

www.enisa.europa.eu European Union Agency For Network And Information Security

Forensic analysis
Local Incident Response

Handbook, Document for teachers

1.0

DECEMBER 2016

http://www.enisa.europa.eu/

 Forensic analysis
 1.0 | December 2016

02

About ENISA

The European Union Agency for Network and Information Security (ENISA) is a centre of network and
information security expertise for the EU, its member states, the private sector and Europe’s citizens.
ENISA works with these groups to develop advice and recommendations on good practice in information
security. It assists EU member states in implementing relevant EU legislation and works to improve the
resilience of Europe’s critical information infrastructure and networks. ENISA seeks to enhance existing
expertise in EU member states by supporting the development of cross-border communities committed to
improving network and information security throughout the EU. More information about ENISA and its
work can be found at www.enisa.europa.eu.

Contact
For contacting the authors please use cert-relations@enisa.europa.eu.
For media enquiries about this paper, please use press@enisa.europa.eu.

Legal notice
Notice must be taken that this publication represents the views and interpretations of the authors and
editors, unless stated otherwise. This publication should not be construed to be a legal action of ENISA or
the ENISA bodies unless adopted pursuant to the Regulation (EU) No 526/2013. This publication does not
necessarily represent state-of the-art and ENISA may update it from time to time.

Third-party sources are quoted as appropriate. ENISA is not responsible for the content of the external
sources including external websites referenced in this publication.

This publication is intended for information purposes only. It must be accessible free of charge. Neither
ENISA nor any person acting on its behalf is responsible for the use that might be made of the
information contained in this publication.

Copyright Notice
© European Union Agency for Network and Information Security (ENISA), 2016
Reproduction is authorised provided the source is acknowledged.

https://www.enisa.europa.eu/
mailto:cert-relations@enisa.europa.eu
mailto:press@enisa.europa.eu.

 Forensic analysis
 1.0 | December 2016

03

Table of Contents

1. Foreword 5

 Forensic process 5

 Forensic report 6

2. Story that triggers incident handling and investigation processes. 7

3. Local incident response and investigation 9

 Course description and goal 9

 Course run 9

 Tools and environment 12

4. Collecting evidence 13

 Memory acquisition 13

 Disk image acquisition 13

5. Environment preparation 14

6. Memory analysis 17

 Checking memory dump file 17

 Scanning memory with Yara rules 18

 Analysis of the process list 22

 Network artefacts analysis 24

 Memory analysis summary 25

7. Disk analysis 27

 Mounting Windows partition and creating timeline 27

 Antivirus scan 39

 Filesystem analysis 39

 Application logs analysis 46

 Decompiling Python executable 55

 Prefetch analysis 60

 System logs analysis 64

8. Registry analysis 71

 Copying and viewing registry 71

 Forensic analysis
 1.0 | December 2016

04

 Inspecting registry timeline 74

 UserAssist 75

 List of installed applications 76

9. Building the timeline 81

10. Summary and next steps 84

11. References 85

 Forensic analysis
 1.0 | December 2016

05

1. Foreword

This three-day training module will follow the tracks of an incident handler and investigator, teaching best
practices and covering both sides of the breach. It is technical in nature and has the aim to provide a guided
training for both incident handlers and investigators while providing lifelike conditions. Training material
mainly uses open source and free tools.

 Forensic process
This exercise and the two following ones demonstrate the technical side of a forensic process. However, it
is absolutely necessary to understand and follow the principles, which are fundamental for the successful
delivery of forensic services. It is strongly recommended to read the introductory part of the ENISA ‘Digital
Forensics’ exercise1, where the principles are explained in more detail.

For the technical part of the forensic process, two principles are of utmost importance.

 Data integrity – electronic evidence must not be modified in any way during the forensic process,
including the initial data capture

 Audit trail – a record of all actions taken when handling digital evidence must be created and
preserved.

The whole forensic process at all stages must be chronologically documented constituting a ‘Chain of
Custody’2. The main purpose of a Chain of Custody is to provide a proof to the court, that at no point in time
the evidence could had been tampered with.

There is however a practical issue directly related to the first of the two principles. There are situations,
when the investigators need to make a decision to alter some evidence to extract some other pieces of
evidence, otherwise unavailable. The best example illustrating that need is taking a memory dump of a
running system. To be able to dump the system’s memory the investigators need to run a specialized piece
of code on that system. Running any code alters system state (memory, disk, processor registers and many
more). What’s more, the code has to be delivered somehow to the system (over the network, with a USB
memory, etc.) which also alters the system state. There’s also a possibility, that the system state is modified
beyond investigators’ intensions, as the delivery of binary code may introduce some malicious code. On the
other hand, the old-school method – cutting the power off and taking disk images with a hardware write-
blocker is no longer a viable option. Modern malware often resides in memory and leaves very little traces
on disks and therefore it is important to dump memory before switching the system off. In such case it is
important to document very carefully all actions taken – including any commands issued, tools run, network
connections made or external media connected. The documentation must include all details such as the
exact date and time, command syntax, serial numbers of media, cryptographic hashes of external tools used
and so on. Another point to make is that only tools that are well documented, the investigators know well
and are ‘reputable’ can be used.

There are two fundamental reasons for all the precautions described above. Firstly, it must be possible to
distinguish traces left by forensic examiners and their actions from traces originally present in the system.
This is possible only when actions are documented and tools used have predictable run patterns, including

1 Digital forensics https://www.enisa.europa.eu/topics/trainings-for-cybersecurity-specialists/online-training-
material/documents/digital-forensics-handbook (last accessed 30.09.2016)
2 Chain of custody https://en.wikipedia.org/wiki/Chain_of_custody (last accessed 30.09.2016)

https://www.enisa.europa.eu/topics/trainings-for-cybersecurity-specialists/online-training-material/documents/digital-forensics-handbook
https://www.enisa.europa.eu/topics/trainings-for-cybersecurity-specialists/online-training-material/documents/digital-forensics-handbook
https://en.wikipedia.org/wiki/Chain_of_custody

 Forensic analysis
 1.0 | December 2016

06

any side effects (creating or deleting temporary files). Secondly, one of the criteria applied to a forensic
analysis is its repeatability. The whole process of finding traces and making conclusions must be
reproduceable by another, independent forensic expert equipped with adequate knowledge and sufficiently
capable. As the reasoning process begins with the assessment of the evidence and the way it was collected,
carefully written and maintained documentation is key. One must keep in mind that during judicial
proceedings challenging the evidence or the way it was collected is a focal point for the opposing party.

 Forensic report
A forensic report is (or at least should be) the final product of any forensic investigation. It is one of the least-
liked aspects of an investigation and as such is often written in full, at the end of investigation. Unfortunately,
this approach is completely flawed. No good report can be created without precise and comprehensive
notes. For that single reason it is highly recommended to understand the requirements the report is
supposed to meet. Reports differ in many ways depending on the situation – rudimentary incident response
activities, internal investigation within a company, a task for the (Law Enforcement Agency) LEA or an
examination for a defence attorney – all require different forms, different detail levels and some of them
can be in part regulated by the legal system or internal company policies. It is beneficial for the investigator
to know the requirements up front as it influences the process (how thorough the analysis should be, is there
anything specific to look for, etc.). It is also very helpful, as the way notes are created throughout the
investigation determines the amount of work required to put together a full report. A smart way of taking
notes could allow for integrating them into the report rather than writing a report while trying to extract
anything relevant from notes.3

3 Report Writing Guidelines http://www.forensicmag.com/article/2012/05/report-writing-guidelines (last accessed
30.09.2016)

http://www.forensicmag.com/article/2012/05/report-writing-guidelines

 Forensic analysis
 1.0 | December 2016

07

2. The story triggering incident handling and investigation processes.

The customer’s organization has found out that some of its sensitive data has been detected in an online text
sharing application. Due to the legal obligations and for business continuity purposes the CSIRT team has
been tasked to conduct an incident response and incident investigation to mitigate the threats.

The breach contains sensitive data and includes a threat notice that in a short while more data will follow.
As the breach leads to a specific employee’s computer then CSIRT team, tasked to investigate the incident,
follows the leads.

Below is presented a simplified overview of the training technical setup.

Workstation 1

Workstation/Phone 2

Compromised web-server (command and
control server function)

Compromised web-server (payload)

Compromised web-server (drive-by)

Router, DHCP

Firewall

Web-proxy

Figure 1: Network setup

Below is presented detailed technical setup of the whole training.

 Forensic analysis
 1.0 | December 2016

08

Figure 2: Compromise scope

 Forensic analysis
 1.0 | December 2016

09

3. Local incident response and investigation

 Course description and goal
This scenario presents, both theoretically and practically, basic stages of the incident response and

investigation process. It leads the trainees through a typical case, where a malicious action is reported and

the aim is to find its source and handle the incident as a local one, limited to the workstation only.

At the beginning, emphasis is placed on proper preparation – principles, tools and techniques. A systematic

approach to incident response is presented and practiced. The introduction is then followed by a simulated

incident report when the response begins. After engagement conditions are met and required authorisation

is given, the students start investigating the incident while maintaining a proper forensic regime. Students

are given a set of web-proxy and firewall logs to find the workstation that was potentially the original source

of the activity reported as security incident.

During the second part of the exercise students perform a forensic analysis of a Microsoft Windows
workstation, while maintaining full audit trail of actions taken and creating timeline of events and finding
Indicators of Compromise. This exercise ends up with a summary and a group discussion on further
investigation, incident containment, eradication and incident reporting.

 Course run
- PART 1: Preparing to respond – theoretical introduction to incident response methodologies with a focus on

single host computer (Microsoft Windows 10) and guidelines for collecting electronic evidence.

o References and sources of information:

- PART 2: Responding to incident – theoretical introduction to CSIRT actions in the scope of this incident–

constituency, authorisation and response scope

o References and sources of information:

- PART 3: Forensic capture

o TASK 1: Collecting evidence: guide the trainee through evidence collection procedures and creating

a forensically sound image of workstation including a memory dump.

o Create a Microsoft Windows 10 workstation forensic image and memory dump.

 Tools and procedures used:

 DumpIT: http://www.moonsols.com/2011/07/18/moonsols-dumpit-goes-

mainstream/ , https://zeltser.com/memory-acquisition-with-dumpit-for-dfir-2/

 OSForensics: http://www.osforensics.com/osforensics.html

 Belkasoft RAM Capturer: http://belkasoft.com/ram-capturer

 Collect information from the workstation – logs, traces of activity for fast access

 Tools and procedures used: ACPO: http://www.digital-detective.net/digital-

forensics-documents/ACPO_Good_Practice_Guide_for_Digital_Evidence_v5.pdf

Forensic Examination of Digital Evidence: A Guide for Law Enforcement

https://www.ncjrs.gov/pdffiles1/nij/199408.pdf

 The Enhanced Digital Investigation Process Model:

http://dfrws.org/2004/day1/Tushabe_EIDIP.pdf ,

https://www.cerias.purdue.edu/assets/pdf/bibtex_archive/2003-29.pdf

http://www.moonsols.com/2011/07/18/moonsols-dumpit-goes-mainstream/
http://www.moonsols.com/2011/07/18/moonsols-dumpit-goes-mainstream/
https://zeltser.com/memory-acquisition-with-dumpit-for-dfir-2/
http://www.osforensics.com/osforensics.html
http://belkasoft.com/ram-capturer
http://www.digital-detective.net/digital-forensics-documents/ACPO_Good_Practice_Guide_for_Digital_Evidence_v5.pdf
http://www.digital-detective.net/digital-forensics-documents/ACPO_Good_Practice_Guide_for_Digital_Evidence_v5.pdf
https://www.ncjrs.gov/pdffiles1/nij/199408.pdf
http://dfrws.org/2004/day1/Tushabe_EIDIP.pdf
https://www.cerias.purdue.edu/assets/pdf/bibtex_archive/2003-29.pdf

 Forensic analysis
 1.0 | December 2016

10

 Categories of the Investigative process model (page 102):

https://books.google.gr/books?id=WXs_rw1aR1sC&pg=PR5&source=gbs_selected

_pages&cad=3#v=onepage&q&f=false

 An Extended Model of Cybercrime Investigations:

https://www.utica.edu/academic/institutes/ecii/publications/articles/A0B70121-

FD6C-3DBA-0EA5C3E93CC575FA.pdf

 A Hierarchical, Objectives-Based Framework for the Digital Investigations Process:

https://www.dfrws.org/2004/day1/Beebe_Obj_Framework_for_DI.pdf

 FORZA – Digital forensics investigation framework that

incorporate legal issues: https://www.dfrws.org/2006/proceedings/4-Ieong.pdf

 Guide to Integrating Forensic Techniques into Incident Response - NIST SP 800-86:

http://csrc.nist.gov/publications/nistpubs/800-86/SP800-86.pdf

 Electronic Crime Scene Investigation: An On-the-Scene Reference for First

Responders: https://www.ncjrs.gov/pdffiles1/nij/227050.pdf

 Electronic Crime Scene Investigation: A Guide for First Responders, Second Edition:

https://www.ncjrs.gov/pdffiles1/nij/219941.pdf

 Digital Evidence in the Courtroom: A Guide for Law Enforcement and Prosecutors:

https://www.ncjrs.gov/pdffiles1/nij/211314.pdf

 Digital Evidence Guide for First Responders: http://www.iacpcybercenter.org/wp-

content/uploads/2015/04/digitalevidence-booklet-051215.pdf

 First Responders Guide to Computer Forensics:

https://www.sei.cmu.edu/reports/05hb001.pdf

 Digital Evidence Field Guide: What Every Peace Officer Must know:

https://www.rcfl.gov/downloads/documents/digital-evidence-field-guide

 Best Practices For Seizing Electronic Evidence v.3: A Pocket Guide for First

Responders: http://www.crime-scene-

investigator.net/SeizingElectronicEvidence.pdf

- PART 4: Forensic analysis

o TASK 2: Confirm if this computer was involved in the data breach and find traces of malicious

activity if present.

 Perform disk analysis

 Tools and procedures used:

 AccessData FTK Imager: http://accessdata.com/product-download/digital-

forensics/ftk-imager-version-3.4.2

 WinHex: https://www.x-ways.net/winhex/

 Forensic Posters: https://github.com/Invoke-IR/ForensicPosters

 PowerForensics: https://github.com/Invoke-IR/PowerForensics ,

http://www.invoke-ir.com/2016/02/copying-locked-files-with-

powerforensics_5.html

 Bulk extractor: http://tools.kali.org/forensics/bulk-extractor ,

http://digitalcorpora.org/downloads/bulk_extractor/ ,

https://github.com/simsong/bulk_extractor

 Browser History Viewer: http://www.nirsoft.net/utils/browsing_history_view.html

 SQLite Database Browser: http://sqlitebrowser.org/

https://books.google.gr/books?id=WXs_rw1aR1sC&pg=PR5&source=gbs_selected_pages&cad=3
https://books.google.gr/books?id=WXs_rw1aR1sC&pg=PR5&source=gbs_selected_pages&cad=3
https://www.utica.edu/academic/institutes/ecii/publications/articles/A0B70121-FD6C-3DBA-0EA5C3E93CC575FA.pdf
https://www.utica.edu/academic/institutes/ecii/publications/articles/A0B70121-FD6C-3DBA-0EA5C3E93CC575FA.pdf
https://www.dfrws.org/2004/day1/Beebe_Obj_Framework_for_DI.pdf
https://www.dfrws.org/2006/proceedings/4-Ieong.pdf
http://csrc.nist.gov/publications/nistpubs/800-86/SP800-86.pdf
https://www.ncjrs.gov/pdffiles1/nij/227050.pdf
https://www.ncjrs.gov/pdffiles1/nij/219941.pdf
https://www.ncjrs.gov/pdffiles1/nij/211314.pdf
http://www.iacpcybercenter.org/wp-content/uploads/2015/04/digitalevidence-booklet-051215.pdf
http://www.iacpcybercenter.org/wp-content/uploads/2015/04/digitalevidence-booklet-051215.pdf
https://www.sei.cmu.edu/reports/05hb001.pdf
https://www.rcfl.gov/downloads/documents/digital-evidence-field-guide
http://www.crime-scene-investigator.net/SeizingElectronicEvidence.pdf
http://www.crime-scene-investigator.net/SeizingElectronicEvidence.pdf
http://accessdata.com/product-download/digital-forensics/ftk-imager-version-3.4.2
http://accessdata.com/product-download/digital-forensics/ftk-imager-version-3.4.2
https://www.x-ways.net/winhex/
https://github.com/Invoke-IR/ForensicPosters
https://github.com/Invoke-IR/PowerForensics
http://www.invoke-ir.com/2016/02/copying-locked-files-with-powerforensics_5.html
http://www.invoke-ir.com/2016/02/copying-locked-files-with-powerforensics_5.html
http://tools.kali.org/forensics/bulk-extractor
http://digitalcorpora.org/downloads/bulk_extractor/
https://github.com/simsong/bulk_extractor
http://www.nirsoft.net/utils/browsing_history_view.html
http://sqlitebrowser.org/

 Forensic analysis
 1.0 | December 2016

11

 Perform memory analysis

 Tools and procedures used:

 Volatility Framework: https://github.com/volatilityfoundation/volatility ,

http://www.volatilityfoundation.org/#!25/c1f29 , Web interface for the Volatility

Memory Forensics Framework: https://github.com/kevthehermit/VolUtility

 Rekall Memory Forensic Framework: https://github.com/google/rekall ,

http://www.rekall-forensic.com/index.html

 Analyse logs

 Tools and procedures used:

 Windows 10 Prefetch Parser:

https://github.com/505Forensics/tools/tree/master/win10_prefetch ,

http://www.505forensics.com/updated-windows-10-prefetch-parser/

 Analyse registry

 Tools and procedures used: Windows Registry Forensics, Second Edition: Advanced

Digital Forensic Analysis of the Windows Registry 2nd Edition by Harlan Carvey

 Registry Explorer: https://binaryforay.blogspot.gr/2015/02/introducing-registry-

explorer.html ,

http://ericzimmerman.github.io/Software/RegistryExplorer_RECmd.zip

 Examine suspicious artefacts

 Tools and procedures used:

 Pestudio: https://www.winitor.com/index.html

 IOC Finder: https://www.fireeye.com/services/freeware/ioc-finder.html

 LOKI – Indicators Of Compromise Scanner:

http://www.darknet.org.uk/2016/01/loki-indicators-compromise-scanner/ ,

https://github.com/Neo23x0/Loki

 Remnux: https://remnux.org/

 Create timeline and put the leads together

 Tools and procedures used:

o log2timeline is a tool designed to extract timestamps from various files

found on a typical computer system(s) and aggregate them

https://github.com/log2timeline/plaso/wiki

 Draw conclusions

- PART 5: Reporting and follow up actions

o TASK 3: Advise on the course of action

 Create Indicators of Compromise

 Create a report sketch – the most important findings

 Report template and references: ACPO: http://www.digital-detective.net/digital-

forensics-documents/ACPO_Good_Practice_Guide_for_Digital_Evidence_v5.pdf

and Forensic Examination of Digital Evidence: A Guide for Law Enforcement

https://www.ncjrs.gov/pdffiles1/nij/199408.pdf

 Create recommendations of immediate actions to take

- PART 6: Exercise summary – discussion on the participants’ performance and lessons learned

https://github.com/volatilityfoundation/volatility
http://www.volatilityfoundation.org/
https://github.com/kevthehermit/VolUtility
https://github.com/google/rekall
http://www.rekall-forensic.com/index.html
https://github.com/505Forensics/tools/tree/master/win10_prefetch
http://www.505forensics.com/updated-windows-10-prefetch-parser/
https://binaryforay.blogspot.gr/2015/02/introducing-registry-explorer.html
https://binaryforay.blogspot.gr/2015/02/introducing-registry-explorer.html
http://ericzimmerman.github.io/Software/RegistryExplorer_RECmd.zip
https://www.winitor.com/index.html
https://www.fireeye.com/services/freeware/ioc-finder.html
http://www.darknet.org.uk/2016/01/loki-indicators-compromise-scanner/
https://github.com/Neo23x0/Loki
https://remnux.org/
https://github.com/log2timeline/plaso/wiki
http://www.digital-detective.net/digital-forensics-documents/ACPO_Good_Practice_Guide_for_Digital_Evidence_v5.pdf
http://www.digital-detective.net/digital-forensics-documents/ACPO_Good_Practice_Guide_for_Digital_Evidence_v5.pdf
https://www.ncjrs.gov/pdffiles1/nij/199408.pdf

 Forensic analysis
 1.0 | December 2016

12

 Tools and environment
- Exercise performed using Microsoft Windows 10 operating system

- Forensic tools used:

o Windows Registry Recovery (http://www.mitec.cz/wrr.html)

o Windows File Analyzer (http://www.mitec.cz/wfa.html)

o Internet History Browser (http://www.mitec.cz/ihb.html)

o RegRipper (https://github.com/keydet89/RegRipper2.8)

o Autopsy/TSK (http://www.sleuthkit.org/autopsy/)

o Log2Timeline (https://github.com/log2timeline/plaso/wiki)

- Malicious and attack code:

o DarkComet / Xtremerat

o Mimikatz https://github.com/gentilkiwi/mimikatz

o Nmap-7.12 https://nmap.org/dist/nmap-7.12-setup.exe

o KiTrap0D https://www.exploit-db.com/exploits/11199/

o Pass-The-Hash Toolkit http://www.coresecurity.com/corelabs-research-special/open-source-

tools/pass-hash-toolkit

o Keimpx (build to .exe) https://github.com/inquisb/keimpx

o Kain & Abel http://www.oxid.it/cain.html

o fgdump http://foofus.net/goons/fizzgig/fgdump/

o Pwdump7 http://www.tarasco.org/security/pwdump_7/

o Proxifier https://www.proxifier.com/

Time: 8h

http://www.mitec.cz/wrr.html)
http://www.mitec.cz/wfa.html)
http://www.mitec.cz/ihb.html)
https://github.com/keydet89/RegRipper2.8)
http://www.sleuthkit.org/autopsy/)
https://github.com/log2timeline/plaso/wiki)
https://github.com/gentilkiwi/mimikatz
https://nmap.org/dist/nmap-7.12-setup.exe
https://www.exploit-db.com/exploits/11199/
http://www.coresecurity.com/corelabs-research-special/open-source-tools/pass-hash-toolkit
http://www.coresecurity.com/corelabs-research-special/open-source-tools/pass-hash-toolkit
https://github.com/inquisb/keimpx
http://www.oxid.it/cain.html
http://foofus.net/goons/fizzgig/fgdump/
http://www.tarasco.org/security/pwdump_7/
https://www.proxifier.com/

 Forensic analysis
 1.0 | December 2016

13

4. Collecting evidence

 Memory acquisition
When acquiring memory from a live system, analysts should try to minimize the number of traces left on the
system (both on disk and in the memory) as a result of the memory acquisition process.

In the analysed case USB Drive with portable version of Belkasoft Live RAM Capturer software was attached
to the analysed system which then was used to dump memory image onto the same USB Drive.

Figure 3: Memory capture

When collecting memory of a live system, an analyst should always note the exact time when the memory
dump was taken, what tools were used and what traces were left on the analysed system as a result of the
memory acquisition process.

 Disk image acquisition
A proper way of creating a hard disk image is by using a hardware write-block device4. In this exercise we’re
dealing with virtualised hardware which cannot be imaged with hardware blockers, so we have to rely on
system tools.5

4 Forensic disk controller https://en.wikipedia.org/wiki/Forensic_disk_controller (last accessed 30.09.2016)
5 Linux for computer forensic investigators: «pitfalls» of mounting file systems http://www.forensicfocus.com/linux-
forensics-pitfalls-of-mounting-file-systems (last accessed 30.09.2016)

https://en.wikipedia.org/wiki/Forensic_disk_controller
http://www.forensicfocus.com/linux-forensics-pitfalls-of-mounting-file-systems
http://www.forensicfocus.com/linux-forensics-pitfalls-of-mounting-file-systems

 Forensic analysis
 1.0 | December 2016

14

5. Environment preparation

All the practical exercises will be done using CAINE Linux6. Students should import the provided virtual
machine appliance which contains additional set of scripts and all files necessary for completing the
exercises. Next, the teacher should ask students to attach separate storage drive with evidence files
(memory dump and disk image) – evidence.vmdk.

Figure 4: Mounting the evidence

After completing this step student should start CAINE virtual machine and try to login into the system (user:
enisa, password: enisa).

By default, to prevent accidental changes to the evidence material CAINE Linux doesn’t try to mount any
hard drives detected at the boot time. This is especially important when CAINE Linux is used to create raw
copy of the hard drive without using separate Write Blocker.

After logging into the system students should mount partition with the evidence files using read only mode.
The easiest way to accomplish this is to use “Mounter” utility. “Mounter” can be started by clicking on the
green hard drive icon at the bottom panel. Then student should choose partition with evidence files and
click OK.

6 CAINE (Computer Aided Investigative Environment) http://www.caine-live.net/ (last accessed 30.09.2016)

http://www.caine-live.net/

 Forensic analysis
 1.0 | December 2016

15

Figure 5: Mounting the evidence

After this operation evidence data should be available at the /media directory (in this case /media/sdb1).

Now, students should open terminal and go to /media/sdb1/Windows directory (or any other directory
where partition with evidence files was mounted) which contains three files:

 disk.raw – raw image of Windows 10 disk (dd format);

 memory.img – dump of Windows 10 memory taken shortly after the attack;

 MD5SUMS – file with MD5 sums of disk.raw and memory.img.

Figure 6: Evidence

The next step should be verification of MD5 checksums to make sure evidence data isn’t corrupted or altered
in any way. To calculate checksums students should use md5sum command and then compare its output
with checksums stored in MD5SUMS file. Depending on the hardware and size of evidence calculating MD5
sums might take some time, though in this case it shouldn’t be more than a few minutes.

 Forensic analysis
 1.0 | December 2016

16

Figure 7: Checksum

If the checksums are correct students can proceed to the next exercises.

 Forensic analysis
 1.0 | December 2016

17

6. Memory analysis

In this exercise students will use the Volatility Framework7 to analyse memory dump of Windows 10 (x86)
system. Memory dump was taken shortly after the attack and the aim is to get preliminary assessment,
possibly finding traces of malware or attacker activity.

This exercise covers only basic usage of Volatility. To get more thorough information on Volatility Framework
refer to previous ENISA Advanced Artefact Analysis exercise8.

At the time of writing this document, Windows 10 support by Volatility Framework was still considered to
be in the initial phase. To make analysis of memory dump possible, additional patches were applied and
special version of Volatility was put at /home/enisa/training/tools/volatility/ directory. Applied patches are
expected to be merged into main Volatility repository in the near future. Note that certain Volatility plugins
might still not work as expected or might be returning partially garbled results.

 Checking memory dump file
Students should start by executing Volatility imageinfo command which will provide general information
about dumped memory.

Figure 8: Running Volatility

From the imageinfo output students can read list of suggested profiles as well as addresses of DTB, KDBG
and KPCR structures. Correct profile to use is Win10x86_44B89EEA9.

7 An advanced memory forensics framework https://github.com/volatilityfoundation/volatility (last accessed
30.09.2016)
8 Advanced artefact analysis https://www.enisa.europa.eu/topics/trainings-for-cybersecurity-specialists/online-
training-material/documents/advanced-artifact-handling-handbook (last accessed 30.09.2016)
9 This profile was introduced in one of the applied patches. When code is merged into main Volatility repository name
of this profile might change.

https://github.com/volatilityfoundation/volatility
https://www.enisa.europa.eu/topics/trainings-for-cybersecurity-specialists/online-training-material/documents/advanced-artifact-handling-handbook
https://www.enisa.europa.eu/topics/trainings-for-cybersecurity-specialists/online-training-material/documents/advanced-artifact-handling-handbook

 Forensic analysis
 1.0 | December 2016

18

From this point, all following Volatility commands should be executed with the profile explicitly set to
Win10x86_44B89EEA. Additionally to make commands execute quicker students can specify addresses of
DTB, KDBG and KPCR structures:

--dtb=0x1a8000 --kdbg=0x82461820 --kpcr=0x8248b000 --profile=Win10x86_44B89EEA

To check if everything is working students should try to list processes with the pslist command:

Figure 9: Pslist command

Exercise:

- Check what happens when “Win10x86” profile is used instead of “Win10x86_44B89EEA”?

- What happens if you don’t specify DTB, KDBG and KPCR addresses at the command line?

Since all following commands during Windows memory analysis will be used with the same set of
parameters, for convenience students can create alias to vol.py:

vol=’/home/enisa/training/tools/volatility/vol.py -f /media/sdb1/Windows/memory.img --dtb=0x1a8000 --
kdbg=0x82461820 --kpcr=0x8248b000 --profile=Win10x86_44B89EEA’

 Scanning memory with Yara rules
For an initial assessment, it is worthwhile to scan the memory dump for signatures of known malware and
other threats. As the source of signatures students will use Yara signatures from Yara Rules Repository10.

Yara rules can be found at /home/enisa/training/ex1/yara-rules.

Students should start by switching to the yara-rules directory.

10 Repository of Yara rules https://github.com/Yara-Rules/rules (last accessed 30.09.2016)

https://github.com/Yara-Rules/rules

 Forensic analysis
 1.0 | December 2016

19

Figure 10: Yara rules

All Yara rules are contained in several *.yar files grouped into a few categories. For the general Windows
memory scan it is not necessary to use all rules as some might lead to many false-positives or give low value
results (e.g. a rule detecting Base64 encoding).

Students can choose which rules they want to use by creating additional *.yar file, including all other *.yar
files. In this case, students will use rules from CVE_Rules, Exploit-Kits and malware directories.

Figure 11: Selecting the rules

Next, students should scan memory using yarascan plugin and the previously created rules files:

Figure 12: Yarascan

The general output format is as follows.

 Forensic analysis
 1.0 | December 2016

20

Figure 13: Yara rules detection

Count all distinct rules detected.

Figure 14: Sorting detections

As a result of the scan, several rules were detected. It is worth checking the code of each detected rule to
get additional information. Some rules might turn out to be too generic and lead to false-positives in a
system wide scan.

To find which rule is defined in what file, students can use grep tool.

SharedStrings rule in malware/MALW_LURKO.yar.

 Forensic analysis
 1.0 | December 2016

21

Inspection of the SharedStrings rule reveals that it will be matched if any of the defined strings are found in
process memory, even a single wide string “\x00\x00ER\x00\x00” – what seems to be the case in this
scenario. Since this string isn’t too specific and no other strings were found, it is likely this is a false positive.

Exercise:

 Using results.txt and inspecting the code of each of the detected rules, try to determine which rules
are worth further consideration and might be useful, and which ones are likely false positives.

SharedStrings – likely false positive
Spyeye_plugins – likely false positive
UPX – generic but possibly interesting (benign processes aren’t often UPX packed)
With_Sqlite – too generic, benign processes can also use Sqlite
Xtreme, xtreme_rat, xtremrat – interesting matches

 Forensic analysis
 1.0 | December 2016

22

It turns out that interesting rules are the ones related to Xtreme RAT. Students can also check that Xtreme
RAT rules matched three distinct processes, the same ones in which UPX packed code was detected:

Figure 15: Matched rules

After completing this part students should conclude that the system is most likely infected with malware –
at least Xtreme RAT. They should also note the names and Process identifiers of the processes containing
malicious code.

Suspected processes:

 svchost.exe (Pid: 4888)

 explorer.exe (Pid: 4872)

 update.exe (Pid: 5172)
At the end, students should also copy the results.txt file to a separate directory as an additional piece of
evidence.

 Analysis of the process list
Students should start with listing all running processes using Volatility pslist plugin:

Figure 16: Pslist plugin

Based on ‘System’ process start time students can determine that system was started at 2016-08-16
12:54:2411. Note that all times returned by Volatility are UTC times. Some tools might be returning times
using different time zones (e.g. using local time zone of the environment where analysis is taking place or

11 Creating a Baseline of Process Activity for Memory Forensics https://www.sans.org/reading-
room/whitepapers/forensics/creating-baseline-process-activity-memory-forensics-35387 (last accessed 30.09.2016)

https://www.sans.org/reading-room/whitepapers/forensics/creating-baseline-process-activity-memory-forensics-35387
https://www.sans.org/reading-room/whitepapers/forensics/creating-baseline-process-activity-memory-forensics-35387

 Forensic analysis
 1.0 | December 2016

23

time zone of the environment that is being analysed). The teacher should emphasize the importance of
correctly recognizing and checking the time zone used in the output of given tool.

For starters, it is worth searching the process list for the process identifiers (PIDs) of processes containing
malicious code from the previous task.

Figure 17: Process list

Note that process PID is presented in the second column, while the third column contains the PID of the
parent process.

From this output, students can determine that processes containing malicious code were started shortly
after system boot, around 13:02:57. Though at this point it is hard to tell whether this is a result of a fresh
infection or the computer was infected some time ago.

Secondly, students can notice that svchost.exe (PID:4888) and explorer.exe (PID:4872) were started before
update.exe. Moreover update.exe later started a few cmd.exe processes. It is worth to note timestamps
when cmd.exe processes were started:

 2016-08-16 13:07:36

 2016-08-16 13:42:12

 2016-08-16 14:08:30

 2016-08-16 14:18:48

 2016-08-16 14:23:02

 2016-08-16 14:23:46
When searching for parent processes of explorer.exe, svchost.exe and update.exe (PIDs: 4748 and 5860) no
processes with such PIDs are returned. This means that processes with those PIDs are already gone from
process list.

Figure 18: Parent processes

It is often interesting to check the command line which was used to start a given process. Students can do
this using the dlllist plugin.

 Forensic analysis
 1.0 | December 2016

24

Figure 19: Dlllist

From this output, students can check that the update.exe executable is located at
%APPDATA%\HostData\update.exe.

One more thing to notice is that there are two explorer.exe processes present in the system while
normally there should be only one.

Figure 20: Explorer.exe processes

Explorer.exe with PID 4872 was started using the original Windows executable, though it is not the main
explorer.exe process which was started when user logged in (PID:2068). This suggest that malware is using
RunPE12 technique as a form of its disguise.

 Network artefacts analysis
To search memory for artefacts of network connections students can use the netscan Volatility plugin. The
output of the plugin is the list of TCP and UDP endpoints, both IPv4 and IPv6.

Figure 21: Network artefacts

12 RunPE: How to hide code behind a legit process http://www.adlice.com/runpe-hide-code-behind-legit-process/
(last accessed 30.09.2016)

http://www.adlice.com/runpe-hide-code-behind-legit-process/

 Forensic analysis
 1.0 | December 2016

25

Inspection of the list can reveal a few connections to nonstandard TCP ports.

Figure 22: Netscan

There were also some connections to TCP /80 (HTTP) and TCP /443 (HTTPs).

Figure 23: Netscan

Unfortunately in neither case were any remote addresses or process IDs retrieved by Volatility. Fortunately,
using a (srcip:sport, dport) tuple, it should be possible to track the destination address of some of those
connections in netflow logs – assuming that the connections took place between 2016-08-16 and 2016-08-
17.

 Memory analysis summary
Based on basic memory analysis, the following was concluded.

 System was most likely infected with Xtreme RAT malware which code was found in the memory of at
least three processes.

 Malware is possibly using RunPE technique to hide its presence in the system.

 Some connections to strange tcp ports were observed.

 The following paths to suspicious executables were found:

 %APPDATA%\HostData\update.exe

 The following timestamps were noted:

 2016-08-16 13:02:57 UTC+0000 (start of svchost.exe)

 2016-08-16 13:02:58 UTC+0000 (start of explorer.exe)

 2016-08-16 13:03:04 UTC+0000 (start of update.exe)

 2016-08-16 13:07:36 UTC+0000 (start of cmd.exe)

 2016-08-16 13:42:12 UTC+0000 (start of cmd.exe)

 2016-08-16 14:08:30 UTC+0000 (start of cmd.exe)

 Forensic analysis
 1.0 | December 2016

26

 2016-08-16 14:18:48 UTC+0000 (start of cmd.exe)

 2016-08-16 14:23:02 UTC+0000 (start of cmd.exe)

 2016-08-16 14:23:46 UTC+0000 (start of cmd.exe)

 Forensic analysis
 1.0 | December 2016

27

7. Disk analysis

 Mounting Windows partition and creating the timeline
When proceeding to disk analysis, it is worthwhile to use both Autopsy13 (graphical interface to
The Sleuth Kit toolkit) as well as mount analysed partitions in the local filesystem. Mounting partitions in the
local filesystem allows analyst to use standard Linux tools (grep, find) when inspecting analysed filesystem.

Students should start with listing partitions present on disk image.

Figure 24: Partitions

The main Windows partition is the partition 003 starting at sector 0001026048 (byte offset = 525336576 =
1026048*512). Students should mount it at /mnt/part_c:.

Figure 25: Mounting

Provided mount options specify to mount partition as read-only as well specify starting offset of the
partition in disk.raw image (checked in the previous step).

13 Digital forensics platform and graphical interface to The Sleuth Kit http://www.sleuthkit.org/autopsy/ (last
accessed 30.09.2016)

http://www.sleuthkit.org/autopsy/

 Forensic analysis
 1.0 | December 2016

28

Next students should start Autopsy (system menu -> Forensic Tools -> Autopsy 2.24).

Figure 26: Autopsy

If the web browser wasn’t yet started in the system, it should start now. Otherwise open new tab in
browser and go to http://localhost:9999/autopsy.

Figure 27: Autopsy web interface

http://localhost:9999/autopsy

 Forensic analysis
 1.0 | December 2016

29

After starting Autopsy, first thing to do should be creation of a new case. One case should be related to one
incident. To create new case students should click “New Case” and fill the form on the next page. Then click
“New Case” again.

Figure 28: Creating the case

On the next page students will be informed about the path to the case files (including some intermediate
results). It is worth to remember this path for later use (e.g. copying some results as an additional evidence
files).

 Forensic analysis
 1.0 | December 2016

30

Figure 29: Creating case

Each forensic case in Autopsy can be related to one or many hosts. In the next step, students will add a
Windows workstation host by clicking “Add Host”. On the next page, students should specify at least a Host
Name and then click “Add Host”. It is also worth to specify GMT time zone to be sure that this time zone will
be used for displaying times during file analysis. To list other available time zones, students can click “Help”.

 Forensic analysis
 1.0 | December 2016

31

Figure 30: Adding a new host

Figure 31: Importing an image

 Forensic analysis
 1.0 | December 2016

32

The next step will be to add evidence files consisting of whole disk images or images of single partitions.
Each host can have one or more forensic images added. To add a new image click “Add Image” and then
“Add Image File”.

Figure 32: Adding image file

In the next form students should specify the path to the disk image and check if Type is set to Disk.

 Forensic analysis
 1.0 | December 2016

33

Figure 33: Adding an image file

Now Autopsy will analyse partition table on the provided disk image and let user decide which partitions
add to the case. In this case, it should be enough to add only the main Windows partition.

 Forensic analysis
 1.0 | December 2016

34

Figure 34: Image file details

 Forensic analysis
 1.0 | December 2016

35

After clicking “Add”, Autopsy will display information that a new image was added and linked with the
case. At this point, the analyst can decide whether to add an additional image file or proceed with the
analysis. Students should click “Ok” since there are no more evidence files to add.

Figure 35: Adding image

Now the main analysis panel should open. The description of each available option can be found in the
help menu (“Help” button).

Figure 36: Analysis panel

 Forensic analysis
 1.0 | December 2016

36

As a first step, it is good to create a file activity timeline which will be quite useful during later analysis. To
create a timeline, students should select partition C:\ and click “File Activity Time Lines”.

Figure 37: Create timeline

Select all options as presented on the screenshot below and click “Ok”:

Figure 38: Create timeline

Now Autopsy will start the analysis of the filesystem on the C:\ partition. Depending on the partition size
and number of files this might take some time.

 Forensic analysis
 1.0 | December 2016

37

Figure 39: Create timeline

At the next form, students can specify a time frame of their interest and the format of the timeline file.
After clicking “Ok” Autopsy will start processing the previously created body file to generate a timeline.

Figure 40: Specify time frame

 Forensic analysis
 1.0 | December 2016

38

As a result timeline will be created is a format of a normal text file which could be viewed in text editor or
searched using grep tool. Path to this file is <case_path>/Windows/output/timeline-aug2016.txt.

Figure 41: Timeline created

When students click “OK” Autopsy will open the generated timeline in the web browser. Generated timelines
are usually very big and loading it in a browser can take considerable amount of time and system resources.
If opening a timeline in a browser leads to a browser crash students should try opening it in a text editor
(e.g. Vim, Nano).

Figure 42: Timeline

Each row of the timeline represents some change to the file as recorded by file’s MACB timestamps14 (M –
file modified, A – file access, C – metadata change, B – file born/created).

14 Filesystem Timestamps: What Makes Them Tick? https://www.sans.org/reading-
room/whitepapers/forensics/filesystem-timestamps-tick-36842 (last accessed 30.09.2016)

https://www.sans.org/reading-room/whitepapers/forensics/filesystem-timestamps-tick-36842
https://www.sans.org/reading-room/whitepapers/forensics/filesystem-timestamps-tick-36842

 Forensic analysis
 1.0 | December 2016

39

 Antivirus scan
To gather additional information, perform an antivirus scan of the mounted filesystem. It might reveal
information about additional files containing malicious code that should be checked later. An analyst should
remember that an AV scan might not always find all malicious files and sometimes might return false
positives.

In this task, students will use ClamAV antivirus to scan filesystem for well-known malware. Note that scan
can be also quite memory consuming. If there is not enough memory during the scan this will result in several
error messages written to the stderr.

Figure 43: Antivirus scan

AV scanning findings and conclusions:

 One file in Firefox cache folder supposedly contains CVE-2012-3993 exploit code, while another file in
INetCache folder (3568226350[1].exe) contains executable with Xtreme RAT. This is a pretty valuable
reference as it might point to the initial attack vector.

 There is a svchost.exe executable at %TEMP%\svchost.exe likely containing copy of Xtreme RAT.

 Some suspicious executables are stored at %APPDATA\EpUpdate directory.

 ClamAV scan confirmed that previously found %APPDATA%\HostData\update.exe contains code of
Xtreme RAT.

 Filesystem analysis
In this section, students will do a preliminary filesystem analysis using a previously created timeline and
browsing a mounted filesystem.

The Filesystem timeline usually consists of a huge amount of entries. Thus it is always good to have some
starting point. This might be a timestamp, the name of suspicious file, a directory or estimated time frame
when the incident occurred. Moreover, if we suspect that an incident is a malware-related, it is always
prudent to search locations where malware commonly installs itself or stores data. Those locations are:

 Forensic analysis
 1.0 | December 2016

40

 %APPDATA%

 %TEMP%

 %WINDIR%
When searching those locations, an analyst should look for any suspicious executables or files modified
around the time when incident took place.

It is necessary to remember that more sophisticated malware might try to hide its code in various other
places like ADS (Alternative Data Streams), boot sector, hidden partitions, etc. Checking those locations isn’t
part of this training.

The general algorithm of filesystem analysis should look as follows:

1. For any known timestamp, check what files were created/modified/accessed around that time. What does

it tell about user activity or activities taking place in the operating system?

2. For any known suspicious file, check its timestamps (MACB/MACE times on NTFS) and add them to the list

of known timestamps. Repeat step 1 for those timestamps.

3. For any known suspicious directory, check what files it contains. For any suspicious file in the directory, add

it to list of suspicious files and repeat step 2.

At this point students should already know from the results of memory analysis and AV scanning some
suspicious files and timestamps.

Students should start by searching on the timeline (either in browser or text editor) for update.exe file which
was detected during the memory analysis.

Figure 44: Analysing timeline

As pointed by $FILE_NAME attribute15 update.exe was referenced for the first time at 13:02:57, exactly the
same time when svchost.exe was created in %TEMP% directory. Students can recall this is the same time
when svchost.exe process found in memory was created.

Later at 13:03:04 according to standard $STANDARD_INFORMATION attribute, update.exe MFT entry was
changed. Note that 13:03:04 is also the time when update.exe process was created according to memory
analysis.

15 NTFS $I30 Index Attributes: Evidence of Deleted and Overwritten Files https://digital-
forensics.sans.org/blog/2011/09/20/ntfs-i30-index-attributes-evidence-of-deleted-and-overwritten-files (last
accessed 30.09.2016)

https://digital-forensics.sans.org/blog/2011/09/20/ntfs-i30-index-attributes-evidence-of-deleted-and-overwritten-files
https://digital-forensics.sans.org/blog/2011/09/20/ntfs-i30-index-attributes-evidence-of-deleted-and-overwritten-files

 Forensic analysis
 1.0 | December 2016

41

Figure 45: Analysing timeline

Students can also view detailed information about update.exe file using Autopsy Meta Data analysis. To do
this students should go back to the main Autopsy panel (Trainer can suggest using browser tabs as the
timeline will be needed again in a moment).

Then students should choose partition C:\ and click “Analyse”.

Figure 46: Analysing partition

On the next page students should click “Meta Data” and enter 101287 as MFT Entry Number (value can be
read from timeline). After clicking “View” Autopsy should present page with detailed information about
update.exe file.

 Forensic analysis
 1.0 | December 2016

42

Figure 47: Analysing metadata

One pretty useful information for the forensic analysis that can be read from this page are MACB
timestamp values as read from $STANDARD_INFORMATION and $FILE_NAME attributes.

Figure 48: Attributes

The Trainer should point that three attributes from $STANDARD_INFORMATION are set to a time in the past.
Knowing that $STANDARD_INFORMATION attributes can be changed by the process in user mode (in

 Forensic analysis
 1.0 | December 2016

43

opposition to $FILE_NAME attributes that can be only changed by the system), this suggests that at some
point the timestamps of update.exe might have been intentionally overwritten.

Now students should go back to the timeline and check what happened shortly before 13:02:57. Quick
analysis should reveal that one second before 13:02:57 file 3568226350[1].exe was created.

Figure 49: Timeline

Moreover shortly before that, multiple Firefox cache files were created suggesting Firefox activity. Among
those files there is a file in which ClamAV detected an exploit code.

Figure 50: Timeline

 Creation of malicious files on disk preceded by Firefox activity and malicious code found in cache file is a
strong indicator that some malicious website might have been used for an attack vector. To further
investigate that, Firefox logs should be inspected.

Another way to browse filesystem is to use the Autopsy File Analysis utility. To do this, students should go
to the main Autopsy panel and choose analysis of C:\ partition.

Figure 51: Analyse files

 Forensic analysis
 1.0 | December 2016

44

Next, students should navigate to C:\Users\Peter\AppData\Roaming where two suspicious directories
EpUpdate and HostData are located (which were found in previous analysis).

Figure 52: File analysis

Now students should open EpUpdate/ directory to notice it contains multiple folders and tools possibly
used during the attack.

 bpd/ - BrowserPasswordDump.exe

 mmktz/ - mimikatz

 nircmd/ – NirCmd

 nmap/ - Nmap

 pwdump/ - Pwdump

 ssh/ - plink, pscp

 thc/ - THC Hydra

 passwords.txt – list of common passwords

 wdigest.reg – REG file changing UseLogonCredential value in WDigest registry subkey16

16 Dumping WDigest Creds with Meterpreter Mimikatz/Kiwi in Windows 8.1 https://www.trustedsec.com/april-
2015/dumping-wdigest-creds-with-meterpreter-mimikatzkiwi-in-windows-8-1/ (last accessed 30.09.2016)

https://www.trustedsec.com/april-2015/dumping-wdigest-creds-with-meterpreter-mimikatzkiwi-in-windows-8-1/
https://www.trustedsec.com/april-2015/dumping-wdigest-creds-with-meterpreter-mimikatzkiwi-in-windows-8-1/

 Forensic analysis
 1.0 | December 2016

45

Figure 53: Folder with tools

Although at this point it is uncertain whether those tools were executed, this list already gives some idea of
what attacker might had in mind to do on the system.

Secondly students should notice modification time of the files in EpUpdate/ directory 13:14:47 UTC which is
shortly after update.exe process was executed in the system.

Now students can check if between 13:03:00 UTC and 13:14:47 UTC were created any other executable files
inside C:\Users. This time however instead of scrolling long timeline students will generate custom timeline
using mactime utility.

Student should start by opening new terminal window and changing directory to the location of the
previously generated body file (created by Autopsy during timeline preparation).

Figure 54: Timeline location

Next, using mactime tool students should generate small timeline and filter results using grep:

mactime -z GMT -b body -d 2016-08-16T13:03:00..2016-08-16T13:14:47 | grep ‘C:/Users’ |
grep ‘\.exe’
-z – time zone specification
-b – path to body file
-d – output in comma delimited format (makes date present in each row)

 Forensic analysis
 1.0 | December 2016

46

Figure 55: Mactime output

Students can see that at 13:10:03, suspicious executable 54948tp.exe was created inside %TEMP% folder.
This executable and timestamp should be noted for later analysis.

Filesystem analysis findings and conclusions:

 Xtreme RAT process found in the system is likely a result of infection through a malicious website,
which the user possibly visited using the Firefox web browser.

 At 13:02:57, svchost.exe executable was created inside the %TEMP% directory.

 The Update.exe executable had its timestamps overwritten.

 %APPDATA%/EpUpdate folder contains multiple tools that can be used for system and network
profiling. It is unknown if any of those tools were actually executed.

 The %APPDATA%/EpUpdate folder was created at 13:14:47.

 At 13:10:03, suspicious executable 54948tp.exe was created at %TEMP% path.

 Application logs analysis
During forensic investigation, it is often helpful to check logs created by the various applications installed in
the system. For example, antivirus scan reports, web browser history, instant messenger logs or logs created
by any other application related to the attack. A list of installed applications can be obtained either by
browsing the filesystem (e.g. “C:\Program Files”) or from Windows Registry (presented in the later task).

In the present case, there is a strong indication that first infection occurred after the user visited a malicious
website using Firefox browser. To confirm or refute this suspicion, students should analyse the Firefox
browsing history and cache files created prior to the incident.

On Windows 10, the Firefox profile is located at C:\Users\<name>\AppData\Roaming\Mozilla\Firefox, while
cache files can be found at C:\Users\<name>\AppData\Local\Mozilla\Firefox.

Students should start by browsing to Users/Peter/AppData/Roaming/Mozilla/Firefox.

Figure 56: AppData folder

Inspecting the Crash Reports directory is a good place to begin analysis.

 Forensic analysis
 1.0 | December 2016

47

Figure 57: Firefox crash reports

Quickly checking in Autopsy reveals that both crash dump files were created around 13:03:16, which is
around the time when first attack likely took place.

Figure 58: File create time

To get more details about the crash, students should open the .extra file in a text editor.

Figure 59: Crash details

This shows that the crash was related to the Flash plugin. Considering the circumstances, this means that
the crash might have been caused by the browser trying to open a flash file containing some exploit code.

 Forensic analysis
 1.0 | December 2016

48

Firefox browsing history is stored in the Profiles/<profname>/places.sqlite database file. This file can be
checked manually or, to make viewing easier, students can use the BrowsingHistoryView utility by NirSoft17.

The tool can be found at ~/training/tools/BrowsingHistoryView/BrowsingHistoryView.exe. Students should
start it using Wine. In the Advanced Options window, options should be set as shown in the screenshot
below.

Figure 60: Browsing history view settings

After clicking OK, the history of visited pages should appear. If the list is empty, make sure all options in the
Advanced Window were set correctly (Options -> Advanced Options).

17 BrowsingHistoryView v1.90 http://www.nirsoft.net/utils/browsing_history_view.html (last accessed 30.09.2016)

http://www.nirsoft.net/utils/browsing_history_view.html

 Forensic analysis
 1.0 | December 2016

49

Next it is worthwhile to set the time zone to GMT and sort list elements by the Visit Time column. Due to a
Wine bug, students might need to scroll down and up list to refresh it to make the changes take effect.

Figure 61: Set time

A quick inspection of the history list shows that on the day of the incident, 16/08/2016, the user was visiting
Reddit and then entered some website at the address http://blog.mycompany.ex/. No other websites were
visited directly by the user. Moreover it was concluded that on the day of the investigation, domain
blog.mycompany.ex was resolving to 151.80.137.2.

Figure 62: Browsing history

Browsing history reveals what websites were visited by the user, however it doesn’t show what other media
or scripts were indirectly downloaded by the browser as a result of visiting given website. This sort of
information can be however obtained from the analysis of the browser cache files.

Mozilla Firefox cache files are located at
Users\Peter\AppData\Local\Mozilla\Firefox\Profiles\<profname>\cache2.

 Forensic analysis
 1.0 | December 2016

50

Figure 63: Location of cache files

Unfortunately cache information is stored in binary format. To view it students can use MZCacheView18.
MZCacheView is located at ~/training/tools/MozillaCacheView/ MozillaCacheView.exe and should be
started using Wine.

Figure 64: MZCacheView

In the next window, students should specify the path to the cache2 folder.

Figure 65: MZCacheView

18 MZCacheView v1.69 http://www.nirsoft.net/utils/mozilla_cache_viewer.html (last accessed 30.09.2016)

http://www.nirsoft.net/utils/mozilla_cache_viewer.html

 Forensic analysis
 1.0 | December 2016

51

After clicking OK, MZCacheView will load data from the cache files. This operation might take a short time.
After the data is fully loaded, students should switch dates to GMT time zone (the same as in Browsing
History View tool) and sort content by Last Modified date.

Scrolling down to the date of the incident, shortly after visiting the blog.mycompany.ex website, multiple
other files were downloaded from another domain, blog.mysportclub.ex.

Figure 66: MZCacheView

The pattern of the files downloaded from blog.mysportclub.ex suggests this might be some Exploit Kit.

The next step should be to export cache files to separate directory for further analysis and to keep evidence
data in one place.

To export cache data, students should select all entries related to blog.mysportclub.ex domain. Then right
click on selected items and choose “Copy Selected Cache Files To…”.

 Forensic analysis
 1.0 | December 2016

52

Figure 67: Copy files

In the next window, students should specify an output directory (if this directory doesn’t exist it should be
created first!).

Figure 68: Copy files

The same should be repeated for blog.mycompany.ex domain (changing only the output directory).

Students should now perform an analysis of the exported cache files.

A good starting point would be an analysis of the index file of the blog.mycompany.ex website.

 Forensic analysis
 1.0 | December 2016

53

Figure 69: Analysis of htm file

After opening it in a text editor, students should notice strange script at line 153.

Figure 70: Script

What this script does is an injection of iframe element pointing to http://blog.mysportclub.ex/wp-
content/uploads/hk/task/opspy/index.php. This is a very important observation because it tells us that
blog.mysportclub.ex website was most likely infected with malicious code injecting iframe element
redirecting to Exploit-Kit landing page.

Now switching to the analysis of cache files from blog.mysportclub.ex, students should open /wp-
content/uploads/hk/task/opspy/index.php file (previously saved to blog.mysportclub.ex as index.php.htm).

 Forensic analysis
 1.0 | December 2016

54

Figure 71: Iframe

What can be read from this file is that it contains multiple <iframe> elements, each including separate .html
file from /wp-content/uploads/hk/task/opspy/ directory. Each html file contains a different exploit code
trying to exploit different vulnerability.

Detailed analysis of Exploit-Kit is not part of this exercise, however students can try to search for svchost.exe
occurrences in those files.

Figure 72: Svchost.exe occurrences

Looks like svchost.exe phrase is present in three files. Student should try to open the first file. Additionally
to make viewing easier it is good to replace all ‘\n’ phrases with actual characters of new line.

Figure 73: View file

In the middle of the file there should be defined cmd variable which contains interesting code.

 Forensic analysis
 1.0 | December 2016

55

Figure 74: Command in code

This command downloads some executable 3568226350.exe, saves it to %TMP% folder and then executes
it. Knowing from the filesystem analysis that around the same time (13:02:57) when the Exploit-Kit pages
were visited, svchost.exe file was created on the filesystem confirms that one of the exploits has worked.
However at this point it is uncertain which exploit has worked.

Application logs analysis findings and conclusions:

 At 13:03:16 a Firefox crash report related to Flash plugin was generated.

 From Firefox history it can be concluded that prior to the incident user was browsing Reddit and then
visited blog.mycompany.ex website (13:02:46).

 Analysis of Firefox cache files revealed a pattern typical for Exploit-Kits – multiple similarly named
.html files from blog.mysportclub.ex were downloaded after visiting blog.mycompany.ex.

 Analysis of cached blog.mycompany.ex index revealed it contains <iframe> element referring to
http://blog.mysportclub.ex/wp-content/uploads/hk/task/opspy/index.php

 At least some of the .html files from http://blog.mysportclub.ex/wp-content/uploads/hk/task/opspy/
contains code downloading some executable (3568226350.exe) and saving it to %TMP%/svchost.exe –
what correlates with previous finding of svchost.exe being created in the filesystem around the same
time.

 Time of visit to blog.mycompany.ex correlates with the time of creation and execution of the
update.exe process (Xtreme RAT).

 Decompiling Python executable
Filesystem analysis revealed that at 13:10:03 UTC suspicious executable 54948tp.exe was created at
%TEMP% path. Quick can show this file is PE32 executable most likely build from Python script using
py2exe tool.

 Forensic analysis
 1.0 | December 2016

56

Figure 75: File type analysis

Students should try to extract from executable .pyc files using unpy2exe19 script. Two .pyc files should be
extracted.

Figure 76: Extracting files

Next using uncompyle620 tool students can try decompiling the bytecode in .pyc files to the original python
code.

Figure 77: Decompiling the code

19 Extract .pyc files from executables created with py2exe https://github.com/matiasb/unpy2exe (last accessed
30.09.2016)
20 Uncompyle6 https://pypi.python.org/pypi/uncompyle6/ (last accessed 30.09.2016)

https://github.com/matiasb/unpy2exe
https://pypi.python.org/pypi/uncompyle6/

 Forensic analysis
 1.0 | December 2016

57

The most interesting code can be found in tp.py.pyc_dis. It starts with some DOWNLOAD_URL global variable
pointing to data_32.bin on blog.mysportclub.ex server. Short after that there is some decryption function
defined.

Figure 78: Code containing URL

In the middle of the code there is a get_toolz function defined (called from main function). This function
first downloads the file from DOWNLOAD_URL, decrypts it and then decompresses its contents into
%APPDATA%/EpUpdate directory.

Figure 79: Get_toolz function

In the main function there is some SystemProfile in %TMP% directory referenced (data_dir). Then
Mimikatz and Bpd tools are automatically executed.

 Forensic analysis
 1.0 | December 2016

58

Figure 80: Main function

Next, students should check in Autopsy found %TMP%/SystemProfile directory reference. Inspection of this
directory can reveal it contains a group of .log files. Beside bpd.log and mimikatz.log that were created
around 13:14:48 as a result of execution of analysed Python script, there is also netscan/ directory and
sysinfo.txt file. What’s more, both were created several minutes after at 13:34:25 and 13:52:21.

Figure 81: Log files

Inspection of sysinfo.txt file shows it contains results of several commands gathering information about
local system (on routing, local users, network settings).

 Forensic analysis
 1.0 | December 2016

59

Figure 82: Sysinfo.txt file

Moreover netscan/ directory seems to contain port scan results of three hosts on the local network.
192.168.5.1, 192.168.5.10, 192.168.5.15.

Figure 83: Netscan directory

From the .xml files it can be read that network scanning was done at 13:59:29, 13:59:34, and 13:59:36
using Nmap 7.12 from EpUpdate directory. Exact command used to start scanning can be also read.

Figure 84: Contents of XML files

 Forensic analysis
 1.0 | December 2016

60

54948tp.exe decompilation findings and conclusions:

 54948tp.exe is a Python script build with py2exe.

 Script downloads file from the same network location where Exploit-Kit was located
(http://blog.mysportclub.ex/wp-content/uploads/hk/files/data_32.bin) and then unpacks its contents
to %APPDATA%\EpUpdate. Downloaded file contains toolset later used by attacker (e.g. nmap
scanner).

 54948tp.exe was most likely executed between 13:10:03 (creation of 54948tp.exe on disk) and
13:14:47 (creation of EpUpdate directory).

 54948tp.exe creates %TMP%\SystemProfile to which result files are saved.

 Based on log files found in SystemProfile directory analyst can assume that attacker was interested in
gathering information about infected system and local network (port scans).

 Network scans were performed around 13:59:XX UTC.

 At 13:34:25 (creation time of sysinfo.txt file) possibly were executed some local commands gathering
information about local system.

 Prefetch analysis
Windows 10 prefetch files use different format than in previous Windows versions21. This causes some older
forensic tools to incorrectly parse prefetch files while some other22 tools/scripts need to be executed
natively on Windows and doesn’t work correctly under Wine.

In this task students will use 505Forensics script23 utilizing libscca24 library. This script can be run against
single prefetch file or entire Prefetch/ directory. For the output it will produce binary name, number of
executions, hash value and timestamps of last seven executions of given binary.

Script can be found at ~/training/tools/win10_prefetch/. By default it outputs data in CSV format. Students
should save output to separate file and then open it in LibreOffice Calc.

Figure 85: Prefetch script

LibreOffice should correctly propose separating values by commas and in the Text Import window; students
should just click OK.

21 A first look at Windows 10 prefetch files http://blog.digital-forensics.it/2015/06/a-first-look-at-windows-10-
prefetch.html (last accessed 30.09.2016)
22 Parse Windows Prefetch files https://github.com/PoorBillionaire/Windows-Prefetch-Parser (last accessed
30.09.2016)
23 Script Release: Parsing Windows 10 Prefetch Files on Linux http://www.505forensics.com/windows-10-prefetch/
(last accessed 30.09.2016)
24 Library and tools to access the Windows Prefetch File (SCCA) format https://github.com/libyal/libscca (last
accessed 30.09.2016)

http://blog.digital-forensics.it/2015/06/a-first-look-at-windows-10-prefetch.html
http://blog.digital-forensics.it/2015/06/a-first-look-at-windows-10-prefetch.html
https://github.com/PoorBillionaire/Windows-Prefetch-Parser
http://www.505forensics.com/windows-10-prefetch/
https://github.com/libyal/libscca

 Forensic analysis
 1.0 | December 2016

61

Figure 86: LibreOffice

Next students should select all data cells and from Data menu choose sort. Then choose column D (Last Run
Time 0) for primary sort key (Sort Key 1).

Figure 87: Table

 Forensic analysis
 1.0 | December 2016

62

Figure 88: Sorting columns

Table data should now be sorted by last run time of the binaries.

Next scrolling down to the time of the incident, students can find that update.exe binary was run two
times at 13:03:03 and 13:03:04.

Figure 89: Update.exe run time

Next at 13:10:13 54948tp.exe binary was executed and shortly after that at 13:14:47 mimikatz.exe and
browserprocessdump.exe were also run. This confirms that 54948tp.exe was not only created on hard disk
but also executed.

Figure 90: 54948tp.exe run time

Next, between 13:34:25 and 13:34:51 multiple standard tools returning information about local system were
executed. This corresponds to the creation time (13:34:25) and last write time (13:49:59) of
SystemProfile\sysinfo.txt file. What’s interesting is that whoami.exe and ipconfig.exe tools were also

 Forensic analysis
 1.0 | December 2016

63

executed earlier between 13:08:00 and 13:10:00. Students might recall that memory analysis revealed that
at 13:07:36 UTC some cmd.exe process was created.

Figure 91: Applications run time

Finally at 13:59:34 binary nmap.exe was executed for the last time. The other two executions correspond to
the reported port scan times. However it should be noted that nmap was also executed earlier around
13:56:xx. Shortly after that at 14:04:44 hydra.exe, tool used for dictionary/brute force attacks against
remote services, was also executed.

Finally plink.exe and pscp.exe were also executed. Plink.exe was executed six times in total: 14:10:49,
14:11:20, 14:17:45, 14:20:44, 14:22:45 and 14:23:31. Then pscp.exe was executed at 14:47:12, 14:47:54,
and 14:50:09. This suggests that someone might have been trying to log in to some remote host (plink.exe)
and then possibly transfer some data in/out (pscp.exe).

Sequence of the events (nmap -> hydra -> plink/pscp) suggests that attacker possibly first tried to scan local
network with nmap and then used hydra to crack password to some host on the network. At this point this
is however only a speculation and would need further verification with the analysis of network logs.

Figure 92: Applications run time

Prefetch analysis findings and conclusions:

 Prefetch analysis confirmed some of the previous findings like execution of update.exe (Xtreme RAT) at
13:03:04 or execution of 54948tp.exe at 13:10:13.

 Between 13:34:25 and 13:34:51 a group of system commands were executed to gather information
about local system.

 At 14:04:44 Hydra tool was executed. Possibly to perform some dictionary attack.

 Plink.exe tool was executed six times between 14:10:49 and 14:23:31. Possibly to login to some
remote system.

 At 14:50:19 PSCP tool was executed. Possibly to download or upload some data to remote host.

 Forensic analysis
 1.0 | December 2016

64

 System logs analysis
The easiest way to analyse system logs is to use Microsoft Event Viewer25 (eventvwr.msc) utility which also
allows to open log files copied from remote medium. Undoubtedly big advantage of this tool is its graphical
interface allowing to easily search through often huge number of log entries or filter out uninteresting
events.

Figure 93: Event Viewer

Unfortunately Event Viewer can be only run under Windows operating system. Instead in this task students
will use Evtx Parser26 which is a collection of Perl scripts allowing to parse Windows logs in evtx format.

For starter students should copy all Windows logs from Windows\System32\winevt\Logs to
~/training/ex1/winevt/evtx/.

Figure 94: Copying logs

In the next step students should convert previously copied EVTX files to XML format using evtxdump.pl
utility.

25 Event Viewer How To https://technet.microsoft.com/en-us/library/cc749408(v=ws.11).aspx (last accessed
30.09.2016)
26 Evtx Parser Version 1.1.1 http://computer.forensikblog.de/en/ (last accessed 30.09.2016)

https://technet.microsoft.com/en-us/library/cc749408(v=ws.11).aspx
http://computer.forensikblog.de/en/

 Forensic analysis
 1.0 | December 2016

65

Figure 95: Convert previously copied EVTX files to XML format

If everything goes fine log files in XML format should now be available in xml directory. One problem with
logs in this format is that they are pretty difficult to analyse manually. Moreover Windows event architecture
splits all logs among multiple files. This is useful if analyst want to focus on logs from only one source but
might be problematic to correlate logs from all sources.

Figure 96: log files in XML format

Each XML file consist of multiple Event elements representing separate log entries. Each Event contains
multiple child elements giving additional information about what happened27. Among the most interesting
ones are EventID (information about type of the event), Provider with EventSourceName attribute (what
application/subsytem reported the event), TimeCreated (when event took place), ProcessID (which process
generated event). Additionally, event logs may contain EventData section with information specific to that
event28.

Event IDs are numeric values representing different types of events. When analysing logs in XML format
what each event id means can be usually searched online (this is another advantage of using Microsoft Event
Viewer which automatically displays event description). For example one of the websites where analyst can
check event ID interpretation is Randy’s Windows Security Log Encyclopaedia29. Moreover in most cases not
all event types are of interest to an analyst.

27 Event Properties https://technet.microsoft.com/en-us/library/cc765981(v=ws.11).aspx (last accessed 30.09.2016)
28 Event Data https://msdn.microsoft.com/en-us/library/windows/desktop/aa363650(v=vs.85).aspx (last accessed
30.09.2016)
29 https://www.ultimatewindowssecurity.com/securitylog/encyclopedia/default.aspx (last accessed 30.09.2016)

https://technet.microsoft.com/en-us/library/cc765981(v=ws.11).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa363650(v=vs.85).aspx
https://www.ultimatewindowssecurity.com/securitylog/encyclopedia/default.aspx

 Forensic analysis
 1.0 | December 2016

66

Figure 97: Log data

To ease event browsing and filtering there is special script, logparse.py at ~/training/tools, created for the
purpose of this training. The script can receive the path to one or more .xml files as input. If the input path
is a directory, it will be searched recursively for all files with .xml extension. This can be used to parse all log
files at the same time and print them in time sorted order.

Additionally logparse.py allows a user to do some basic filtering using optional parameters.

 mindate, maxdate – print events from specific time period

 ids – comma separated list of event IDs that should be printed

 patterns – comma separated list of words that would be searched in the event text

Figure 98: Logparse.py

To begin, students can search for all events that were logged between 14:03:00 and 14:05:00 knowing that
around that time THC Hydra was executed.

 Forensic analysis
 1.0 | December 2016

67

Figure 99: Logparse.py

Three events should be printed, two of which mentioning hydra.exe in EventData section. The EventID for
both events is 4798 and they were logged respectively at 14:03:21 and 14:04:43 – that is the time when
hydra.exe was executed (as found during prefetch analysis).

Figure 100: Log data

A further check online at Randy’s Windows Security Log Encyclopaedia can reveal that event 4798 informs
that: “A user's local group membership was enumerated”:

 Forensic analysis
 1.0 | December 2016

68

Figure 101: 4798: A user's local group membership was enumerated. Source:
https://www.ultimatewindowssecurity.com/securitylog/encyclopedia/event.aspx?eventid=4798

As for the next step students might want to look for other events mentioning “hydra.exe” phrase –
possibly logged at different period of time. This can be done by specifying pattern filter to logparse.py.

Figure 102: Logparse.py

One more 4798 event is found, logged at 14:02:04 – one minute before time period chosen for the first
query.

 Forensic analysis
 1.0 | December 2016

69

Figure 103: Log data

During forensic investigation there is frequently a need to determine time periods when computer was up
and running. Knowing when computer was up can be very helpful when correlating logs from other sources
like network logs or logs on other hosts.

One way to determine this is to search in system logs for events with IDs 6005, 6006 and 6008:

 6005 – The Event log service was started.30

 6006 – The Event log service was stopped.31

 6008 – The previous system shutdown at %1 on %2 was unexpected.32
However analyst needs to remember that 6006 event won’t be logged if computer gets suddenly shutdown
or rebooted. In such situation analyst should search for last known timestamp (in event logs, system registry,
filesystem timeline, etc.) before shutdown.

30 Event ID: 6005 Explanation
https://www.microsoft.com/technet/support/ee/transform.aspx?ProdName=Windows%20Operating%20System&Pr
odVer=10.0&EvtID=6005&EvtSrc=EventLog&LCID=1033 (last accessed 30.09.2016)
31 Event ID: 6006 Explanation
https://www.microsoft.com/technet/support/ee/transform.aspx?ProdName=Windows%20Operating%20System&Pr
odVer=10.0&EvtID=6006&EvtSrc=EventLog&LCID=1033 (last accessed 30.09.2016)
32 Event ID: 6008 Explanation
https://www.microsoft.com/technet/support/ee/transform.aspx?ProdName=Windows%20Operating%20System&Pr
odVer=10.0&EvtID=6008&EvtSrc=EventLog&LCID=1033 (last accessed 30.09.2016)

https://www.microsoft.com/technet/support/ee/transform.aspx?ProdName=Windows%20Operating%20System&ProdVer=10.0&EvtID=6005&EvtSrc=EventLog&LCID=1033
https://www.microsoft.com/technet/support/ee/transform.aspx?ProdName=Windows%20Operating%20System&ProdVer=10.0&EvtID=6005&EvtSrc=EventLog&LCID=1033
https://www.microsoft.com/technet/support/ee/transform.aspx?ProdName=Windows%20Operating%20System&ProdVer=10.0&EvtID=6006&EvtSrc=EventLog&LCID=1033
https://www.microsoft.com/technet/support/ee/transform.aspx?ProdName=Windows%20Operating%20System&ProdVer=10.0&EvtID=6006&EvtSrc=EventLog&LCID=1033
https://www.microsoft.com/technet/support/ee/transform.aspx?ProdName=Windows%20Operating%20System&ProdVer=10.0&EvtID=6008&EvtSrc=EventLog&LCID=1033
https://www.microsoft.com/technet/support/ee/transform.aspx?ProdName=Windows%20Operating%20System&ProdVer=10.0&EvtID=6008&EvtSrc=EventLog&LCID=1033

 Forensic analysis
 1.0 | December 2016

70

Figure 104: Logparse.py

 Forensic analysis
 1.0 | December 2016

71

8. Registry analysis

 Copying and viewing the Registry
In this task students will copy registry files from the mounted disk and use MiTeC Windows Registry
Recovery33 tool to view the content of the Windows registry.

Main registry files used by Windows 10 can be found at %SystemRoot%\System32\config\ directory and
are34:

 SYSTEM – HKEY_CURRENT_CONFIG

 SAM – HKEY_LOCAL_MACHINE\SAM

 SECURITY – HKEY_LOCAL_MACHINE\Security

 SOFTWARE – HKEY_LOCAL_MACHINE\Software

 DEFAULT – HKEY_USERS\.DEFAULT
Moreover user specific hives can be found in user profile directory C:\Users\{Username}:

 NTUSER.DAT

 AppData\Local\Microsoft\Windows\UsrClass.dat
Locations of registry files in other Windows versions might slightly differ.

Students should start by copying all registry files to separate directory at ~/training/ex1/registry:

Figure 105: Copying all registry files to separate directory

Then to view content of the registry users can use Windows Registry Recovery (WRR) tool which is located
at ~/training/tools/WRR/WRR.exe and should be started using Wine.

33 Windows Registry Recovery http://www.mitec.cz/wrr.html (last accessed 30.09.2016)
34 Registry Hives https://msdn.microsoft.com/pl-pl/library/windows/desktop/ms724877(v=vs.85).aspx (last accessed
30.09.2016)

http://www.mitec.cz/wrr.html
https://msdn.microsoft.com/pl-pl/library/windows/desktop/ms724877(v=vs.85).aspx

 Forensic analysis
 1.0 | December 2016

72

Figure 106: Windows Registry Recovery (WRR) tool

For example, using WRR students can open HKLM\Software hive located in SOFTWARE file.

Figure 107: Windows Registry Recovery (WRR) tool

 Forensic analysis
 1.0 | December 2016

73

Now using options from the left panel, students can extract information from the registry about the
operating system. Though they should note that some types of information can be extracted only from a
specific registry hive.

Figure 108: Windows Registry Recovery (WRR) tool

Additionally using the Raw Data option, students can preview the original registry structure from a given
hive.

Figure 109: Windows Registry Recovery (WRR) tool

 Forensic analysis
 1.0 | December 2016

74

 Inspecting registry timeline
From the forensic point of view, one very interesting characteristic of the Windows registry is that each
registry sub key consists of a last modification timestamp. This can be leveraged to check which registry sub
keys were modified around the time of the incident.

To generate a list of all registry sub keys sorted by the date of last modification, students can use the regtime
plugin of RegRipper tool.

Figure 110: Regtime tool

By inspecting the timeline created from the NTUSER.DAT file, students can notice that at 13:02:57 Run and
RunOnce subkeys (used for autostarting applications when user logs in to the system) were modified.
Additionally at 13:03:10 some strangely named sub key – GhCtxq8t – was also modified.

Figure 111: RegRipper tool

Further inspection of NTUSER.DAT with the WRR tool reveals that GhCtxq8t looks to be used by the
update.exe process. FirstExecution value of the GhCtxq8t subkey confirms previous observations that
update.exe was installed in the system and executed for the first time at 13:03:10 UTC (15:03:10 local time).

Figure 112: Windows Registry Recovery (WRR) tool

Further analysis of the registry timeline created from NTUSER.DAT reveals that PuTTY-related sub keys were
modified at 14:11:26 what corresponds to the time of Plink.exe execution (as found during prefetch
analysis).

 Forensic analysis
 1.0 | December 2016

75

Figure 113: RegRipper

Analysis of SSHHostKeys shows it contains single value with RSA key from 192.168.5.10.

Figure 114: Registry settings

This suggests that at 14:11:26 someone was trying to connect over SSH to 192.168.5.10 host.

 UserAssist
The Windows operating system stores information about frequently used applications. This information is
stored in NTUSER.DAT as a group of ROT13 encoded entries in UserAssist key35:

Software\Microsoft\Windows\CurrentVersion\Explorer\UserAssist.

Figure 115: Registry settings

To quickly decode and extract information about UserAssist entries students can use Userassist plugin
from the RegRipper tool.

35 UserAssist http://forensicartifacts.com/2010/07/userassist/ (last accessed 30.09.2016)

http://forensicartifacts.com/2010/07/userassist/

 Forensic analysis
 1.0 | December 2016

76

Figure 116: RegRipper tool

From the plugin output, students can read that at 13:50:29 winpcap-nmap-4.13.exe executable was
started. This is shortly before network scans were performed (13:59:29-13:59:36).

Figure 117: RegRipper tool

Moreover at 12:55:53, a shortcut to the Mozilla Firefox web browser was used which is consistent with
previous observations of user being infected around 13:02:50 after visiting a malicious website with the
Mozilla Firefox browser.

Figure 118: RegRipper tool

 List of installed applications
During forensic investigation, it is important to obtain a list of applications installed in the system. Knowing
what applications were present in the operating system can give an analyst insight into user activities in the
operating system as well as information about potential attack vectors (e.g. presence of file sharing
applications, usage of outdated applications or installation of certain application directly preceding an
incident). Moreover knowing what applications were present in the system, an analyst can check if some of
them were storing additional log data that might give additional information about the incident.

When an application is installed in the system, it usually leaves multiple traces in the system registry. Keys
worth inspecting are:

 HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall

 HKLM\SOFTWARE\Classes\Installer\Products

 Forensic analysis
 1.0 | December 2016

77

 HKLM\SOFTWARE (subkeys used by applications)

 HKLM\SOFTWARE\Wow6432Node36

 HKLM\SOFTWARE\Wow6432Node\Microsoft\Windows\CurrentVersion\Uninstall
Though it is important to keep in mind that not all applications leave traces in the system registry (e.g. some
portable applications). In such case it might be necessary to search for such applications by inspecting some
common filesystem locations (Desktop, C:\, C:\Program Files, etc.).

This task students should start by opening with the WRR tool SOFTWARE registry file. Note that since the
analysed operating system is a 32bit version, there is no Wow6432Node key in Software hive.

Now students should navigate in WRR to Microsoft\Windows\CurrentVersion\Uninstall key.

Figure 119: Registry settings

Each Uninstall sub key contains some information about application (varying between sub keys) like
installation date, path to uninstall binary, app version or install source.

36 32-bit and 64-bit Application Data in the Registry https://msdn.microsoft.com/en-
us/library/windows/desktop/ms724072(v=vs.85).aspx (last accessed 30.09.2016)

https://msdn.microsoft.com/en-us/library/windows/desktop/ms724072(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms724072(v=vs.85).aspx

 Forensic analysis
 1.0 | December 2016

78

Figure 120: Registry settings

Based on information found in Uninstall key, students can determine that during the incident the system
had an outdated version of Mozilla Firefox (33.0.3) and the Adobe Flash Plugin (18.0.0.194). This might have
played important role in workstation infection after the user visited the malicious website.

Figure 121: Registry settings

 Forensic analysis
 1.0 | December 2016

79

Figure 122: Registry settings

When the exact install date is not given, students can check the last modification date of given Uninstall sub
key by right clicking on the sub key and choosing Properties from the context menu.

Figure 123: Registry settings

 Forensic analysis
 1.0 | December 2016

80

Figure 124: Key properties

In this case, it shows that WinPcapInst was likely installed around 13:50:31 which is consistent with previous
findings of winpcap-nmap-4.13.exe binary being executed at 13:50:29.

 Forensic analysis
 1.0 | December 2016

81

9. Building the timeline

To get better picture of the whole incident at the end it is worth to build timeline with all timestamps
collected from different sources. List below presents all timestamps obtained from the previous tasks.

Observations that should be correlated with other logs (network logs, logs from other hosts) were
additionally bolded.

TIMESTAMP [UTC] OBSERVATION EVIDENCE SOURCE

12:54:24 Start of System process Memory analysis

12:54:31 Start of Event log service System logs

12:55:53 Start of firefox.exe
Prefetch files
UserAssist keys

13:02:46 User visits http://blog.mycompany.ex/ Firefox history

13:02:50 - 13:03:17
Browser downloads pages from http://blog.mysportclub.ex/wp-
content/uploads/hk/ (EK)

Firefox history,
Filesystem analysis

13:02:53
Creation of Firefox cache file possibly containing exploit code (CVE-
2012-3993)

AV scan
Filesystem analysis

13:02:56 Creation of 3568226350[1].exe file (referred in one of the cache files)
AV scan
Filesystem analysis

13:02:57 Creation of svchost.exe binary in %TEMP% directory Filesystem analysis

13:02:57 Start of svchost.exe process containing Xtreme RAT code Memory analysis

13:02:57 Modification of Run and RunOnce keys Registry analysis

13:02:58
Start of second explorer.exe process containing Xtreme RAT code
(possible Run PE)

Memory analysis

13:03:04 Start of update.exe process with Xtreme RAT code Memory analysis

13:03:10 Modification of GhCtxq8t registry key (update.exe) Registry analysis

13:03:16 Firefox flash plugin crash report Firefox crash reports

13:07:36 Start of some cmd.exe process Memory analysis

13:10:03 Creation of 54948tp.exe executable in %TEMP% directory Filesystem analysis

13:10:13 Execution of 54948tp.exe Prefetch files

13:10:13-13:14:47
Time period when http://blog.mysportclub.ex/wp-
content/uploads/hk/files/data_32.bin was downloaded

Python decompilation

 Forensic analysis
 1.0 | December 2016

82

13:14:47
Creation of %APPDATA%\EpUpdate folder containing multiple hacking
tools

Filesystem analysis

13:14:47
Creation of %TEMP%\SystemProfile folder containing results of
execution various commands

Filesystem analysis

13:14:47 Execution of mimikatz.exe and creation of mimikatz.log file
Prefetch files
Filesystem analysis

13:14:50 Execution of browserpassworddump.exe and creation of bpd.log
Prefetch files
Filesystem analysis

13:34:25 Creation of sysinfo.txt in %TEMP%\SystemProfile Filesystem analysis

13:42:12 Start of some cmd.exe process Memory analysis

13:50:29 Start of winpcap-nmap-4.13.exe UserAssist

13:59:29 Port scan of 192.168.5.1 Filesystem analysis

13:59:34 Port scan of 192.168.5.10 Filesystem analysis

13:59:36 Port scan of 192.168.5.15 Filesystem analysis

14:02:04 Execution of hydra.exe process (possible dictionary attack) System logs

14:04:44 Execution of Hydra.exe (possible dictionary attack)
Prefetch files
System logs

14:08:30 Start of some cmd.exe process Memory analysis

14:10:49 Possible login to some remote host (Plink.exe execution) Prefetch files

14:11:20 Possible login to some remote host (Plink.exe execution) Prefetch files

14:11:26 Modification of PuTTY SshHostKeys (RSA key pointing to 192.168.5.10) Registry analysis

14:17:45 Possible login to some remote host (Plink.exe execution) Prefetch files

14:18:48 Start of some cmd.exe process Memory analysis

14:20:44 Possible login to some remote host (Plink.exe execution) Prefetch files

14:22:45 Possible login to some remote host (Plink.exe execution) Prefetch files

14:23:02 Start of some cmd.exe process Memory analysis

14:23:31 Possible login to some remote host (Plink.exe execution) Prefetch files

14:23:46 Start of some cmd.exe process Memory analysis

14:47:12
Execution of PSCP tool, possibly to download/upload some data from
remote host

Prefetch files

 Forensic analysis
 1.0 | December 2016

83

14:47:54
execution of PSCP tool, possibly to download/upload some data from
remote host

Prefetch files

14:50:09
execution of PSCP tool, possibly to download/upload some data from
remote host

Prefetch files

 Forensic analysis
 1.0 | December 2016

84

10. Summary and next steps

In this exercise, students have learnt how to use various tools to perform forensic analysis of a compromised
workstation with the Windows 10 operating system. The exercise started with the analysis of the memory
dump using Volatility Framework. Then students proceeded to the analysis of the artefacts found on the disk
image. To ease initial analysis, memory was scanned using Yara signatures and disk was scanned with
ClamAV antivirus. During disk analysis, students created a filesystem timeline as well as checked Mozilla
Firefox logs, prefetch files and system logs. The next step was the analysis of the system registry. In this task,
students learnt how to create a timeline of registry changes, check UserAssist keys as well as extract a list of
installed applications.

During the analysis, it was determined that the system was most likely compromised on 2016-08-16 at
13:02:46 after user visited infected website http://blog.mycompany.ex/ which was redirecting to another
domain (blog.mysportclub.ex) hosting some exploit kit. As a result, the operating system was infected with
Xtreme RAT malware. At 13:10:03, 54948tp.exe executable was created on disk and then executed. As a
result, an additional tools pack was downloaded from blog.mysportclub.ex and then unpacked in the local
filesystem (%APPDATA%\EpUpdate). An additional directory SystemProfile was created in %TEMP% location.

Among the tools were tools like Nmap, THC-Hydra, Mimikatz, BrowserPasswordDump, Plink and Pscp. This
suggests that the attacker’s intention was to gather information about the local system and then possibly
compromise other hosts on the network. At 13:59:00, a port scan of three hosts on the local network was
performed: 192.168.5.1, 192.168.5.10, 192.168.5.15. Shortly after that, THC-Hydra was executed possibly to
perform some dictionary attack. Then plink/pscp was executed a few times. The RSA key found in the registry
suggests that attacker might have been trying to login to 192.168.5.10 host.

To continue the investigation and find additional information, forensic evidence found on the Windows
workstation should be correlated with evidence obtained from other systems, especially network logs, and,
if possible, evidence preserved from blog.mysportclub.ex and blog.mycompany.ex.

http://blog.mycompany.ex/

 Forensic analysis
 1.0 | December 2016

85

11. References

1. https://www.enisa.europa.eu/topics/trainings-for-cybersecurity-specialists/online-training-
material/documents/digital-forensics-handbook (last accessed on September 20th 2016)

2. https://en.wikipedia.org/wiki/Chain_of_custody (last accessed on September 20th 2016)
3. http://www.forensicmag.com/article/2012/05/report-writing-guidelines (last accessed

on September 20th 2016)
4. https://en.wikipedia.org/wiki/Forensic_disk_controller (last accessed on September 20th 2016)
5. http://www.forensicfocus.com/linux-forensics-pitfalls-of-mounting-file-systems (last accessed

on September 20th 2016)
6. https://www.enisa.europa.eu/topics/trainings-for-cybersecurity-specialists/online-training-

material/documents/advanced-artifact-handling-handbook (last accessed on September 20th 2016)
7. https://github.com/Yara-Rules/rules (last accessed on September 20th 2016)
8. https://www.sans.org/reading-room/whitepapers/forensics/creating-baseline-process-activity-

memory-forensics-35387 (last accessed on September 20th 2016)
9. http://www.adlice.com/runpe-hide-code-behind-legit-process/ (last accessed on September 20th 2016)
10. https://www.sans.org/reading-room/whitepapers/forensics/filesystem-timestamps-tick-36842 (last

accessed on September 20th 2016)
11. https://digital-forensics.sans.org/blog/2011/09/20/ntfs-i30-index-attributes-evidence-of-deleted-and-

overwritten-files (last accessed on September 20th 2016)
12. https://www.trustedsec.com/april-2015/dumping-wdigest-creds-with-meterpreter-mimikatzkiwi-in-

windows-8-1/ (last accessed on September 20th 2016)
13. http://www.nirsoft.net/utils/browsing_history_view.html (last accessed on September 20th 2016)
14. http://www.nirsoft.net/utils/mozilla_cache_viewer.html (last accessed on September 20th 2016)
15. https://github.com/matiasb/unpy2exe (last accessed on September 20th 2016)
16. https://pypi.python.org/pypi/uncompyle6/ (last accessed on September 20th 2016)
17. http://blog.digital-forensics.it/2015/06/a-first-look-at-windows-10-prefetch.html (last accessed

on September 20th 2016)
18. https://github.com/PoorBillionaire/Windows-Prefetch-Parser (last accessed on September 20th 2016)
19. http://www.505forensics.com/windows-10-prefetch/ (last accessed on September 20th 2016)
20. https://github.com/libyal/libscca (last accessed on September 20th 2016)
21. https://technet.microsoft.com/en-us/library/cc749408(v=ws.11).aspx (last accessed

on September 20th 2016)
22. http://computer.forensikblog.de/en/ (last accessed on September 20th 2016)
23. https://technet.microsoft.com/en-us/library/cc765981(v=ws.11).aspx (last accessed

on September 20th 2016)
24. https://msdn.microsoft.com/en-us/library/windows/desktop/aa363650(v=vs.85).aspx (last accessed

on September 20th 2016)
25. https://www.ultimatewindowssecurity.com/securitylog/encyclopedia/default.aspx (last accessed

on September 20th 2016)
26. https://www.microsoft.com/technet/support/ee/transform.aspx?ProdName=Windows%20Operating

%20System&ProdVer=10.0&EvtID=6005&EvtSrc=EventLog&LCID=1033 (last accessed
on September 20th 2016)

27. https://www.microsoft.com/technet/support/ee/transform.aspx?ProdName=Windows%20Operating
%20System&ProdVer=10.0&EvtID=6006&EvtSrc=EventLog&LCID=1033 (last accessed
on September 20th 2016)

https://www.enisa.europa.eu/topics/trainings-for-cybersecurity-specialists/online-training-material/documents/digital-forensics-handbook
https://www.enisa.europa.eu/topics/trainings-for-cybersecurity-specialists/online-training-material/documents/digital-forensics-handbook
https://en.wikipedia.org/wiki/Chain_of_custody
http://www.forensicmag.com/article/2012/05/report-writing-guidelines
https://en.wikipedia.org/wiki/Forensic_disk_controller
http://www.forensicfocus.com/linux-forensics-pitfalls-of-mounting-file-systems
https://www.enisa.europa.eu/topics/trainings-for-cybersecurity-specialists/online-training-material/documents/advanced-artifact-handling-handbook
https://www.enisa.europa.eu/topics/trainings-for-cybersecurity-specialists/online-training-material/documents/advanced-artifact-handling-handbook
https://github.com/Yara-Rules/rules
https://www.sans.org/reading-room/whitepapers/forensics/creating-baseline-process-activity-memory-forensics-35387
https://www.sans.org/reading-room/whitepapers/forensics/creating-baseline-process-activity-memory-forensics-35387
http://www.adlice.com/runpe-hide-code-behind-legit-process/
https://www.sans.org/reading-room/whitepapers/forensics/filesystem-timestamps-tick-36842
https://digital-forensics.sans.org/blog/2011/09/20/ntfs-i30-index-attributes-evidence-of-deleted-and-overwritten-files
https://digital-forensics.sans.org/blog/2011/09/20/ntfs-i30-index-attributes-evidence-of-deleted-and-overwritten-files
https://www.trustedsec.com/april-2015/dumping-wdigest-creds-with-meterpreter-mimikatzkiwi-in-windows-8-1/
https://www.trustedsec.com/april-2015/dumping-wdigest-creds-with-meterpreter-mimikatzkiwi-in-windows-8-1/
http://www.nirsoft.net/utils/browsing_history_view.html
http://www.nirsoft.net/utils/mozilla_cache_viewer.html
https://github.com/matiasb/unpy2exe
https://pypi.python.org/pypi/uncompyle6/
http://blog.digital-forensics.it/2015/06/a-first-look-at-windows-10-prefetch.html
https://github.com/PoorBillionaire/Windows-Prefetch-Parser
http://www.505forensics.com/windows-10-prefetch/
https://github.com/libyal/libscca
https://technet.microsoft.com/en-us/library/cc749408(v=ws.11).aspx
http://computer.forensikblog.de/en/
https://technet.microsoft.com/en-us/library/cc765981(v=ws.11).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa363650(v=vs.85).aspx
https://www.ultimatewindowssecurity.com/securitylog/encyclopedia/default.aspx
https://www.microsoft.com/technet/support/ee/transform.aspx?ProdName=Windows%20Operating%20System&ProdVer=10.0&EvtID=6005&EvtSrc=EventLog&LCID=1033
https://www.microsoft.com/technet/support/ee/transform.aspx?ProdName=Windows%20Operating%20System&ProdVer=10.0&EvtID=6005&EvtSrc=EventLog&LCID=1033
https://www.microsoft.com/technet/support/ee/transform.aspx?ProdName=Windows%20Operating%20System&ProdVer=10.0&EvtID=6006&EvtSrc=EventLog&LCID=1033
https://www.microsoft.com/technet/support/ee/transform.aspx?ProdName=Windows%20Operating%20System&ProdVer=10.0&EvtID=6006&EvtSrc=EventLog&LCID=1033

 Forensic analysis
 1.0 | December 2016

86

28. https://www.microsoft.com/technet/support/ee/transform.aspx?ProdName=Windows%20Operating
%20System&ProdVer=10.0&EvtID=6008&EvtSrc=EventLog&LCID=1033 (last accessed on September
20th 2016)

29. http://www.mitec.cz/wrr.html (last accessed on September 20th 2016)
30. https://msdn.microsoft.com/pl-pl/library/windows/desktop/ms724877(v=vs.85).aspx (last accessed on

September 20th 2016)
31. http://forensicartifacts.com/2010/07/userassist/ (last accessed on September 20th 2016)
32. https://msdn.microsoft.com/en-us/library/windows/desktop/ms724072(v=vs.85).aspx (last accessed

on September 20th 2016)

https://www.microsoft.com/technet/support/ee/transform.aspx?ProdName=Windows%20Operating%20System&ProdVer=10.0&EvtID=6008&EvtSrc=EventLog&LCID=1033
https://www.microsoft.com/technet/support/ee/transform.aspx?ProdName=Windows%20Operating%20System&ProdVer=10.0&EvtID=6008&EvtSrc=EventLog&LCID=1033
http://www.mitec.cz/wrr.html
https://msdn.microsoft.com/pl-pl/library/windows/desktop/ms724877(v=vs.85).aspx
http://forensicartifacts.com/2010/07/userassist/
https://msdn.microsoft.com/en-us/library/windows/desktop/ms724072(v=vs.85).aspx

ENISA
European Union Agency for Network
and Information Security
Science and Technology Park of Crete (ITE)
Vassilika Vouton, 700 13, Heraklion, Greece

Athens Office
1 Vass. Sofias & Meg. Alexandrou
Marousi 151 24, Athens, Greece

PO Box 1309, 710 01 Heraklion, Greece
Tel: +30 28 14 40 9710
info@enisa.europa.eu
www.enisa.europa.eu

