

Liberté Égalité Fraternité

Why Post-Quantum cryptography is the future of secure communications Sébastien KUNZ-JACQUES Deputy director, Expertise division, ANSSI, France

A BIT OF HISTORY

Secure Networks with symmetric cryptography

The only solution ≈ 1990 for "high security" networks, at least in France

Centralized, cumbersome key management...

...but possible if mostly fixed set of endpoints.

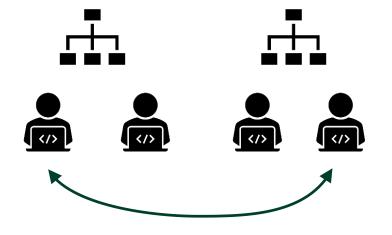
Quantum-safe! (mostly)

Some networks with purely symmetric cryptography still exist today.

Public-key cryptography: enables decentralized trust

Public / private Key pairs

- do not directly protect data
- authenticate endpoints (machines, users, arbitrary entities)


Endpoint authentication can be delegated to intermediate certification authorities.

PKC is the only manageable way to provide end-to-end encryption in loosely coordinated networks

WWW : millions of endpoints

Large company with branches / multi-state network

RÉPUBLIQU FRANCAISE

THE QUANTUM COMPUTING PROBLEM AND CANDIDATE SOLUTIONS

Public Key Cryptography and Quantum Computing

Currently used PKC algorithms overwhelmingly based on problems broken by the Shor algorithm on a quantum computer.

Does not mean that QC breaks all PKC.

<u>NIST standardization</u> results due soon for post-quantum (i.e. QC resistant) key-exchange algorithms.

Hybrid use (pre + post Q) possible.

Quantum Key Distribution

Functionally equivalent to public key exchange.

Immune to purely computational attacks, classical or quantum : Relies on physical effects to detect and quantify eavesdropping.

May be vulnerable to side-channel attacks,

but

ex post facto cryptanalysis is generally not possible, which is a good thing.

QKD: FOR WHICH APPLICATIONS?

Limitations of a hardware solution

Inherently hardware-based : endpoints are QKD devices

Range, routing, infrastructure

Range limitation; can be overcome by chaining links

- With no intermediate security ("trusted nodes")
- Or in the future, with quantum relays

Physical security and cybersecurity of trusted nodes is a grave concern

Quantum relays may alleviate the end-to-end range limitation but

- Still routing-incompatible
- Intermediate nodes need to be managed and to be compatible with endpoints

Needs dedicated links or a carefully controlled "signal neighborhood"

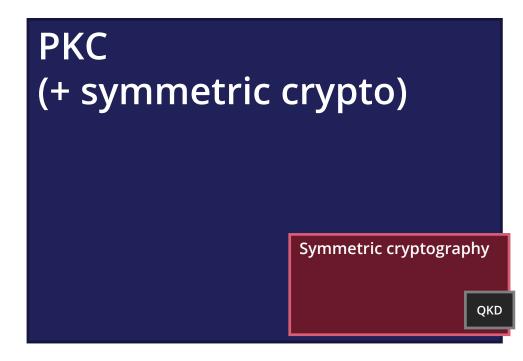
Tradeoffs for classical cryptography choices

QKD relies on classical cryptography for

- Data encryption and authentication
- QKD signaling authentication

Two sensible choices:

- Unconditionally secure primitives for everything: the smallest attack surface, but extremely slow data exchange
- Primitives based on symmetric cryptography: no performance limit, but assumptions not different from classical crypto devices



	PKI-based cryptography	Purely symmetric cryptography	QKD with PKI-based signaling	Unconditionally secure QKD
Building blocks	Message encryption and authentication with symmetric cryptography. Keys provided by asymmetric key establishment algorithms authenticated with signatures using a Public Key Infrastructure (PKI).	Message encryption and authentication with symmetric cryptography. Keys initialized offline and possibly managed remotely.	QKD + symmetric cryptography for message encryption and authentication, with QKD keys; QKD signaling authenticated with hash- based signatures using a PKI.	QKD paired with unconditionally secure message encryption (i.e. One-Time Pad) and authentication, with QKD keys; QKD signaling authenticated unconditionally, with keys initialized offline and renewed by QKD.
Can be deployed over the Internet or private networks	Yes	Yes	No	No
Resists to quantum computers / to cryptanalysis advances	++	+++	+++	++++ No purely algorithmic attack is possible.
Resists to device/software hacking and side-channel attacks	Not in general. Implementation-dependent.			
Can easily scale; endpoints can evolve easily	Yes	No	No	No
Can provide end-to-end security	Yes	Yes	No	No
Can achieve high performance (e.g. 100Gb/s encryption)	Yes	Yes	Yes	No

Even shorter : use cases

Thank you for your attention

https://www.ssi.gouv.fr/en/publication/should-quantum-key-distribution-be-used-for-secure-communications/