

European Union Agency for Network and Information Security

www.enisa.europa.eu

Artifact analysis fundamentals

Toolset, Artifact analysis fundamentals
November 2014

Artifact analysis fundamentals
Artifact analysis training material

November 2014

Page ii

About ENISA

The European Union Agency for Network and Information Security (ENISA) is a centre of network and
information security expertise for the EU, its member states, the private sector and Europe’s citizens.
ENISA works with these groups to develop advice and recommendations on good practice in
information security. It assists EU member states in implementing relevant EU legislation and works
to improve the resilience of Europe’s critical information infrastructure and networks. ENISA seeks to
enhance existing expertise in EU member states by supporting the development of cross-border
communities committed to improving network and information security throughout the EU. More
information about ENISA and its work can be found at www.enisa.europa.eu.

Authors

This document was created by Lauri Palkmets, Cosmin Ciobanu, Yonas Leguesse, and Christos
Sidiropoulos in consultation with DFN-CERT Services1 (Germany), ComCERT2 (Poland), and S-CURE3
(The Netherlands).

Contact

For contacting the authors please use cert-relations@enisa.europa.eu

For media enquires about this paper, please use press@enisa.europa.eu

Acknowledgements

ENISA wants to thank all institutions and persons who contributed to this document. A special ‘Thank
You’ goes to Todor Dragostinov from ESMIS, Bulgaria.

1 Klaus Möller, and Mirko Wollenberg
2 Mirosław Maj, Tomasz Chlebowski, Krystian Kochanowski, Dawid Osojca, Paweł Weżgowiec, and Adam Ziaja
3 Michael Potter, Alan Robinson, and Don Stikvoort

http://www.enisa.europa.eu/
mailto:cert-relations@enisa.europa.eu
mailto:press@enisa.europa.eu

Artifact analysis fundamentals
Artifact analysis training material

November 2014

Page iii

Legal notice

Notice must be taken that this publication represents the views and interpretations of the authors and
editors, unless stated otherwise. This publication should not be construed to be a legal action of ENISA or the
ENISA bodies unless adopted pursuant to the Regulation (EU) No 526/2013. This publication does not
necessarily represent state-of the-art and ENISA may update it from time to time.

Third-party sources are quoted as appropriate. ENISA is not responsible for the content of the external
sources including external websites referenced in this publication.

This publication is intended for information purposes only. It must be accessible free of charge. Neither ENISA
nor any person acting on its behalf is responsible for the use that might be made of the information contained
in this publication.

Copyright Notice

© European Union Agency for Network and Information Security (ENISA), 2014

Reproduction is authorised provided the source is acknowledged.

Artifact analysis fundamentals
Artifact analysis training material

November 2014

Page iv

Table of Contents

1 General description 2

2 Tools overview 3

2.1 Static analysis tools 3

2.2 Dynamic analysis tools 3

2.3 Network analysis tools 4

2.4 Automatic analysis tools 4

3 Task 1: Basic static analysis 4

3.1 Sending sample to the analysis. 5

3.2 Detecting packers and protectors 6

3.3 Strings extraction and analysis 8

3.4 PE structure and headers analysis 13

3.5 Import table analysis 15

3.6 PE resources analysis 19

3.7 Searching for embedded objects 21

3.8 Finishing analysis 21

3.9 Extra samples 22

4 Task 2: Behavioural analysis 22

4.1 Analysis remarks 23

4.2 Preparing analysis 23

4.3 Executing malware sample 27

4.4 Process Explorer analysis 29

4.5 Regshot analysis 33

4.6 Process Monitor analysis 34

4.7 Searching for rootkit artifacts 40

4.8 Finishing analysis 41

Artifact analysis fundamentals
Artifact analysis training material

November 2014

Page v

4.9 Extra samples 41

5 Task 3: Network analysis 42

5.1 Network traffic capture and log acquisition 42

5.2 P2P and DGA traffic 44

5.3 HTTP traffic analysis 53

5.4 Extra sample 58

6 Task 4: Automatic analysis 58

6.1 Sending sample to Cuckoo 59

6.2 Cuckoo Sandbox results 60

6.3 Static Analysis results 62

6.4 Behavioural Analysis results 65

6.5 Network Analysis results 67

6.6 Analysing list of dropped files 68

6.7 Extra analyses 69

7 Exercise summary 69

8 References 70

Artifact analysis fundamentals
Artifact analysis training material

November 2014

Page 1

Main Objective

Present the trainees malicious artifact analysis fundamentals and

various types of analyses. Present how to safely execute suspicious code

in the controlled environment along with most important security

precautions. Teach the trainees how to perform basic static,

behavioural, network and automatic analyses – what tools can be used,

what to look for, what can be found. Give the trainees the opportunity

to use various popular tools during the analyses and let them decide

what tools are best suited for different type of analyses. Present

common malicious software behaviours and patterns – which can be

later used to create proper signature.

Targeted Audience

The exercise is dedicated to CERT staff involved in analysis of malicious

artifacts. The exercise should be also helpful to CERT staff involved in

doing quick assessment of encountered new threats, especially those

associated with suspicious executable files.

Total Duration 8.0 hours

Time Schedule

Introduction to the exercise and tools overview 1.0 hours

Task 1: Basic static analysis 1.5 hours

Task 2: Behavioural analysis 2.0 hours

Task 3: Network analysis 1.5 hours

Task 4: Automatic analysis 1.5 hours

Summary of the exercise 0.5 hours

Frequency
It is advisable to organise this exercise when new team members who

are involved in the analysis of malicious artifacts joins CERT.

Artifact analysis fundamentals
Artifact analysis training material

November 2014

Page 2

1 General description

The primary purpose of this exercise is to gather information about artifacts collected in previous
exercises. At the beginning, participants will learn how to use basic static analysis techniques to
perform a preliminary study of the sample. Using methods such as strings analysis, portable
executable (PE) headers analysis, import address table (IAT) analysis or resources analysis, participants
will try to determine some of the artifacts’ functionality. At the same time the participants should look
for any special features of the analysed samples which may be later used to create signatures.

In the second stage, participants will perform behavioural analysis in which they execute samples in a
controlled environment. Then they will observe any changes taking place in the operating system:
which processes are created, what changes are made to the file system or the system registry, and if
there would be any indicators of rootkit activity. Next, using all gathered information, participants will
try to answer how the analysed samples behave after being executed and what would be the
indicators of an infected system.

In the next stage participants will learn how to perform basic network analysis using various tools and
methods to capture network traffic. During this part of the exercise participants will try to detect
traces of the malware activity in the network traffic. Based on the analysis results, they will try to
deduce some of the artifact functionality and answer if there are any characteristic traffic patterns.

At the end, after learning basic static analysis, behavioural analysis and network analysis, participants
will perform automatic analysis using the Cuckoo Sandbox appliance. In this way participants will get
the opportunity to compare manual analysis techniques with the automatic analysis and learn what
are the advantages and disadvantages of using both of them.

The exercise is performed using Microsoft Windows operating system. Analysed artifacts are in
portable executable (PE) file format.

Artifact analysis fundamentals
Artifact analysis training material

November 2014

Page 3

2 Tools overview

This section presents list of tools used in this exercise. Some of the tools used in the exercise give
similar results and can be used interchangeably (e.g. PEview and CFF Explorer). It is advised that
students first try to run tools presented in this section in the clean system before using them in actual
analysis.

2.1 Static analysis tools
 PEiD – popular tool allowing to detect and identify Portable Executable files. It detects if

executable is packed with one of the popular packers or protectors. If the file is not packed it

can identify what compiler was used to create the executable file. PEiD has also simple generic

unpacking module.

http://www.woodmann.com/collaborative/tools/index.php/PEiD

 Exeinfo PE – tool allowing to detect many popular packers, protectors and crypters.

Additionally Exeinfo PE has a ripper module allowing to search executable files for embedded

files in a few popular formats (PE, zip, rar, doc, image files, etc.).

http://www.woodmann.com/collaborative/tools/index.php/ExeInfo_PE

 PEview – Portable Executable (PE) headers and Component Object File Format (COFF) viewer

tool. Displays headers, directories, sections, import/export tables and resource information.

http://wjradburn.com/software/

 CFF Explorer – Portable Executable (PE) headers viewer and editor. It is designed to make PE

editing as easy as possible. Beside PE headers viewing and editing CFF Explorer contains

integrated hex editor, simple disassembler and many other useful features.

http://www.ntcore.com/exsuite.php

 Resource Hacker – popular tool to view, modify, rename, add, delete and extract resources in

32bit & 64bit Windows executables and resource files.

http://www.angusj.com/resourcehacker/

 BinText – simple and powerful strings extractor tool. It extracts ASCII, Unicode and Resources

strings from a binary file. BinText also enables you to set additional extraction criteria and

strings filters based on string minimal and maximal length, allowed characters, etc. Extracted

strings can be saved to a separate file.

http://www.mcafee.com/us/downloads/free-tools/bintext.aspx

 Upx – one of the most popular executable packing tools. It allows to pack and unpack

executable files.

http://upx.sourceforge.net/

2.2 Dynamic analysis tools
 Process Explorer – powerful task manager and system monitor for Microsoft Windows. It

provides the functionality of Windows Task Manager along with a rich set of features for

collecting information about processes running on the user's system

http://technet.microsoft.com/en-US/sysinternals/bb896653

 Process Monitor – tool from Windows Sysinternals suite. It monitors and displays in real-time

all file system activity on a Microsoft Windows operating system. It combines two older tools,

FileMon and RegMon and is used in system administration, computer forensics, and

application debugging.

http://technet.microsoft.com/en-us/sysinternals/bb896645.aspx

http://www.woodmann.com/collaborative/tools/index.php/PEiD
http://www.woodmann.com/collaborative/tools/index.php/ExeInfo_PE
http://wjradburn.com/software/
http://www.ntcore.com/exsuite.php
http://www.angusj.com/resourcehacker/
http://www.mcafee.com/us/downloads/free-tools/bintext.aspx
http://upx.sourceforge.net/
http://technet.microsoft.com/en-US/sysinternals/bb896653
http://technet.microsoft.com/en-us/sysinternals/bb896645.aspx

Artifact analysis fundamentals
Artifact analysis training material

November 2014

Page 4

 Regshot – open source tool allowing to quickly take snapshot of the registry and file system

and then compare with the second one. Used to detect changes in system registry and file

system (insertions, deletions, modifications).

http://sourceforge.net/projects/regshot/

 GMER – application searching operating system for rootkit activity. It allows to detect hidden

processes, hidden threads, hidden modules, hidden files, hooks on system functions and many

more.

http://www.gmer.net/

2.3 Network analysis tools
 Tcpdump – popular command-line network traffic sniffer and analyser. It allows to capture

network traffic to the file in PCAP format.

http://www.tcpdump.org/

 Wireshark – popular network traffic analyser, very similar to Tcpdump but with additional

graphic user interface and integrated sorting, filtering and statistical options.

https://www.wireshark.org/

 Mitmproxy – an interactive console program that allows to capture, inspect and edit

HTTP/HTTPs traffic by acting as a transparent proxy.

http://mitmproxy.org/

 INetSim – software suite used to simulate various network services in a lab environment.

http://www.inetsim.org/

2.4 Automatic analysis tools
 Cuckoo Sandbox – open source automated malware analysis system. It allows to

automatically execute suspicious files in a controlled and isolated environment in which it

monitors malicious code activity. After analysis it creates a comprehensive malware analysis

report.

http://www.cuckoosandbox.org/

3 Task 1: Basic static analysis

In this task students will perform a basic static analysis of a binary sample. Static analysis is basically
performed without running the malware as opposed to a dynamic analysis. A complete static analysis
of a malware sample can be an extremely laborious process as it would require reverse engineering
the source code and understanding its logic.

In this task the students will try to determine basic malware functionalities with a help from the trainer
and the purpose of the task is to look for any special features which might be later used to create the
file signature.

Basic static analysis covers the following topics:

 Determining file type and detecting packers or protectors.

 Strings extraction and analysis.

 Portable executable (PE) headers analysis.

 Import table analysis.

 Resources analysis.

 Scanning file for embedded objects (executables, images, etc.).

http://sourceforge.net/projects/regshot/
http://www.gmer.net/
http://www.tcpdump.org/
https://www.wireshark.org/
http://mitmproxy.org/
http://www.inetsim.org/
http://www.cuckoosandbox.org/

Artifact analysis fundamentals
Artifact analysis training material

November 2014

Page 5

3.1 Sending sample to the analysis.

First restore the Winbox snapshot used for static and dynamic analyses (winbox-clean) as described
in the exercise Building artifact handling and analysis environment (refer to this exercise on how to
restore a snapshot if in doubt). When the snapshot is restored start the virtual machine.

Figure 1. Restored winbox-clean snapshot.

Then, start Viper and find the aop.exe sample (screenshot) which should have been obtained as a
result of the previous exercise (Processing and storing artifacts). In case there is no aop.exe sample it
can be found in /home/enisa/enisa/ex3/samples directory from where it can be added to the Viper.
Please refer to the exercise Processing and storing artifacts on how to use the Viper tool.

Figure 2. Finding aop.exe sample in Viper.

Then send the sample to Winbox using the previously created Viper module and exit Viper.

Figure 3. Sending aop.exe sample to Winbox.

The sample should now appear in Winbox in c:\analyses\sample folder (refer to Processing and storing
artifacts exercise to recall how the transfer works).

Artifact analysis fundamentals
Artifact analysis training material

November 2014

Page 6

Figure 4. Malware sample after uploading to Winbox machine.

3.2 Detecting packers and protectors

Malware samples are often protected by so called packers and protectors4. Packers and protectors
are dedicated tools intended to obfuscate and rewrite executable file structure in order to evade
detection by antivirus (AV) products and hinder further analysis. Usually packed binary has a
completely different structure than the original file. Moreover, protectors often add various
protection functions such as virtualization detection, sandbox detection or debugger detection to
executables.

In most cases a packed binary is very difficult for static analysis. Consequently a binary needs to be
unpacked first; otherwise we can rely only on dynamic analysis findings. Unpacking a malware sample
isn’t always a trivial task, often requiring good reverse engineering skills. Malware unpacking isn’t the
subject of this exercise.

There are two popular tools to detect packers signatures: PEiD and ExeInfoPE.

First open the aop.exe sample in PEiD:

4 http://www.ecsl.cs.sunysb.edu/tr/TR237.pdf

http://www.ecsl.cs.sunysb.edu/tr/TR237.pdf

Artifact analysis fundamentals
Artifact analysis training material

November 2014

Page 7

Figure 5. PEiD window - UPX packer detected.

It indicates (highlighted in yellow) that malware was most likely packed using UPX packer.

Verify PEiD findings and then open the sample in ExeInfo PE tool:

Figure 6. Exeinfo PE window - UPX packer detected.

ExeInfo PE confirms that the sample is most likely packed by UPX. You can also use advanced scan
feature by clicking ‘>’ button (highlighted in red). This will show other possible packers matching this
particular file.

Figure 7. Advanced scan feature in Exeinfo PE.

Fortunately UPX is a quite simple and easy to unpack packer (and also still quite often seen in the
wild). To unpack aop.exe we will use the standard upx.exe utility available on the Winbox.

Artifact analysis fundamentals
Artifact analysis training material

November 2014

Page 8

Figure 8. Unpacking malware sample with upx tool.

The unpacked sample should be saved as c:\analyses\sample\aop_unpacked.exe. To verify if it was
successfully unpacked and is not protected by any other protector open it in PEiD.

Figure 9. Checking unpacked sample in PEiD.

Based on new PEiD results we can assume that aop_unpacked.exe is not protected by another packer
and was likely compiled using Microsoft Visual C++ version 6.0. (Microsoft Visual C++ and Microsoft
Visual Studio are popular software development tools used widely by programmers all over the
world)5.

NB: File aop_unpacked.exe will be used instead of aop.exe in all following analyses.

3.3 Strings extraction and analysis

One very useful technique in malware analysis is string analysis. In many cases using strings obtained
from the binary file we can reason about some of the features of the malicious code. For example if
we find a list of SMTP servers we might suppose that malware might be sending spam messages.

To extract strings from the sample file (aop_unpacked.exe) use the BinText tool. This tool allows to
extract all ASCII and Unicode strings from the binary file also allowing to apply certain filters on
minimal string length and allowed characters.

5 See http://www.visualstudio.com/ for more details on this development environment.

http://www.visualstudio.com/

Artifact analysis fundamentals
Artifact analysis training material

November 2014

Page 9

Figure 10. BinText window after opening unpacked sample file.

After extracting strings it is good to save them to the results directory for any further analyses.

Figure 11. Saving strings extracted by BinText to a file.

Next scroll down the list of all discovered strings trying to find any useful information about malware
and its functionality. Students should look for strings such as IP and URL addresses, names of
commands, Windows function and libraries names, usernames, e-mails, headers of various protocols
(IRC, HTTP, etc.) or any other unique and characteristic names.

Artifact analysis fundamentals
Artifact analysis training material

November 2014

Page 10

Figure 12. Windows functions and library names.

Here we can see a fragment of the DLL names6 and imported functions list. It is good to compare such
a list with names found in import table in PE file (Portable Executable) – this will be covered in a later
step. Sometimes malware dynamically loads certain libraries and functions making them not listed in
the PE file import table.

Figure 13. Some path matching expressions found in strings list.

Patterns like %s*.* and %s\%s suggest they might be used as arguments to some system function
calls for path matching or file searching. Also presence of functions such as FindFirstFileA and
FindNextFileA suggest that malware might be searching certain files on local disk.

Figure 14. Registry keys found in strings list.

Registry keys related to Windows Services. This might suggest that malware is using system service as
a self-preservation technique (persistence mechanism).

Figure 15. Suspicious IP address

Unusual IP address from private address space. It is hard to say what it is used for but it might be a
good starting point for further analysis (either dynamic debugging or more advanced static analysis of
disassembled code).

6 http://support.microsoft.com/kb/815065

http://support.microsoft.com/kb/815065

Artifact analysis fundamentals
Artifact analysis training material

November 2014

Page 11

Figure 16. HTTP headers found in strings list.

Typical HTTP headers suggest that malware is likely using HTTP or HTTPs communication – to contact
Command & Control server or for some other purposes.

Figure 17. Strings with batch command.

Typical batch command used for self-removal.

Figure 18. String characteristic for base64 encoding.

Characteristic string (ABCD…) typically used in Base647 encoding functions.

Figure 19. Suspicious domain name.

Suspicious domain name 1107791273.f3322.org. This might be a domain of C&C server – needs further
inspection.

Figure 20. Unusual unique names found in strings list.

Unusual names: prsionaljrq, prsionyta and providesmid. Such unique names usually distinctly identify
particular malware family. They might be used to name malware itself, create signature or to search
more information about this particular malware on the web.

7 http://en.wikipedia.org/wiki/Base64

http://en.wikipedia.org/wiki/Base64

Artifact analysis fundamentals
Artifact analysis training material

November 2014

Page 12

Figure 21. List of AV products and process names.

AV product names among other strings suggest that this malware is likely trying to evade detection by
disabling AV services.

Figure 22. List of common usernames and passwords.

Common usernames and passwords. This means malware is probably performing some dictionary
attacks.

Figure 23. Windows file sharing related strings.

Strings typical for Windows file sharing. This malware is probably using Windows file sharing services
– for self-propagation or some other reasons.

Exercise:
1. Extract list of strings from the packed binary file (aop.exe) and compare them to strings

analysed in this step. What are the differences?

In packed binary file there are much less meaningful strings. Most of the interesting strings found in
this step aren’t present on the strings list from the packed file or are split in smaller parts.

Artifact analysis fundamentals
Artifact analysis training material

November 2014

Page 13

Figure 24. Incomplete or split strings in the packed binary file.

3.4 PE structure and headers analysis

Windows executable file (PE) headers contain information about the executable file and how it should
be executed. PE headers tell the operating system how it should load an executable file, what libraries
are needed, where the beginning of the main routine code (code entry point) is or even when the
binary file was created. During malware analysis it is worthwhile to analyse PE headers to search for
any anomalies or indicators that the sample was packed (especially in case when unknown packer is
used and standard packer detection tools will not help).

Open the sample in the PEview tool and switch to IMAGE_FILE_HEADER. One of the interesting fields
in this section is Time Date Stamp which tells when the binary executable was likely linked. This field
might have been intentionally tampered with but it doesn’t happen often.

Figure 25. IMAGE_FILE_HEADER in PEview tool.

Next switch to IMAGE_OPTIONAL_HEADER and check the address of the entry point (EP). It will be
used in the next step to determine in which PE section the entry point is located. In this case the entry
point is located at the relative address 0x154EC.

Artifact analysis fundamentals
Artifact analysis training material

November 2014

Page 14

Figure 26. IMAGE_OPTIONAL_HEADER in PEview tool.

Then analyse PE file sections names and sizes. Based on PE section names it is sometimes possible to
identify what packer or compiler was used to create the executable. For example UPX packed binaries
typically have two sections named UPX0 and UPX1 while code compiled with Borland Delphi will
typically have CODE, DATA, BSS, .rdata, .idata sections8.

Then analyse the characteristics of the sections to check which of them appears to contain executable
code (IMAGE_SCN_CNT_CODE, IMAGE_SCN_MEM_EXECUTE). Usually only one section should
contain executable code (.text, CODE, etc.). Otherwise this indicates that some packer or protector
was used. It is also good to compare the section size in memory with its raw size on disk. If the declared
section size in memory is much greater than the section size on disk, then this also indicates that some
packer or protector was most likely used.

Another indicator of a program being packed or somehow tampered with, is when a program entry
point is located outside of the standard code section (.text, CODE, etc.). To check in which PE section
the program entry point is located find the section for which RVA >= EP and EP <= RVA+Virtual Size
(EP – previously checked address of entry point, RVA – section relative virtual address, Virtual Size –
section size in memory). In this case, entry point 0x154EC is located in .text section because 0x1000
(.text RVA) <= 0x154EC (EP) <= 0x16345 (.text RVA+VirtualSize).

8 http://www.on-time.com/rtos-32-docs/rttarget-32/programming-manual/compiling/borland-delphi.htm

http://www.on-time.com/rtos-32-docs/rttarget-32/programming-manual/compiling/borland-delphi.htm

Artifact analysis fundamentals
Artifact analysis training material

November 2014

Page 15

Figure 27. PE section view in PEview tool.

3.5 Import table analysis

Another important technique of static analysis is Import Address Table (IAT) analysis. By examining
what functions and libraries the malware imports we can try to predict some of its functionality.

It is important to remember that IAT will not always contain all functions used by malicious code.
Sometimes (especially in cases of packed or protected samples) the import table is shortened to only
the most important functions, while the rest of the functions are imported dynamically during
malware execution. In such a situation we need to use dynamic analysis techniques to determine the
full set of functions used by the malware.

To analyse the Import Address Table we will use the CFF Explorer tool.

Open the sample file in CFF Explorer and switch to the Import Directory section. This section contains
libraries imported by a malware sample. By clicking on each library name, a list of imported functions
from this library opens in the bottom panel.

Artifact analysis fundamentals
Artifact analysis training material

November 2014

Page 16

Figure 28. Import Directory view in CFF Explorer

Figure 29. List of imported libraries by aop_unpacked.exe

Here we see that the aop_unpacked.exe sample is importing functions from many different libraries.
Among less common libraries are:

 Avicap32.dll – video capture functions

 Msvfw32.dll – bitmap/video compression and decompression functions

 Wtsapi32.dll – windows terminal services functions

We then analyze what functions are imported from each library, and search for functions that might
point to some of the malware functionalities. Below is a list of a few more interesting functions.

Artifact analysis fundamentals
Artifact analysis training material

November 2014

Page 17

Figure 30. Functions imported from wtsapi32.dll

As functions related to Windows Remote Desktop Service were detected, the malware might be trying
to perform some operations in regard to the Remote Desktop Service. To get more information on
how those functions are used, we would need to analyse the disassembled the code (advanced static
analysis).

Figure 31. Selected functions imported from kernel32.dll.

CreateRemoteThread and WriteProcessMemory functions are indicators that malware is injecting
threads into other system processes. Most likely the intention is to hide its presence in the system or
to tamper and interact with other processes (e.g. information stealing).

Figure 32. Selected functions imported from kernel32.dll.

TerminateProcess function suggest that malware might be trying to terminate some system processes.
Knowing from the strings analysis, that the malware has hardcoded names of antivirus programs
processes, we may guess that it will be trying to kill those processes to avoid detection.

Figure 33. Selected functions imported from kernel32.dll.

The WinExec function suggests the malware might be trying to execute some system command.

Figure 34. Selected functions imported from kernel32.dll.

These functions are used to enumerate a process list. This confirms a previous suspicious that the
malware might be trying to terminate certain processes or to inject remote threads to some of them.

Artifact analysis fundamentals
Artifact analysis training material

November 2014

Page 18

Figure 35. Selected functions imported from advapi32.dll.

These are functions used for registry operations. The malware is probably performing some registry
operations. Also the presence of the function CreateServiceA suggests that the malware might create
a system service – probably as a persistence mechanism.

Figure 36. Functions imported from avicap32.dll.

These functions are used to create video capture. This suggests that the malware might have some
spying functionality.

Figure 37. Functions imported from msvfw32.dll.

These video compression functions support the suspicion that the malware may try to capture a video
sequence.

Figure 38. Selected functions imported from user32.dll.

These system clipboard functions suggest that the malware might be trying to monitor the system
clipboard. It is another indicator of information stealing malware functionality.

Figure 39. Function imported from wininet.dll.

InternetOpenUrlA function is used to retrieve data from FTP or HTTP location. Malware might be using
this function to download additional configuration information from the Internet.

Exercise
1. Analyse in CFF Explorer the Import Address Table of the packed binary file (aop.exe). What

are the differences in comparison to the IAT of the unpacked sample?

Artifact analysis fundamentals
Artifact analysis training material

November 2014

Page 19

In the import address table (IAT) of the packed sample only six functions are imported from the
kernel32.dll library and only one function from every other library. This is typical for UPX packed
binaries.

Figure 40. IAT of the packed binary file.

3.6 PE resources analysis

Portable executable files usually contain an additional resources section which is used by the
executable to store images, icons, dialog windows, menus or other data. Malware sometimes uses
resource section store additional configuration data or files supposed to be dropped on a hard disk.

To examine the file resources section open the sample file in the Resource Hacker tool.

Artifact analysis fundamentals
Artifact analysis training material

November 2014

Page 20

Figure 41. Suspicious resource in aop_unpacked.exe.

In this case we see that the malware sample contains a single suspicious resource. At this stage of the
analysis it is hard to tell what it is used for. It might be some encrypted configuration string or just
useless random data. To determine the role of this resource advanced dynamic or static analysis will
probably be required.

Additionally the student might decide to export this resource to result files by right clicking on the
resource and choosing the Save option.

Figure 42. Exporting suspicious resource.

Artifact analysis fundamentals
Artifact analysis training material

November 2014

Page 21

3.7 Searching for embedded objects

Malware might sometimes contain embedded objects outside of the resources section. Exeinfo PE
tool has a special function allowing to scan any file for embedded objects in popular formats such as
PE files, MSI files, Word documents, images, etc.

To scan the sample for embedded objects, open it in Exeinfo PE and open the Ripper menu by clicking
on the Rip button. Then choose what type of object Exeinfo PE should search for, or choose the I’m
hungry for Ripping option to search for all known file types.

Figure 43. File ripping in Exeinfo PE.

If any embedded objects are be found they will be saved to the same directory in which the analysed
sample resides. In the case of the aop_unpacked.exe binary sample, only two icon files were found.

Figure 44. Icon files found by Exeinfo PE.

3.8 Finishing analysis

After the analysis is finished, copy and paste the obtained result files that you want to preserve into
the directory C:\analyses\results.

Artifact analysis fundamentals
Artifact analysis training material

November 2014

Page 22

Figure 45. Analysis results in C:\analyses\results directory.

Then switch to Styx machine window and go to /lab/analyses directory and download the results in a
separate subdirectory using the lab-get results script.

Figure 46. Downloading results to Styx.

After the results are downloaded, shutdown Winbox machine and restore the clean snapshot.

3.9 Extra samples

As an extra exercise, students can analyse additional malware samples using the techniques learnt in
this task. The extra samples names are: cutw231.exe, faktura.exe, svcost.exe. Samples can be found
in /home/enisa/enisa/ex3/extra.

For each sample, it should be possible to point to some of the functionalities. After each analysis
students should have an open discussion to share their findings.

4 Task 2: Behavioural analysis

In this task, the participant will execute malicious code in a virtual machine in order to observe what
changes it will make to the operating system. Based on the observed changes, students will try to
figure out how the malware works and what the indicators of the system infection are.

Behavioural analysis will cover following topics:

 Detecting new process creation

Artifact analysis fundamentals
Artifact analysis training material

November 2014

Page 23

 Detecting file system and registry changes

 Detecting rootkit artifacts using Gmer

 Analysing in-memory strings

 Monitoring system events

4.1 Analysis remarks

In this task, live malware samples will be executed on the dedicated virtual machine. As previously
mentioned, proper security precautions should be taken. All analyses will be done in the INetSim mode
– preventing the malware from making any direct access to the external network.

After executing the malware sample in the VM, the user should keep in mind that malware (especially
rootkits) sometimes change the operating system’s behaviour to hide its presence. For example
malware might hook file listing routines to hide its files on the file system.

Various tools used during the dynamic analysis might sometimes give false positive results (e.g. Gmer
always detecting the same two suspicious changes). Consequently it is good to test the tools before
executing actual malware to understand what the expected outcome might be.

During normal operating system operation there are many system processes and services running in
the background. Those processes perform various tasks sometimes resulting in various changes in the
operating system (e.g. creating pre-fetched files for executed binary files). This is particularly the case
with newer operating systems versions like for example Windows 7 or 8. Those changes shouldn’t be
mistaken with the changes done by malware.

4.2 Preparing analysis

First restore a clean snapshot of the Winbox VM and make sure that current network mode is set to
INetSim network simulator.

Figure 47. Switching network mode to network simulator

Then using Viper and the previously created malware collection, send the sample named
1102231642.exe to the Winbox machine. If there is no such sample in Viper, it can be copied from the
directory /home/enisa/enisa/ex3/samples.

Artifact analysis fundamentals
Artifact analysis training material

November 2014

Page 24

Figure 48. Finding sample in Viper

Figure 49. Sending sample to the Winbox machine.

Next, switch to the Winbox window and start the following tools: Process Explorer, Process Monitor
and Regshot. Refer to Building artifact handling and analysis environment exercise for the descriptions
of these tools.

Artifact analysis fundamentals
Artifact analysis training material

November 2014

Page 25

Figure 50. Process Explorer window.

After starting Process Monitor disable capturing events and clear capture view.

Figure 51. Disabling event capture and clearing Process Monitor

After starting Regshot check “Scan dir” option and set it to C:\.

Artifact analysis fundamentals
Artifact analysis training material

November 2014

Page 26

Figure 52. Regshot window.

Now the analysis environment is ready for the basic behavioural analysis. At this point the student
might consider creating an additional snapshot just before executing the malware sample. If anything
goes wrong during the analysis, or the student is uncertain about some specific malware behaviour,
he could then use this snapshot to quickly restore the VM to the clean state with all of the tools already
running and the with the malware sample already uploaded.

This snapshot should be distinctively named so it wouldn’t be missed in the future and accidently
merged with clean snapshot.

Figure 53. Creating snapshot before executing malware sample.

If the student decides to restore the snapshot, Winbox will be restored to its previous state. In
particular all files in C:\analyses\results will be overwritten. If there are already some meaningful
results stored in this directory, the student should consider downloading them with lab-getresults tool
prior to restoring snapshot.

In case of any problems, an alternate way of finishing this task is to start only one tool at a time instead
of starting all tools in a single analysis.

1. Start next single tool (Regshot, Process Explorer, Process Monitor, etc.).

2. Execute malware sample.

3. Analyse results.

Artifact analysis fundamentals
Artifact analysis training material

November 2014

Page 27

4. If there are any result files send them to Styx VM (lab-getresults).

5. Restore snapshot and go to 1.

This approach is slightly more time consuming but in specific cases might be a better solution.

In case the malicious sample is not executing on the student’s virtual machine, use the offline results
provided in /home/enisa/enisa/results/dyn1 directory. To use the offline results it is best to send
entire dyn1 directory to the Winbox virtual machine.

Sending offline results to the VM

$ lab-sendfile /home/enisa/enisa/ex3/results/dyn1

4.3 Executing malware sample

First use the Regshot tool to create an image of the clean system before executing malware sample.

Figure 54. Taking first shot in Regshot

After Regshot finishes with the analysis (2nd shot button becomes active) start event capturing in
Process Monitor.

Artifact analysis fundamentals
Artifact analysis training material

November 2014

Page 28

Figure 55. Starting event capture in Process Monitor.

Then student can execute the malware sample. At the same time, the student should pay attention to
the Process Explorer window and observe if there are any changes on the process list.

After the malware sample is executed, the student should wait (up to a minute) until the malware is
fully loaded in the system and finishes its installation routines. Then the student should stop the event
capture in Process Monitor and then take a second shot in Regshot. This should be done before any
further analysis in order to minimize the count of unimportant changes reported by Regshot and
Process Monitor – being a result of a normal system activity and not malicious operations.

Figure 56. Taking second shot in Regshot

Artifact analysis fundamentals
Artifact analysis training material

November 2014

Page 29

4.4 Process Explorer analysis

After executing the malware sample, new process 1102231642.exe almost instantaneously appears in
the process list.

Figure 57. New malware process.

Process Explorer uses a distinct colour scheme to highlight various processes9. By default blue colour
indicates that process is running in the same security context as Process Explorer. Pink colour indicates
that process is hosting one or more Windows services. Purple means that process image has been
most likely packed or compressed. Green and red colours points to new processes or the ones, that
just exited.

Soon after the main malware process starts, it spawns four child processes: win32.exe, explorer.exe,
debug.exe, sysedit.exe (random names, different in each analysis). Names of child processes suggests
that those might be some system processes – which is one of the techniques sometimes used by
malware to mislead system user. After spawning child processes malware process quits (red colour).

Figure 58. Malware process spawning child processes.

9 http://www.microsoft.com/security/sir/strategy/default.aspx#!malwarecleaning_explorer

http://www.microsoft.com/security/sir/strategy/default.aspx#!malwarecleaning_explorer

Artifact analysis fundamentals
Artifact analysis training material

November 2014

Page 30

Figure 59. Child processes after main malware process quits.

Next students should further inspect all new processes by right clicking on them and opening the
properties window. In the properties window, students can obtain various information about the
process, such as image location, security context, performance data, list of threads, TCP/IP
connections, as well as strings list. In this example we will examine the win32.exe process. Note that
process names might be different during the analysis – then examine first new process on the list
(analysis should be analogical).

Figure 60. Process properties window.

In this case we see that images of suspicious child processes were stored in %LOCALAPPDATA%\Temp
(C:\Users\ENISA\AppData\Local\Temp) directory which is typical location where malicious
executables store their copies or drop other malware files.

Artifact analysis fundamentals
Artifact analysis training material

November 2014

Page 31

Then students should switch to the Strings tab where they can inspect strings found in the process
memory. Other means to achieve this goal would be to dump the process to a file and then use normal
string analysis or attach to the process with a debugger and use the debugger to find all referenced
text strings.

Figure 61. List of strings found in process memory.

Students should then compare the strings found in memory with the strings present in the image file
(a simple visual comparison). Students should try to answer the following questions:

1. Do the strings found in memory differ from the strings obtained from the file

(1102231642.exe)?

2. Are there any interesting strings in memory pointing to the malware’s functionality or

behaviour? (analysis similar to string analysis from previous task)?

3. Do strings found in memory differ for each child process (win32.exe, explorer.exe, etc.)?

In case of this malware sample, strings found in memory differ from strings found in the image. There
are various strings pointing to potential malware functionality.

Artifact analysis fundamentals
Artifact analysis training material

November 2014

Page 32

Figure 62. Names of Windows functions likely used by malware.

This list of WinAPI functions are most likely dynamically imported by the malware during execution.
Those functions aren’t present in either the executable image import table or in the strings found in
image file.

Figure 63. Suspicious url found in the strings list.

The suspicious URL with some PHP file names and a likely user-agent string. This suggests that the
malware might be using http communication and this might be the address of the C&C server.

Below are images of some other distinctive groups of strings. Role of those strings isn’t clear at this
point of the analysis but they might be useful in later analyses.

Figure 64. Suspicious strings and hosts file path.

Artifact analysis fundamentals
Artifact analysis training material

November 2014

Page 33

Figure 65. Group of other suspicious strings.

Figure 66. Some URL formatting string that might be used in communication with C&C server.

4.5 Regshot analysis

After completing the second shot in Regshot tool, students should click the Compare button to detect
filesystem and registry changes between first and second shot. As a result a notepad window should
appear with seven sections:

 Keys added (registry)

 Values deleted (registry)

 Values added (registry)

 Values modified (registry)

 Files added (file system)

 Files deleted (file system)

 Files [attributes?] modified (file system)

It is important to remember that Regshot uses standard system functions to detect any file system or
registry changes. Consequently if malware alters those functions (e.g. to not list certain files), certain
file system or registry changes may not be detected by Regshot. In most cases this applies to hiding
malware files from the user. Such files can be often still be detected using results from other tools.

In the Values added section we see that the malware achieves persistence by adding new value
hsfio38fiosfh398rfisjhkdsfd "C:\Users\ENISA\AppData\Local\Temp\win32.exe" in HKU\S-1-5-21-
606041777-3127973734-2451401058-1001\Software\Microsoft\Windows\CurrentVersion\Run\.
This is popular persistence mechanism used by malware letting it to be executed after each reboot.

Artifact analysis fundamentals
Artifact analysis training material

November 2014

Page 34

Values added: 15

…

HKU\S-1-5-21-606041777-3127973734-2451401058-

1001\Software\Microsoft\Windows\CurrentVersion\Run\hsfio38fiosfh398rfisjh

kdsfd: "C:\Users\ENISA\AppData\Local\Temp\mdm.exe"

In the Values modified section we can see that the malware changed the values of Hidden and
HiddenFileExt, which makes the operating system hide well known file extensions and disable showing
hidden files.

Values modified: 19

HKU\S-1-5-21-606041777-3127973734-2451401058-

1001\Software\Microsoft\Windows\CurrentVersion\Explorer\Advanced\Hidden:

0x00000001

HKU\S-1-5-21-606041777-3127973734-2451401058-

1001\Software\Microsoft\Windows\CurrentVersion\Explorer\Advanced\Hidden:

0x00000000

HKU\S-1-5-21-606041777-3127973734-2451401058-

1001\Software\Microsoft\Windows\CurrentVersion\Explorer\Advanced\HideFileExt:

0x00000000

HKU\S-1-5-21-606041777-3127973734-2451401058-

1001\Software\Microsoft\Windows\CurrentVersion\Explorer\Advanced\HideFileExt:

0x00000001

…

In the Files added section we see that the malware added four executable files and one file with a .tmp
extension.

Files added: 10

C:\Users\ENISA\AppData\Local\Temp\win32.exe

C:\Users\ENISA\AppData\Local\Temp\skaioejiesfjoee.tmp

C:\Users\ENISA\AppData\Local\Temp\explarer.exe

C:\Users\ENISA\AppData\Local\Temp\debug.exe

C:\Users\ENISA\AppData\Local\Temp\sysedit.exe

C:\Windows\Prefetch\1102231642.EXE-8311975F.pf

C:\Windows\Prefetch\MDM.EXE-E5C1239F.pf

C:\Windows\Prefetch\WIN.EXE-FE4EAC67.pf

C:\Windows\Prefetch\WIN32.EXE-31D65D18.pf

C:\Windows\Prefetch\WININST.EXE-66A7782D.pf

4.6 Process Monitor analysis

After event capture is stopped it is good to save the results for later analyses.

Artifact analysis fundamentals
Artifact analysis training material

November 2014

Page 35

Figure 67. Saving Process Monitor results.

Next using process tree (Tools -> Process Tree…) find suspicious malware processes.

Figure 68. Locating malicious processes using Process Tree.

From analysing the process Life Time it is clear that malware process (1102231642.exe) first started,
spawned additional child processes and quit. Right click each malware process and choose “Add
process to Include filter”. Now only visible events in the main Process Monitor window will be the
events related to selected processes.

Artifact analysis fundamentals
Artifact analysis training material

November 2014

Page 36

Figure 69. Process Monitor window after filtering out unnecessary processes.

Due to the large amount of information, it is good idea to limit it to only more interesting events.
Students can achieve this by either highlighting interesting events or adding them to a filter.

First students should try to highlight the following operations: Process Create, WriteFile, and Process
Start. This can be done using Process Monitor Highlighting dialog window (Filter -> Highlight…). An
alternate way is to right click on a selected event and choose ‘Highlight <name>’.

Figure 70. Adding highlight in Process Monitor.

After highlighting filter main Process Monitor window should look similar to the following:

Artifact analysis fundamentals
Artifact analysis training material

November 2014

Page 37

Figure 71. Process Monitor highlight.

Students can now scroll down the events list easily and follow interesting operations.

Next, the students should try to add include filters in the same manner (highlight filter can be now
disabled). Operations for include filter: RegSetValue, WriteFile, Process Create. This can be done using
Process Monitor Filter dialog (Filter -> Filter…).

Figure 72. Include filters in Process Monitor.

After applying the include filters, main Process Monitor window should look like:

Artifact analysis fundamentals
Artifact analysis training material

November 2014

Page 38

Figure 73. Process Monitor after applying include filter.

Following filtered events, we are able to see that the main malware process isn’t responsible for
setting persistence and modifying other registry values. It is the first spawned process (in this case
login.exe) which installs itself in HKCU\Software\Microsoft\Windows\CurrentVersion\Run\ and also
creates .tmp file in %LOCALAPPDATA%.

In general the highlight feature is useful to analyse certain events with respect to other events. For
example to check which events progressed with a new process creation, highlight Process Create event
and then analyse events proceeding each highlighted event. On the other hand, using the include filter
is useful when one needs to focus only on a group of events that meet a given criteria and no other
events.

Double clicking on each event will reveal additional information. Double click on one of the WriteFile
events of the main 1102231642.exe process and switch to the Stack tab in the new dialog window.

Artifact analysis fundamentals
Artifact analysis training material

November 2014

Page 39

Figure 74. Stack view in Process Monitor

At this window, the student can view the call stack of the calling process at the moment when the
event occurred. In this example, the event was a result of the CopyFileA function call from the main
malware process. Additional helpful information is the address at which the call took place –
0x404d70. This address can be used during more advanced static analysis to quickly locate the routine
responsible for copying new executable files.

Next, the students should view the Cross Reference Summary (Tools -> Cross Reference Summary…).
This window shows which files and registry keys were written to or read from, and by what processes.

Figure 75. Process Monitor cross reference summary.

We can see that .tmp file is written by only one spawned process. The rest of the processes only read
this file. This means that this file might be used for the IPC (Inter Process Communication) of spawned
processes. It is also worth to notice the UserID key is written to only by the main malware process,

Artifact analysis fundamentals
Artifact analysis training material

November 2014

Page 40

and read by rest of the processes. This means that this key might be used to store configuration data
for other processes.

Exercise:

1. Create filter in Process Monitor which will detect all writes to the .exe files by any system
process.
To create this filter students need to create two Include filters:

 Operation, is, WriteFile

 Path, ends with, .exe

Figure 76. Process Monitor filter detecting writes to .exe files.

4.7 Searching for rootkit artifacts

In the final step of the analysis, the students will be searching for rootkit artifacts using GMER tool.
Depending on the GMER results, additional analysis steps may be taken – for example if GMER detects
new hidden file that wasn’t detected in any of the previous steps.

First close all open tools used in the first part of the exercise (Process Explorer, Process Monitor, etc.)
and then start GMER.

Figure 77. Main GMER window.

Leaving the default analysis options set (System, Sections, IAT/EAT, etc.) click Scan to begin system
scanning. Depending on the VM size and resources, analysis might take some time (up to several
minutes). Sometimes, to speed up the scanning, a user might decide to choose fewer analysis options.

Artifact analysis fundamentals
Artifact analysis training material

November 2014

Page 41

Figure 78. GMER results.

In this case, the first three changes reported by GMER (two hooks and a file system problem) are
changes that are always reported by GMER on this system. An additional two changes report a
suspicious structure of the debug.exe which indicate that some obfuscation was used. There are no
changes indicating typical rootkit activity (e.g. hooks on many system functions, hidden files, and
hidden processes). Note that running GMER more than once can produce additional hits, for instance
files in a temporary directory that can be created during previous runs by the tool itself.

4.8 Finishing analysis

After the analysis is finished, copy all of the results obtained, screenshots, and notes to the directory:
C:\analyses\results, and send them to Styx as described in the task: Basic static analysis.

After the results are sent to Styx, shutdown Winbox machine and restore the clean snapshot.

4.9 Extra samples

As an extra exercise, students can analyse additional malware samples using techniques in this task.
Extra samples names are: dddsf.exe, inst2.exe, msupdate.exe. Samples can be found in
/home/enisa/enisa/ex3/extra.

It is not necessary to stick precisely to the behavioural analysis algorithm described in this task.
Students might use only some of the tools described or use tools not described in this task, but present
on the Winbox machine (if they are familiar with them, e.g. Rohitab API Monitor, OllyDbg). Students
are advised to use snapshots during the analysis. For each sample it should be possible to point to
some of its functionality. After each analysis, students should have an open discussion to share their
findings.

Artifact analysis fundamentals
Artifact analysis training material

November 2014

Page 42

5 Task 3: Network analysis

In this task students will capture and analyse network traffic generated by malware. The first step
shows how to conduct network analysis, and obtain three types of network analysis results: network
traffic capture in PCAP format, MITMProxy capture log, and INetSim log files. The next steps will cover
various types of network traffic generated by three different malware samples.

The network type used in all following analyses will be netsim_mitmproxy. Students should also
remember that not all traffic captured in the exercise is explicitly generated by malware. Depending
on the Windows version and configuration on the Winbox machine there might be some traffic
captured that is not related to the malware.

5.1 Network traffic capture and log acquisition

First, restore the Winbox snapshot used for dynamic analyses and send the malware sample to the
Winbox. In this step, use sample pz_7.exe which will be also used in the next step. If the sample is not
already present in Viper it can be found in the directory: /home/enisa/enisa/ex3/samples.

Figure 79. Sending sample to the analysis.

After restoring the virtual machine and sending the sample make sure that netsim_mitmproxy
network type is currently chosen.

Switching network configuration to netsim_mitmproxy

$ lab-switch-net netsim_mitmproxy

Applying changes...

Next clean all network related logs and result files (Inetsim, MITMProxy, Snort, pcaps) using lab-
cleanlogs script. It is necessary because there might be some logs left from a previous analyses.

Cleaning old logs

$ lab-cleanlogs

When the logs are deleted, start the network traffic capture (PCAP) and MITMProxy tool. Pcap files
and MITMProxy logs will be automatically saved to separate files in /lab/var directory.

Starting network capture and mitmproxy

$ lab-netdump start

Starting capture to /lab/var/pcaps/net_140922115236.pcap

$ lab-mitmproxy

Artifact analysis fundamentals
Artifact analysis training material

November 2014

Page 43

Figure 80. New MITMProxy window (with no logs captured yet)

After starting the network capture switch to the Winbox window, execute the malware sample and
wait for a few minutes. It is good to let the malware run for at least 4-5 minutes, but the ideal time
might differ according to the malware sample or malware family. In general the goal is to capture all
different types of network traffic generated by the malware. Usually at some point in time, the
network actions performed by the malware starts repeating periodically or stops. This will be the
indicator that there is no need to capture more network traffic. One should also be able to recognize
network patterns resulting from some dynamic or random generator. Example of such traffic might
be DGA (Domain Generation Algorithm) when malware tries to connect to dynamically generated
domain names. In such situation capturing a limited number of such domains will be enough.

During the exercise it is not necessary to wait until network traffic starts repeating. Waiting about 4-5
minutes should be enough for all samples.

Optionally, to view live capture of the network traffic, students might decide to open a new Styx
console window (either connecting to Styx via SSH or using screen to start MITMProxy) and then start
reading .pcap file with Tcpdump (pcap filename should be replaced with the actual one).

Viewing live network capture

$ cd /lab/var

$ tail –c 100000000 –f net_140922115236.pcap | tcpdump –nr-

Figure 81. Live view of the network traffic capture.

Students might also decide to run Wireshark inside the Winbox machine. In most situations it will work
without any problem, but in rare cases, sophisticated malware might try to evade network capture
inside the Winbox machine, or detect Wireshark and change its behaviour. For samples used in this
exercise, students should not have a problem using Wireshark inside Winbox.

Artifact analysis fundamentals
Artifact analysis training material

November 2014

Page 44

After enough time elapses (4-5 minutes), stop mitmproxy capture by pressing ‘q’ (quit) key and then
‘y’ (yes). MITMProxy will save results to /lab/var/mitmproxy/mitm.dump.

Figure 82. Quiting mitmproxy.

Then stop tcpdump packet capture and restart INetSim service. Restarting INetSim service is necessary
for INetSim to generate report summarizing observed traffic.

Stopping tcpdump packet capture

$ lab-netdump stop

Capture stopped [/lab/var/pcaps/net_140922115733.pcap]

$ sudo service inetsim restart

* Restarting Internet Service Simulation Suite inetsim

 ...done.

Then copy all result files for further analysis:

Stopping tcpdump packet capture

$ mkdir –p /lab/analyses/pz_7.exe

$ cd /lab/analyses/pz_7.exe

$ sudo cp –a ../../var net_results

Now, the network traffic capture and log acquisition is finished and the students can restore the clean
snapshot of the Winbox machine.

5.2 P2P and DGA traffic

In this step sample pz_7z.exe will be analysed. Use network traffic capture obtained in the previous
step or send the sample to the Winbox machine and perform a new analysis as described in the
previous step. It is also assumed that the result files are stored in the
/lab/analyses/pz_7.exe/net_results/ directory.

In case there were any problems with performing analysis, result files can be also obtained from:
/home/enisa/enisa/ex3/results/net1/net_results/ directory.

First, start the clean Winbox machine and send to it the pcap file obtained from malware analysis.

Artifact analysis fundamentals
Artifact analysis training material

November 2014

Page 45

Figure 83. Sending pcap to Winbox machine.

Open the uploaded file in Wireshark on Winbox.

Figure 84. Wireshark window after opening .pcap file.

If there is a lot of captured traffic, it is good to check Protocol Hierarchy Statistics to determine what
protocols are present in the capture. Otherwise it is sometimes easy to miss protocols for which only
a few packets were sent.

To view Protocol Hierarchy Statistics choose Protocol Hierarchy from the Statistics menu.

Artifact analysis fundamentals
Artifact analysis training material

November 2014

Page 46

Figure 85. Viewing protocol hierarchy statistics.

As we can see communication mostly consisted of HTTP traffic, DNS requests, some unknown UDP
datagrams (UDP data) and also some ICMP messages.

Next close Protocol Hierarchy Statistics and go back to main Wireshark window. Scroll down till you
see some UDP traffic.

Figure 86. UDP traffic in Wireshark window.

This is clearly not normal traffic generated by the operating system. Such traffic is usually characteristic
to malware with P2P functionality using protocols like Kademlia. Also the fact that the malware is
trying to connect to the external IP addresses means that those addresses were either hardcoded or
dynamically generated by the malware (because any DNS requests resolve to 10.0.0.1 in this
laboratory).

To further inspect udp traffic, apply the following Wireshark view filter: ip.src == 10.0.0.2 && udp &&
!icmp

Artifact analysis fundamentals
Artifact analysis training material

November 2014

Page 47

Figure 87. Wireshark after applying view filter.

Then compare UDP packets with each other – checking source and destination ports, UDP payload
size and content.

Figure 88. UDP datagram sent to 180.247.156.110.

Figure 89. UDP datagram to 93.177.174.224.

We can observe that each UDP datagram is addressed to a different destination port but originates
from the same source port number - 1736. Also, the payload size seems to be different for each
datagram.

Analysing datagrams payloads we see that there are no common bytes and all the content seems to
be randomized. This means that the malware is likely using some sort of encryption resulting in
different content for each datagram. Differences in size of payloads suggest that malware might be
also adding some padding or junk bytes in the protocol.

Figure 90. Payload of datagram addressed to 180.247.156.110.

Artifact analysis fundamentals
Artifact analysis training material

November 2014

Page 48

Figure 91. Payload of datagram addressed to 93.177.174.224.

To get a distinct list of IP addresses to which malware sent datagrams, select Endpoints module from
Statistics menu (without clearing Wireshark filter). Then switch to IP tab, check Limit to display filter
and uncheck Name resolution.

Figure 92. UDP endpoints list.

On the above screenshot list of UDP endpoints was marked with yellow colour. We can see that there
was only one datagram sent to each endpoint. As of rest IP addresses 10.0.0.2 is local address,
224.0.0.252 is standard multicast address and 8.8.8.8 is primary DNS address.

Artifact analysis fundamentals
Artifact analysis training material

November 2014

Page 49

Next, close the Endpoints window and clear the Wireshark filter to get a list of all captured traffic.
Then scroll down below to UDP communication. There should be some DNS requests and HTTP
communication.

Figure 93. Malware DNS and HTTP communication.

Here we see that the malware is doing DNS requests for random-looking domain names and then
connecting to them with HTTP protocol doing GET / request.

To better inspect requested domain names apply the following Wireshark filter: ip.src == 10.0.0.2 &&
dns

Figure 94. DNS requests filtered in Wireshark window.

This is typical DGA (Domain Generation Algorithm) mechanism in which malware is generating
seemingly random domain names with some deterministic algorithm and then trying to connect to

Artifact analysis fundamentals
Artifact analysis training material

November 2014

Page 50

them. Thanks to DGA, the malware is not limited to hardcoded domain names which can be easily
blocked by law enforcement authorities. On the other hand not all DGA domains are registered by
botmaster. This means that knowing DGA algorithm proper authorities might intentionally register
unregistered domains to perform so called sinkholing – making some of the infected computers to
connect to controlled servers instead of the original rogue ones.

To inspect HTTP traffic to those DGA domains clear the Wireshark view filter and apply the new one:
ip.src == 10.0.0.2 && http

Figure 95. HTTP traffic Wireshark filter.

The most interesting requests are GET / requests. To inspect HTTP headers and sent data right click
on a few requests and choose Follow TCP Stream from the context menu. A new window with TCP
stream should appear. After each click you will have to reapply the previous HTTP traffic filter because
following the TCP stream automatically makes Wireshark change the view filter.

Figure 96. TCP Stream window in Wireshark.

Artifact analysis fundamentals
Artifact analysis training material

November 2014

Page 51

In the TCP stream window the most interesting part is red text—the data sent by malware to the HTTP
server. If the exercise was conducted with full access to the Internet, usually it would be also
interesting to analyse real server replies (blue colour) – which might contain important information.
In this case malware had only access to the network simulator – making server reply predictable and
always the same.

Figure 97. HTTP request to ofobeuylmnwctgtggvcrcamfehovu.com domain.

Figure 98. HTTP request to cieayptkrsldlmnvdqcmlin.com.

We see that among various HTTP requests only the Host value changes. It is important to note that
the User-Agent string seems to be always the same. This might be used as a part of a network signature
detecting this malware.

Now switch back to the Styx machine to do some analysis of the DGA domains.

One of the easy ways to get a list of DGA domain names is to use INetSim logs (other method would
be to use Tshark tool present on Winbox machine). To do this, go to the INetSim results directory. In
the report subdirectory there should be a single .txt file with report generated by INetSim.

Extracting list of DGA domains (on styx)

$ cd /lab/analyses/pz_7.exe/net_results/inetsim/report

$ ls

report.23733.txt

$ grep ‘requested name` report.23733.txt | cut –d ‘ ‘ –f 12 >

domains.list

Now edit domains.list file and remove any domain that doesn’t look like DGA domain e.g.
www.google.com, getgreenshot.org, etc. – there shouldn’t be too many such domains.

First check if there are any domains that appear multiple times.

Counting unique domains

$ cat domains.list | wc –l

152

$ cat domains.list | sort –u | wc –l

152

Both numbers should be the same meaning only unique names are present in the domains.list file.

Next check in what TLDs and ccTLDs are DGA domains.

Checking TLDs and ccTLDs

Artifact analysis fundamentals
Artifact analysis training material

November 2014

Page 52

$ cat domains.list | cut -d '.' -f 2 | sort | uniq -c | sort -n

 20 net

 20 org

 21 info

 25 biz

 25 ru

 41 com

This means DGA domains are only in .net, .org, .info, .biz, .ru and .com domain with the last one having
about twice as many entries as any other TLD.

It might be also useful to view average secondary-level domain name length (with TLD part stripped)
to view if there is any pattern (e.g. all domains having the same length).

Checking DGA domain name length distribution

$ cat domains.list | cut -d '.' -f 1 | awk '{ print length }' | sort

-n | uniq -c

 1 18

 1 20

 8 21

 8 22

 14 23

 21 24

 22 25

 27 26

 18 27

 20 28

 8 29

 4 30

We see that most of the DGA domain names have length between 23 and 28 characters and almost
all should have length between 18 and 30 characters.

Exercise:

Perform an analysis of the same sample for a second time, and try to answer the following questions
(offline results available at /home/enisa/enisa/ex3/results/net1_2/net_results):

1. Is the captured network traffic similar to the network traffic observed in the first analysis?

Yes, the captured traffic was similar. First there was a group of UDP datagrams and then
malware started connecting to DGA domain names. In both cases there was also a single HTTP
request to www.google.com host – after sending UDP datagrams finished. In all HTTP requests
malware was using the same User-agent string.

Artifact analysis fundamentals
Artifact analysis training material

November 2014

Page 53

2. Was the malware sending UDP datagrams to the same IP addresses? What might this

mean?

Yes. The malware was sending UDP datagrams to the list of the same IP addresses and to the
same destination port each. This means that list of IP addresses was most likely hardcoded
into the malware code.

3. Was the UDP src port the same?

No. The source port of the UDP datagrams was different.

4. Did the malware try to connect to the same domain names with HTTP protocol? What

does it mean?

No. The malware was trying to connect to a completely different set of domains. This means
that those domains were randomly generated (with the use of some algorithm known to the
malware creator).

5. Is a list of UDP addresses to which this sample sends datagrams a good network signature

for detecting infections by this malware family?

No. It is not a very good indicator. Those addresses are constant for this particular sample.
Other malware samples from the same family, that belong to a different botnet, will be
sending UDP datagrams to different IP addresses.

5.3 HTTP traffic analysis

In this step sample l6XIE6749M.exe will be analysed. Capture the network traffic for this sample as it
was described in the first step of this task. If during the analysis any dialog windows in Winbox appear
accept them. It is assumed that result files will be stored in the directoru: /lab/analyses/
l6XIE6749M.exe/net_results/ .

In case there were any problems while performing the analysis, the result files can be also obtained
from: /home/enisa/enisa/ex3/results/net2/net_results/

First go to the mitmproxy results directory and open mitmproxy logs.

Opening mitmproxy logs

$ cd /lab/analyses/l6XIE6749M.exe/net_results/mitmproxy/

$ ls

mitm.dump

$ mitmproxy –n --host –r mitm.dump

Artifact analysis fundamentals
Artifact analysis training material

November 2014

Page 54

Figure 99. Mitmproxy window after reading log file.

To navigate through mitmproxy use arrow keys ([up], [down]). To view request details select request
and press [Enter].

Figure 100. Mitmproxy request details view.

In the request details view, to switch between request and server response use [Tab] key. At any point
you can press ‘q’ key to go back.

After opening the mitmproxy logs obtained during the analysis, we see that there were several
suspicious HTTP requests most likely done by the malware.

First two requests lead to the addresses:

 http://api.hostip.info/country.php

 http://promos.fling.com/geo/txt/city.php

http://api.hostip.info/country.php
http://promos.fling.com/geo/txt/city.php

Artifact analysis fundamentals
Artifact analysis training material

November 2014

Page 55

Figure 101. First two requests observed in mitmproxy.

The names of those URLs suggests they are used by malware to obtain geolocation data based on
infected machine external IP address. Geolocation data is frequently used by malicious software to
change its behaviour – some malware samples don’t execute if started in certain countries while
others might change their execution behaviour based on geolocation results (e.g. ransomware
presenting messages in different languages).

Next there are six requests to afferdls.cn domain. Each of those requests has exact same headers and
user-agent string. The only changing element is the value of GET parameter ‘a’.

Figure 102. Requests to afferdls.cn domain.

Figure 103. afferdls.cn request headers.

Next we see a few requests for .exe files. In the analysed log there were 5 such requests:

 http://goemqag.eu/rtce007.exe (group 1)

 http://wabomiw.eu/jucheck.exe (group 1)

 http://alliswellintheuniverse.com/pRru4.exe (group 2)

 http://feyzmusteri.com/pAfy.exe (group 2)

 http://inzynieriawroclaw.soulhost.eu/yQQ1qD.exe (group 2)

The first two requests (group 1) were most likely done by a different malware module than requests
from group 2. Requests from first group had different HTTP headers than requests from the second
group. Also there is no negligible time difference between the executions of requests from each group.

Figure 104. Headers structure of requests from the first group.

http://goemqag.eu/rtce007.exe
http://wabomiw.eu/jucheck.exe
http://alliswellintheuniverse.com/pRru4.exe
http://feyzmusteri.com/pAfy.exe
http://inzynieriawroclaw.soulhost.eu/yQQ1qD.exe

Artifact analysis fundamentals
Artifact analysis training material

November 2014

Page 56

Figure 105. Headers structure of requests from the second group.

We also know that the requested executables were executed on the Winbox system because a few
popups appeared during the analysis informing that INetSim executable was executed (INetSim serves
fake PE32 executable file when there is request for .exe file).

Figure 106. INetSim binary being executed on the Winbox machine.

Another interesting group of requests were the three requests to gate.php file:

 http://favoritepartner.com/ponyrtce/gate.php

 http://linercable.com/ponyrtce/gate.php

 http://biggestsetter.com/ponyrtce/gate.php

The characteristic gate.php filename suggests that those addresses are used by the malware to
contact the C&C server. Next, let’s view request details of one of those requests.

Figure 107. Details of http://favoritepartner.com/ponyrtce/gate.php request.

There is some binary payload attached to the request. To ease viewing the binary payload, switch to
hex view by pressing ‘m’ and then ‘e’.

Artifact analysis fundamentals
Artifact analysis training material

November 2014

Page 57

Figure 108. Request payload in hex view.

When comparing this payload to payloads of other gate.php requests, we see that each request had
exactly the same payload.

Exercise:
1. Analyse the pcap file obtained in the same analysis of l6XIE6749M.exe sample. Is there any

other suspicious network traffic besides http requests observed by MITMProxy?

Yes. There is suspicious non-http traffic in PCAP file.

First there are a few UDP datagrams sent to 94.242.250.64 to port 53 (and seen by Wireshark
as malformed DNS requests). This might be some covert channel created by the malware using
port 53 to deceive system administrator.

Figure 109. Suspicious UDP traffic to port 53.

Secondly there were a few TCP connection attempts to port 91.

Figure 110. Connection attempts to TCP port 91.

Artifact analysis fundamentals
Artifact analysis training material

November 2014

Page 58

2. During this exercise MITMProxy captured information about many HTTP connections. Were

the addresses of all HTTP servers resolved by domain or were there any HTTP connections to

hardcoded IP addresses?

The connection to http://afferdls.cn/stat2.php was done with a hardcoded IP address. There
was no DNS request about afferdls.cn domain.

In the current lab configuration if malware tries to connect to any domain, its address will be
resolved to 10.0.0.1 (by INetSim fake DNS server). If the malware tries to connect to any service
through a hardcoded IP address it will appear in the captured network traffic as a connection
to an external IP address.

This can be easily viewed in Wireshark:

Figure 111. Connections to external IP address.

It can be also viewed in MITMProxy if MITMProxy will be started without --host flag.

Starting mitmproxy without --host flag.

$ mitmproxy –n –r mitm.dump

Figure 112. MITMProxy without --host flag.

5.4 Extra sample

As an extra exercise, students can analyse additional malware samples using the techniques known in
this task. The extra sample name is: ejhct.bfg.exe. The sample can be found in
/home/enisa/enisa/ex3/extra.

After analysis, students should have an open discussion to share their findings.

6 Task 4: Automatic analysis

After learning basic static analysis and dynamic analysis, students will be asked to perform automatic
analysis using Cuckoo Sandbox to see what are advantages and disadvantages of such type of analysis.
First, the students will upload the new sample to Cuckoo Sandbox and then they will analyse the
results obtained.

Artifact analysis fundamentals
Artifact analysis training material

November 2014

Page 59

To present all features of the Cuckoo Sandbox, a new malware sample, not analysed in previous tasks,
will be used.

6.1 Sending sample to Cuckoo

First, start Cuckoo Sandbox with its web interface and API script as described in the first exercise
Building artifact handling and analysis environment. Also make sure that INetSim is currently enabled.
NB: Cuckoo snapshot should in running state!

Then start Viper (in enisa project space) and find invoice.exe sample. If there is no such sample it can
be obtained from /home/enisa/enisa/ex3/samples directory.

Figure 113. Finding invoice.exe sample in Viper

Then send sample to Cuckoo using the Viper cuckoo command.

Figure 114. Sending invoice.exe sample to the cuckoo analysis.

Then start Cuckoo web interface, switch to Recent tab and wait until the last analysis (md5:
a4f80b699b52c39da…) will be completed and report generated.

Figure 115. Completed invoice.exe analysis in Cuckoo Sandbox.

To view the analysis report click on md5 sum link.

Artifact analysis fundamentals
Artifact analysis training material

November 2014

Page 60

Figure 116. Cuckoo report of the invoice.exe file.

Each Cuckoo report is divided into five areas: Quick Overview, Static Analysis, Behavioural Analysis,
Network Analysis and Dropped Files. All of these areas will be briefly presented in the next steps of
this task.

If there were any problems with starting Cuckoo Sandbox or sending sample to the analysis, offline
analysis results can be obtained from /home/enisa/enisa/results/cuckoo1.

Offline results are in form of a saved webpage. To view them upload the results to the clean instance
of the Winbox machine and open the result file (cuckoo_invoice.htm) in a web browser. Then proceed
with the analysis as it is described in the next step.

Sending offline cuckoo results to Winbox

$ lab-sendfile /home/enisa/enisa/results/cuckoo1

6.2 Cuckoo Sandbox results

The first area of the Cuckoo Sandbox report is Quick Overview giving brief information about analysed
sample and its behaviour.

At the top of the Quick Overview there is File Details section presenting a sample file name, checksums
as well as any detected signatures. An interesting thing to notice is that if the sample is uploaded to
Cuckoo Sandbox using Viper, the original sample file name is changed to its SHA256 sum value. This is
not the case when the sample is uploaded by web interface or Cuckoo scripts.

Figure 117. File Details section of the Cuckoo report.

Artifact analysis fundamentals
Artifact analysis training material

November 2014

Page 61

The following section is presenting what hosts the malware connected to, and what domains it was
querying? In this case we can see two suspicious domains: angelescitypattaya.com and
pattayasuay.com.

Figure 118. List of hosts and domains from the Cuckoo report.

The summary section below is presenting list of files, registry keys and mutexes which malware
accessed during the analysis (created, read or written).

Figure 119. Fragment of the list of accessed files.

Artifact analysis fundamentals
Artifact analysis training material

November 2014

Page 62

Figure 120. Fragment of the list of accessed registry keys.

Figure 121. Fragment of the list of accessed mutexes.

6.3 Static Analysis results

Switch to the Static Analysis area of the Cuckoo Sandbox report. This section contains information
about static analysis findings. Additionally Static Analysis is divided into three subsections: static
analysis, strings and antivirus.

Figure 122. Static Analysis section with three subsections.

The Static Analysis subsection starts with the Version Info structure – structure which is typically
attached to the executable file as an additional resource 10 . The aim of this structure is to give
information about the executable version number, operating system, description, as well as the
original file name.

10 http://msdn.microsoft.com/en-us/library/windows/desktop/aa381058%28v=vs.85%29.aspx

http://msdn.microsoft.com/en-us/library/windows/desktop/aa381058%28v=vs.85%29.aspx

Artifact analysis fundamentals
Artifact analysis training material

November 2014

Page 63

Figure 123. Fragment of the Version Info structure of the analysed sample.

In this case we see that Version Info structure is filled with random strings – this is not a typical
situation.

Below Version Info structure there is a list of PE sections found in executable file.

Figure 124. List of sections in analysed binary file.

We can see that the first two sections have some random names. Moreover the second section has
very high entropy (7.99/8.00) while the first section has no raw data on disk and large virtual size. This
is a clear indicator that this sample was packed.

The sections below list the sample imports lists. We see that malware imports only a few functions
from three libraries. This confirms our suspicion that this sample was packed.

Artifact analysis fundamentals
Artifact analysis training material

November 2014

Page 64

Figure 125. Imports list of the sample.

Next, switch to Strings subsection which contains strings found in sample file. As expected from the
packed file there aren’t too many meaningful strings for this sample.

Figure 126. Fragment of the Strings subsection.

Depending on whether there was internet access on the Styx machine, in the next Antivirus subsection
there will be a list of Virustotal results for the analysed file (if there was no Internet access this
subsection will be empty).

Artifact analysis fundamentals
Artifact analysis training material

November 2014

Page 65

Figure 127. Fragment of the Virustotal results list for the analysed sample.

6.4 Behavioural Analysis results

Behavioural Analysis results section contains information on what malicious processes were running
during the analysis. It lists processes started by the malware as well as processes to which the malware
injected its code.

At the top there is a process tree of the malware’s processes.

Figure 128. Malware processes process tree.

On this list we see that the malware sample (d99dfc…, pid:1540) created two new processes:
unweh.exe and cmd.exe. There is also a group of other processes involved in malware activity:
taskhost.exe, Dwm.exe, Explorer.EXE, FileZilla Server Interface.exe and Greenshot.exe to which
malware might have injected some code.

Artifact analysis fundamentals
Artifact analysis training material

November 2014

Page 66

In the process tree below, there is an API calls list for each traced process. To switch between
processes click on tabs with process names. It is also possible to filter API calls by clicking on the chosen
calls type.

Figure 129. API calls list.

Each observed API call consists of timestamp when it was observed, its name, arguments, status,
return value and information whether it was repeated.

Figure 130. Two example API calls.

By tracing the calls made by each process, it is possible to find out information about some of the
malicious code’s functionality. Unfortunately due to the usually large number of observed calls it is a
rather time consuming task.

Due to the structure of the results page, API calls won’t be available for students using offline results
file cuckoo_invoice.htm. Students using offline results can still view API calls using slightly older Cuckoo
report format by opening the second file – cuckoo_invoice2.htm.

Artifact analysis fundamentals
Artifact analysis training material

November 2014

Page 67

Figure 131. Older format of API calls list in cuckoo_invoice2.htm.

6.5 Network Analysis results

The Network Analysis section includes information about network traffic observed during the analysis.
Currently, the detected traffic types are DNS requests, HTTP traffic, ICMP packets and IRC protocol. It
is also possible to directly download the PCAP file with all of the detected traffic for further inspection.

Figure 132. Network traffic analysis section.

Hosts and Domains were already listed in the Quick Overview section. The only other recognized traffic
are eight HTTP requests.

Artifact analysis fundamentals
Artifact analysis training material

November 2014

Page 68

Figure 133. HTTP requests subsection.

In the HTTP requests subsection we can see that the malware was doing multiple suspicious HTTP
POST requests to file.php. In each such request the same User-agent string was used. There was also
variable length POST data attached, different for each request.

In total there were six requests to file.php to two unique URIs:

 http://angelescitypattaya.com/mimosa/file.php

 http://pattayasuay.com/dkp/file.php

6.6 Analysing list of dropped files

The last section of the Cuckoo report (Dropped Files) contains a list of files that were observed to be
created during the analysis.

Artifact analysis fundamentals
Artifact analysis training material

November 2014

Page 69

Figure 134. Dropped Files section.

For each dropped file there is a standard file details table containing the file name, type, and group of
cryptographic hashes. Additionally each file can be downloaded to the local machine.

In this analysis, Cuckoo Sandbox detected the creation of the following files:

 unweh.exe (executable)

 d99dfcdd814ef39468f6912a8cf772f85eeeac285eb6c3187650eb9cd7833c79 (executable)

 tmpfd5ba7aa.bat (DOS batch file)

 igruo.duo (unknown data)

 file[1].htm (HTML document/text)

 file[2].htm (HTML document/text)

6.7 Extra analyses

As an extra exercise, students can analyse samples from previous tasks using Cuckoo Sandbox. Then
they should compare the Cuckoo Sandbox results with their previous findings. Most of the results
should be similar to the previous ones. For a few samples Cuckoo Sandbox might fail during the static
analysis or report some errors. This is caused by some obfuscation techniques used by malware or
some other non-standard behaviour.

7 Exercise summary

During the exercise students have learnt basic principles of malicious artifacts analysis. After a proper
theoretical introduction, the students had the opportunity to test their skills by analysing live malware
samples.

At the beginning of the exercise the students were introduced to the fundamentals of malicious code
analysis. In this part, the students learnt various types of analyses, their application, strong and weak
points, and when to use each of them. After that, the participants learnt basic security precautions
involving the execution of malware samples in a controlled environment.

During the basic static analysis, students had the opportunity to search for indicators of the malicious
functionality in the sample files provided. First they scanned the sample for the patterns of well-known
packers and protectors, then they analysed a list of strings extracted from the file. After the string

Artifact analysis fundamentals
Artifact analysis training material

November 2014

Page 70

analysis, the participants analysed various headers in the PE structure (import tables, file resources).
Finally, the students scanned a sample malware for any embedded objects with well-known file types.

After the static analysis, the students performed basic behavioural analysis of the provided sample.
During this analysis they searched for any changes in the operating system that might indicate
malicious code functionality and purpose. After that, that operating system was scanned using the
GMER tool to search for any indicators of rootkit activity.

During the network analysis, the participants executed the samples provided, and captured the
network traffic. The samples were executed in an isolated environment. To simulate basic network
services, INetSim tool was used. Then, using the captured traffic, students searched for well-known
malicious network traffic patterns.

The last type of analysis performed was an automatic analysis. During this analysis, students used the
Cuckoo Sandbox appliance previously configured in the exercise Building artifact handling and analysis
environment. The purpose of this analysis was to let students compare the results obtained in the
automatic analysis with the results from non-automatic analyses.

8 References
1. A Study of the Packer Problem and Its Solutions

http://www.ecsl.cs.sunysb.edu/tr/TR237.pdf (accessed 15. October 2014)

2. Visual Studio 2013 Update 3 http://www.visualstudio.com/ (accessed 15. October 2014)

3. What is a DLL? http://support.microsoft.com/kb/815065 (accessed 15. October 2014)

4. Base64 http://en.wikipedia.org/wiki/Base64 (accessed 15. October 2014)

5. Borland Delphi http://www.on-time.com/rtos-32-docs/rttarget-32/programming-

manual/compiling/borland-delphi.htm (accessed 15. October 2014)

6. Advanced Techniques – Using Process Explorer

http://www.microsoft.com/security/sir/strategy/default.aspx#!malwarecleaning_explorer

(accessed 15. October 2014)

7. VERSIONINFO resource http://msdn.microsoft.com/en-

us/library/windows/desktop/aa381058%28v=vs.85%29.aspx (accessed 15. October 2014)

http://www.ecsl.cs.sunysb.edu/tr/TR237.pdf
http://www.visualstudio.com/
http://support.microsoft.com/kb/815065
http://en.wikipedia.org/wiki/Base64
http://www.on-time.com/rtos-32-docs/rttarget-32/programming-manual/compiling/borland-delphi.htm
http://www.on-time.com/rtos-32-docs/rttarget-32/programming-manual/compiling/borland-delphi.htm
http://www.microsoft.com/security/sir/strategy/default.aspx#!malwarecleaning_explorer
http://msdn.microsoft.com/en-us/library/windows/desktop/aa381058%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa381058%28v=vs.85%29.aspx

Artifact analysis fundamentals
Artifact analysis training material

November 2014

Page 71

PO Box 1309, 710 01 Heraklion, Greece
Tel: +30 28 14 40 9710
info@enisa.europa.eu
www.enisa.europa.eu

ENISA
European Union Agency for Network and Information Security
Science and Technology Park of Crete (ITE)
Vassilika Vouton, 700 13, Heraklion, Greece

Athens Office
1 Vass. Sofias & Meg. Alexandrou
Marousi 151 24, Athens, Greece

