host=']) 

        except getopt.GetoptError as e: 

            print(e) 

            usage() 

            return 

 

        host = DEFAULT_HOST 

 

        for opt, value in opts: 

            if opt in ('-h', '--help'): 

                help() 

                return 

            elif opt in ('-H', '--host'): 

                if value: 

                    host = value 

 

        try: 

            # Opening file 

            fh = open(__sessions__.current.file.path, 'rb') 

            fname = __sessions__.current.file.name 

            #sanitize name 

            fname = re.sub(r'[\\\/:\*\?"<>\|]', '_', fname)  

 

            # Connecting to the ftp 

            ftp = ftplib.FTP(host)  

            ftp.login() 

            ftp.cwd('sample') 

            res = ftp.storbinary('STOR {}'.format(fname), fh) 

            ftp.quit() 

        except Exception as e: 

            print_error("Unable to send sample to the VM: {}".format(e)) 

            return 

 

        print(res) 

 

In this code we assume that the Winbox IP address is 10.0.0.2 (DEFAULT_HOST). If it’s different it 
should be changed accordingly or given as a command argument (--host) each time the script is run. 
Also please remember this is a Python code and consistent indentation matters (i.e. tabulators 
shouldn’t be mixed with the spaces, it’s best to use 4 spaces as an indentation). 

In case of any problems the code can be copied from /home/enisa/enisa/ex2/files/viper/lab-
send.py. 

Using provided lab-send.py code (alternative) 



Processing and storing artifacts 
Artifact analysis training material 
 
November 2014  

 

Page  20 

$ cd /opt/viper/modules 

$ cp /home/enisa/enisa/ex2/files/viper/lab-send.py . 

Now when you start Viper (in enisa-test project space) and list all commands (help) lab-send script 
should be visible among module commands. 

 
Figure 27. New lab-send module visible in the output of help command. 

To test the script first restore and start Winbox machine (snapshot dedicated to static and dynamic 
analyses) and open in Viper previously uploaded putty.exe sample. Then try to send putty.exe to the 
Winbox. 

 
Figure 28. Sending putty.exe sample to Winbox machine. 

To be sure if sample was successfully uploaded, go to the Winbox and check if there is a putty.exe file 
in c:\analyses\sample. 

 
Figure 29. Checking if sample was uploaded to the Winbox machine. 

3.4 Patching Viper API and building upload script 

Viper provides a simple HTTP API allowing to perform basic operations such as adding new binary files, 
downloading samples, finding samples or listing tags. 

In this step, students will apply a simple patch to Viper API to extend its functionality—adding new 
samples from the URLs and starting the API in the context of a specific project (by default the API starts 



Processing and storing artifacts 
Artifact analysis training material 
 
November 2014  

 

Page  21 

only in unnamed anonymous workspace). Then students will write a utility to add new samples to the 
Viper directly from the Linux command line. 

Patching Viper API 
$ cd /opt/viper 

$ patch api.py < /home/enisa/enisa/ex2/files/viper/api.patch 

Now start the Viper API in the background in the context of the ‘enisa’ project: 

Starting patched API in the background 
$ cd /opt/viper 

$ nohup ./api.py -P enisa & 

$ cat nohup.out 

Bottle v0.12.7 server starting up (using WSGIRefServer())... 

Listening on http://localhost:8080/ 

Hit Ctrl-C to quit. 

Next, we will write a script to add samples to Viper directly from the Linux console. This script will be 
using the Viper API to upload samples, so it’s necessary for the Viper API to be running in the 
background. 

Creating viper-upload script 
$ cd /lab/bin 

$ $EDITOR lab-viper-upload 

$ chmod +x lab-viper-upload 

 

lab-viper-upload 
#!/usr/bin/python 

 

import os 

import sys 

import argparse 

import requests 

import urlparse 

 

VIPER_API='http://127.0.0.1:8080/' 

 

def viper_upload_bin(path): 

    """Uploads binary file to Viper""" 

 

    upload_url = urlparse.urljoin(VIPER_API, 'file/add') 

    tags = 'enisa,bin,pe32' 

 

    try: 

        response = requests.post(upload_url, 

                             files={'file': open(path, 'rb'),  

                             'filename':os.path.basename(path)}, 

                             data={'tags': tags}) 

    except IOError as e: 

        print("Error: IOError: {}".format(e)) 

        exit(1) 

    except requests.exceptions.ConnectionError: 

        print("Error: Connection error. Is Viper API running at {}?".format(VIPER_API)) 

        exit(1) 

 

    print response.content 

 

 

def viper_upload_url(url): 

    """Adds sample from URL to Viper""" 

 

    upload_url = urlparse.urljoin(VIPER_API, 'url/add') 

    tags = 'enisa,url' 

 



Processing and storing artifacts 
Artifact analysis training material 
 
November 2014  

 

Page  22 

    try: 

        response = requests.post(upload_url, 

                             data={'tags': tags, 'url': url}) 

    except requests.exceptions.ConnectionError: 

        print("Connection error. Is Viper API running at {}?".format(VIPER_API)) 

        exit(1) 

 

    print response.content 

 

 

if __name__ == '__main__': 

    parser = argparse.ArgumentParser(description="Adds samples to Viper database")     

    parser.add_argument('-p', '--path', type=str, action='store', help="path to the file") 

    parser.add_argument('-u', '--url', type=str, action='store', help="url to be added") 

    args = parser.parse_args() 

 

    if args.path: 

        viper_upload_bin(args.path) 

    elif args.url: 

        viper_upload_url(args.url) 

    else: 

        parser.print_help() 

The script can be also copied from /home/enisa/enisa/ex2/files/viper/lab-viper-upload. 

Using provided lab-viper-upload code (alternative) 
$ cd /lab/bin 

$ cp /home/enisa/enisa/ex2/files/viper/lab-viper-upload . 

To test if the script is working correctly, try to add to the Viper pscp.exe sample from 
/home/enisa/enisa/ex2/samples/ directory. 

Testing viper-upload script 
$ cd /lab/bin 

$ ./lab-viper-upload -p /home/enisa/enisa/ex2/samples/pscp.exe 

{ 

    "message": "added" 

} 

 
Figure 30. Adding to Viper pscp.exe sample with lab-viper-upload script. 

Then you can start Viper (from /opt/viper path) and check if the sample was successfully added. 



Processing and storing artifacts 
Artifact analysis training material 
 
November 2014  

 

Page  23 

 
Figure 31. Checking if pscp.exe was successfully added to Viper. 

3.5 Patching the Shiva honeypot 

At this point we will patch the Shiva honeypot. After applying this patch whenever a new binary 
attachment is received by Shiva honeypot it will be automatically uploaded to Viper. 

The Shiva patch is using Viper API to upload files. Consequently to make it work, the Viper API must 
be running and listening on the address http://localhost:8080/. 

First install the Python requests module for shivaAnalyzer. 

Installing requests for shivaAnalyzer 
$ cd /opt/shiva/shiva/shivaAnalyzer 

$ source bin/activate 

(shivaAnalyzer)$ pip install requests 

(shivaAnalyzer)$ deactivate 

Then copy the Shiva viper module and apply the patch to shivapushtodb.py. 

Applying patches for shivaAnalyzer 
$ cd /opt/shiva/shiva/shivaAnalyzer/lib/python2.7/site-

packages/lamson 

$ patch shivapushtodb.py < 

/home/enisa/enisa/ex2/files/shiva/shivapushtodb.patch 

$ mkdir viper 

$ cd viper/ 

$ touch __init__.py 

$ $EDITOR upload.py 

 

Content of the upload.py script. 
import os 

import sys 

import requests 

import urlparse 

import logging 

 

VIPER_API='http://127.0.0.1:8080/' 

 

def upload_bin(path, filename): 

    upload_url = urlparse.urljoin(VIPER_API,'file/add') 

    tags = 'shiva' 



Processing and storing artifacts 
Artifact analysis training material 
 
November 2014  

 

Page  24 

     

    response = requests.post(upload_url, 

                             files={'file': (filename, open(path, 'rb'))}, 

                             data={'tags': tags}) 

     

    if response.status_code == 200: 

        logging.info("[+] New sample uploaded to Viper: %s" % filename) 

Alternatively upload.py can be copied from /home/enisa/enisa/ex2/files/shiva/viper/ path. 

Using provided viper Shiva module (alternative) 
$ cd /opt/shiva/shiva/shivaAnalyzer/lib/python2.7/site-

packages/lamson/viper 

$ cp /home/enisa/enisa/ex2/files/shiva/viper/* . 

After applying the new patch, shivaAnalyzer must be restarted. 

Restarting shivaAnalyzer 
$ cd /opt/shiva/shiva/shivaAnalyzer 

$ source bin/activate 

(shivaAnalyzer)$ cd analyzer 

(shivaAnalyzer)$ lamson stop 

(shivaAnalyzer)$ lamson start 

(shivaAnalyzer)$ deactivate 

4 Task 3 – Spam content analysis methods 

In this task, participants run a special script to generate e-mail spam messages which will be delivered 
to the previously configured spamtrap. Messages might contain malicious attachments and some of 
them, malicious links. After receiving the spam messages, students will analyse their content and try 
to identify spam campaigns. 

4.1 Sending spam messages 

To send spam emails use the provided script. 

Sending spam 
$ /home/enisa/enisa/ex2/scripts/spam-script/send-spam 

Spam 15/50 sent (30.0%) 

After the script completes, type the following to view shivaAnalyzer logs. There might be some 
“CRITICAL” lines in the logs - ignore them, this is normal behaviour when processing attachments.  

Viewing shivaAnalyzer logs 
$ cd /opt/shiva/shiva/shivaAnalyzer/analyser 

$ tail –n 100 –f logs/lamson.log 



Processing and storing artifacts 
Artifact analysis training material 
 
November 2014  

 

Page  25 

 
Figure 32. ShivaAnalyzer log informing about new samples being analysed - some of them containing attachments. 

Wait until scheduler processes all new e-mails and adds them to the database (information about 
shivamaindb being called). In this exercise it could take up to 5 minutes (scheduler time value from 
Shiva configuration file). 

 
Figure 33. Shiva scheduler processing new samples and uploading them to Viper database. 

Exercise (extra): 

To receive more spam messages, run send-more-spam script. 

Sending more spam 
$ /home/enisa/enisa/ex2/scripts/spam-script/send-more-spam 

Then by analysing received messages (viewing message content in the database as described in the 
next step) try to answer the following questions: 

1. Name a few social engineering techniques used in spam campaigns. 

 Messages appearing to be sent by well-known companies and financial institutions (e.g. 
Wells Fargo, Citibank). 

 Messages appearing to be sent by local machines (printers, scanners, fax machines). 

 Message content suggesting it’s important to the sender (e.g. invoice message, tax 
refunds). 

 Messages with attached executables appearing to be some documents with .pdf 
extension (e.g. message.pdf.exe). 
 



Processing and storing artifacts 
Artifact analysis training material 
 
November 2014  

 

Page  26 

2. Can you identify a few distinct campaigns? What are their distinguishing features? 
 
Campaign with messages appearing to be sent by local printer/voice machines. 
 
Subjects: 

 Scanned Image from a Xerox WorkCentre 

 Scan from a Xerox WorkCentre 

 Scanned from a Xerox Multifunction Device 

 Voice Message from Unknown (985-668-7888) 
 
All messages with those subjects had similar mail headers (below) and the recipient domain 
was the same as sender domain. Messages had executable attachments with the name 
<name>.pdf.exe. 

Fragment of message headers 
X-MS-Has-Attach: yes 

X-MS-Exchange-Organization-SCL: -1 

X-MS-TNEF-Correlator: 

<X66AF23LP311YV9Q1D1F44WLA61NIXG84M2BB7@example.com> 

X-MS-Exchange-Organization-AuthSource: FRZK163AFS3MTID@example.com 

X-MS-Exchange-Organization-AuthAs: Internal 

X-MS-Exchange-Organization-AuthMechanism: 01 

X-MS-Exchange-Organization-AVStamp-Mailbox: MSFTFF;6;0;0 0 0 

X-Priority: 3 (Normal) 

 
Campaign with messages appearing to be sent by Wells Fargo. 
 
Subjects: 

 RE: Account docs 

 Documents - WellsFargo 
 
The content of the messages suggests they were sent by a Wells Fargo employee who is asking 
the recipient to open important documents attached to the message. 

Fragment of message content 
For more details please check the attached documents. 

 

Cory Rowell 

Wells Fargo Advisors 

817-347-4173 office 

817-987-9964 cell 

Cory.Rowell@wellsfargo.com 

4.2 Checking spam messages in the database 

To view the spam database go to phpMyAdmin (http://192.168.56.10/phpmyadmin) and login using 
the previously chosen password (root:enisa). 

Then select the Shiva database where all final results are stored.  

In the `spam` table you can find all distinct spam messages that were observed. 

mailto:Cory.Rowell@wellsfargo.com


Processing and storing artifacts 
Artifact analysis training material 
 
November 2014  

 

Page  27 

 
Figure 34. Table `spam` containing spam messages observed during spam campaign. 

In the `sdate` table you can view spam campaign timings and the total number of observed messages 
for each campaign.  

 
Figure 35. Table `sdate` - spam campaigns timings and totals. 

The `links` table lists all observed links in spam messages: 

 
Figure 36. Table `links` - urls found in spam messages. 

The `attachment` table lists all observed attachments in various spam campaigns. 



Processing and storing artifacts 
Artifact analysis training material 
 
November 2014  

 

Page  28 

 
Figure 37. Table `attachments` - attachments found in received messages. 

In the table `ip` there are source IP addresses from which spam messages originate. For this particular 
exercise, all messages were sent from localhost so there will be no external IP addresses in this table. 

 
Figure 38. Table `ip` - source ip addresses of spam messages. 

4.3 Checking raw spam 

To view raw spam messages go to /opt/shiva/shiva/rawspams directory. In this directory there should 
be one file for each distinct spam message present in `spam` table in the database. 

Viewing Shiva raw spam messages 
$ cd /opt/shiva/shiva/rawspams 

$ ls 

 
Figure 39. Viewing distinct raw spam messages. 

Each file contains a slightly pre-processed spam message generated by shivaAnalyzer and includes e-
mail headers (but not SMTP headers), the message body, and any attachments it contains. 



Processing and storing artifacts 
Artifact analysis training material 
 
November 2014  

 

Page  29 

 
Figure 40. Fragment of example raw spam message file. 

Additionally, extracted attachment files can be found in the /opt/shiva/shiva/attachments directory. 

 
Figure 41. Viewing extracted attachments. 



Processing and storing artifacts 
Artifact analysis training material 
 
November 2014  

 

Page  30 

4.4 Checking spam in Viper 

Next, students should check if the extracted attachments were successfully added to the Viper 
database. 

Go to the Viper directory and start Viper in the context of the enisa project: 

 
Figure 42. Checking if samples were uploaded to Viper. 

 Next try to find files with the tag ‘shiva’: 

 
Figure 43. Finding samples with the 'shiva' tag in Viper. 

In the result, there should be a list of samples obtained from spam messages and extracted by the 
Shiva honeypot. Those samples will be used in later exercises focusing on the malware analysis. Please 
note that the final list of samples might differ from the list presented on the screenshot. 

5 Exercise summary 

In this exercise, students had the opportunity to configure an e-mail honeypot Shiva, acting as a spam 
trap for any incoming messages. From the perspective of a spam bot, all e-mail messages sent to Shiva 
were seemingly delivered or relayed - while in reality they were stored and processed by shivaAnalyzer 
module scanning for any attachments or suspicious urls. 

Next, students set up a simple artifacts repository based on the Viper project. Viper not only allowed 
students to store and manage samples (adding notes, tags, etc.) but also to perform some preliminary 
sample analysis. Additionally, thanks to Viper’s modular architecture, students were able to extend 
Viper functionality with an additional module. 



Processing and storing artifacts 
Artifact analysis training material 
 
November 2014  

 

Page  31 

After completing the installation and configuration of the Shiva honeypot and Viper repository, the 
students started a special script generating spam messages and sending them to local spam trap. This 
simulated spam campaign and allowed students to obtain artifacts that will be used in the later 
exercises for the malware analysis. 

6 Bibliography 

1. ENISA - Honeypots training material 
http://www.enisa.europa.eu/activities/cert/support/exercise/files/Honeypots_CERT_Exercis
e_Handbook.pdf (accessed 15. October 2014) 

2. Proactive detection of security incidents II – Honeypots 
http://www.enisa.europa.eu/activities/cert/support/proactive-detection/proactive-
detection-of-security-incidents-II-honeypots/at_download/fullReport (accessed 15. October 
2014) 

3. M3AAWG Best Current Practices For Building and Operating a Spam trap 
http://www.maawg.org/sites/maawg/files/news/M3AAWG_Spamtrap_Operations_BCP-
2013-10.pdf (accessed 15. October 2014) 

4. Malware Analysis: Environment Design and Architecture 
http://www.sans.org/reading-room/whitepapers/threats/malware-analysis-environment-
design-artitecture-1841 (accessed 15. October 2014) 

5. Spam Honeypot with Intelligent Virtual Analyzer https://github.com/shiva-spampot/shiva 
(accessed 15. October 2014) 

6. The Honeynet Project https://github.com/shiva-spampot/shiva (accessed 15. October 2014) 
7. Monkey-Spider: Detecting Malicious Websites with Low-Interaction Honeyclients 

https://www.syssec.rub.de/media/emma/veroeffentlichungen/2012/08/07/MonkeySpider-
Sicherheit08.pdf (accessed 15. October 2014) 

8. Malware Sample Sources for Researchers http://zeltser.com/combating-malicious-
software/malware-sample-sources.html (accessed 15. October 2014) 

9. Fuzzy Hashing http://jessekornblum.com/presentations/htcia06.pdf (accessed 15. October 
2014) 

10. VIPER Time to do malware research right http://viper.li/ (accessed 15. October 2014) 
  

http://www.enisa.europa.eu/activities/cert/support/exercise/files/Honeypots_CERT_Exercise_Handbook.pdf
http://www.enisa.europa.eu/activities/cert/support/exercise/files/Honeypots_CERT_Exercise_Handbook.pdf
http://www.enisa.europa.eu/activities/cert/support/proactive-detection/proactive-detection-of-security-incidents-II-honeypots/at_download/fullReport
http://www.enisa.europa.eu/activities/cert/support/proactive-detection/proactive-detection-of-security-incidents-II-honeypots/at_download/fullReport
http://www.maawg.org/sites/maawg/files/news/M3AAWG_Spamtrap_Operations_BCP-2013-10.pdf
http://www.maawg.org/sites/maawg/files/news/M3AAWG_Spamtrap_Operations_BCP-2013-10.pdf
http://www.sans.org/reading-room/whitepapers/threats/malware-analysis-environment-design-artitecture-1841
http://www.sans.org/reading-room/whitepapers/threats/malware-analysis-environment-design-artitecture-1841
https://github.com/shiva-spampot/shiva
https://github.com/shiva-spampot/shiva
https://www.syssec.rub.de/media/emma/veroeffentlichungen/2012/08/07/MonkeySpider-Sicherheit08.pdf
https://www.syssec.rub.de/media/emma/veroeffentlichungen/2012/08/07/MonkeySpider-Sicherheit08.pdf
http://zeltser.com/combating-malicious-software/malware-sample-sources.html
http://zeltser.com/combating-malicious-software/malware-sample-sources.html
http://jessekornblum.com/presentations/htcia06.pdf
http://viper.li/


Processing and storing artifacts 
Artifact analysis training material 
 
November 2014  

 

Page  32 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

PO Box 1309, 710 01 Heraklion, Greece 
Tel: +30 28 14 40 9710 
info@enisa.europa.eu 
www.enisa.europa.eu 

ENISA 
European Union Agency for Network and Information Security   
Science and Technology Park of Crete (ITE) 
Vassilika Vouton, 700 13, Heraklion, Greece 
 
Athens Office 
1 Vass. Sofias & Meg. Alexandrou 
Marousi 151 24, Athens, Greece 


