
Standards and tools for exchange and processing of actionable information

November 2014

European Union Agency for Network and Information Security www.enisa.europa.eu

Standards and tools for exchange and
processing of actionable information

November 2014

Standards and tools for exchange and processing of actionable information

November 2014

Page ii

About ENISA

The European Union Agency for Network and Information Security (ENISA) is a centre of network and
information security expertise for the EU, its member states, the private sector and Europe’s citizens.
ENISA works with these groups to develop advice and recommendations on good practice in
information security. It assists EU member states in implementing relevant EU legislation and works
to improve the resilience of Europe’s critical information infrastructure and networks. ENISA seeks to
enhance existing expertise in EU member states by supporting the development of cross-border
communities committed to improving network and information security throughout the EU. More
information about ENISA and its work can be found at www.enisa.europa.eu.

Authors :

This document was created by the CERT capability team at ENISA in consultation with CERT Polska
/NASK (Poland)1

Acknowledgements (in alphabetical order):

 Luc Dandurand (NATO)

 Aaron Kaplan (CERT.at)

 Pavel Kácha (CESNET)

 Youki Kadobayashi (NAIST)

 Andrew Kompanek (CERT/CC)

 Tomás Lima (CERT.PT)

 Thomas Millar (US-CERT)

 Jose Nazario (Invincea)

 Richard Perlotto (Shadowserver)

 Wes Young (CSIRT Gadgets Foundation)

Contact

For contacting the authors please use cert-relations@enisa.europa.eu

For media enquires about this paper, please use press@enisa.europa.eu.

1 Paweł Pawliński, Przemysław Jaroszewski, Janusz Urbanowicz, Paweł Jacewicz, Przemysław Zielony, Piotr
Kijewski (CERT Polska), Katarzyna Gorzelak (CERT Polska)

http://www.enisa.europa.eu/
mailto:cert-relations@enisa.europa.eu
mailto:press@enisa.europa.eu

Standards and tools for exchange and processing of actionable information

November 2014

Page iii

Legal notice

Notice must be taken that this publication represents the views and interpretations of the authors and
editors, unless stated otherwise. This publication should not be construed to be a legal action of ENISA or the
ENISA bodies unless adopted pursuant to the Regulation (EU) No 526/2013. This publication does not
necessarily represent state-of the-art and ENISA may update it from time to time.

Third-party sources are quoted as appropriate. ENISA is not responsible for the content of the external
sources including external websites referenced in this publication.

This publication is intended for information purposes only. It must be accessible free of charge. Neither ENISA
nor any person acting on its behalf is responsible for the use that might be made of the information contained
in this publication.

Copyright Notice

© European Union Agency for Network and Information Security (ENISA), 2014

Reproduction is authorised provided the source is acknowledged.

ISBN: 978-92-9204-105-2 doi: 10.2824/37776 Catalog number: TP-04-14-999-EN-N

Standards and tools for exchange and processing of actionable information

November 2014

Page iv

Table of Contents

1 Introduction 1

2 Information Sharing Standards 2

2.1 Formats for low-level data 5
2.1.1 NetFlow 5
2.1.2 IPFIX 5
2.1.3 PCAP 7
2.1.4 PcapNG 7
2.1.5 CEF 7

2.2 Actionable observables 8
2.2.1 CybOX 8
2.2.2 MAEC 9
2.2.3 MMDEF 9
2.2.4 OpenIOC 10
2.2.5 Snort rules 10
2.2.6 YARA rules 11

2.3 Enumerations 11
2.3.1 CAPEC 11
2.3.2 CPE 12
2.3.3 CVE 12
2.3.4 CWE 12
2.3.5 ISI 13
2.3.6 OSVDB 13
2.3.7 SWID Tags 13
2.3.8 TLP 14
2.3.9 WASC TC 14

2.4 Scoring and measurement frameworks 14
2.4.1 CCSS 15
2.4.2 CVSS 15
2.4.3 CWSS 15
2.4.4 XCCDF 16

2.5 Reporting Formats 16
2.5.1 ARF 16
2.5.2 CVRF 17
2.5.3 IODEF 17
2.5.4 IODEF-SCI 18
2.5.5 IDMEF 18
2.5.6 MARF 18
2.5.7 OVAL 19
2.5.8 STIX 20
2.5.9 VERIS 20
2.5.10 X-ARF 21

2.6 High-level frameworks 21
2.6.1 CYBEX 21
2.6.2 SCAP 22

Standards and tools for exchange and processing of actionable information

November 2014

Page v

3 Transport and Serialization 23

3.1 Transport mechanisms 23
3.1.1 Static files over HTTP 23
3.1.2 Email 24
3.1.3 RESTful interface 24
3.1.4 Farsight SIE 25
3.1.5 Twitter 25
3.1.6 Internet Relay Chat 26
3.1.7 Extensible Messaging and Presence Protocol 26
3.1.8 hpfeeds 27
3.1.9 Really Simple Syndication 27
3.1.10 Trusted Automated eXchange of Indicator Information 27

3.2 Serialization methods 28
3.2.1 Freeform text 28
3.2.2 Raw logs 29
3.2.3 CSV 29
3.2.4 XML 30
3.2.5 JSON 31
3.2.6 Other text formats 31
3.2.7 Binary formats 32

4 Information Management Tools 33

4.1 Automated distribution of data 33
4.1.1 AbuseHelper 33
4.1.2 Information Feed Analysis System 34
4.1.3 IntelMQ 34
4.1.4 Megatron 35
4.1.5 n6 - Network Security Incident eXchange 35
4.1.6 Warden 36

4.2 Supporting analysis 36
4.2.1 Collective Intelligence Framework 36
4.2.2 Collaborative Research Into Threats 37
4.2.3 Malware Information Sharing Platform 38
4.2.4 MalCom 38
4.2.5 The MANTIS Cyber Threat Intelligence Management Framework 39

4.3 General purpose log management 39
4.3.1 Enterprise Log Search and Archive 39
4.3.2 Elasticsearch + Logstash + Kibana 40
4.3.3 Splunk 40

4.4 Handling high-level information 41
4.4.1 Request Tracker 41
4.4.2 Taranis 41

Standards and tools for exchange and processing of actionable information

November 2014

Page 1

1 Introduction

This document has been created as part of an ENISA-funded study of the state of security information
sharing and is intended to supplement the main report, “Actionable Information for Security Incident
Response.” The purpose of this document is to give the target audience of this study - national and
governmental CERTs - a better understanding of the standards and tools for processing actionable
information that can be applied to their information-sharing missions.

The first part of the document covers a total of 53 different information sharing standards, a mix of
formats, protocols, technical approaches and frameworks in common use. These are broken down
into 7 main categories that are based on the scope of the standard:

1. Formats for low-level data
2. Actionable observables
3. Enumerations
4. Scoring and measurement frameworks
5. Reporting formats
6. High level frameworks
7. Transport and Serialization

The document also explores the relationships among the different standards.

The second part of the inventory consists of information management tools that we found relevant to
the exchange and processing of actionable information. A total of 16 are listed. These are primarily
open source solutions and capabilities that are available to the target group of the study.2 These
solutions are broken down into 4 main categories:

1. Automated distribution of data
2. Supporting analysis
3. General purpose log management
4. Handling High-level information

2 Rather than attempt to exhaustively survey the vast number of potentially applicable tools, we selected those
tools most commonly used operationally by the target audience of this study, national and governmental CERTs.

Standards and tools for exchange and processing of actionable information

November 2014

Page 2

2 Information Sharing Standards

The use of common standards is important for the exchange of any information, but it can be
especially critical when sharing data in a domain as diverse as information security. In particular, data
format standards are especially important. A data format standard defines how particular information
elements are represented in files or in communications by describing a the syntax of a description
language (often based on a generic data format - see Section 3.2)) and, the semantics associated with
those descriptions. Using a standard format has two main advantages over using ad hoc
representations: implementations that use a standard can take advantage of existing processing tools
built to support the standard; and the interpretation of a description should (generally) be less subject
to misinterpretation because the standard defines the semantics for information elements.

This inventory lists standards that are relevant to the exchange of actionable information - which is
understood as information that can be acted upon to prevent or eliminate threats. What constitutes
actionable varies between stakeholders, however in general it should be usable for the purpose of
mitigation with minimal analysis or verification on the part of the final recipient3. Therefore the focus
of this document is on formats that are used to exchange data4, although frameworks that specify the
exchange process on a more abstract level were also included.

The term “standard” throughout this document is used in a broad sense that encompasses not only
specifications published by traditional standards bodies like ISO or ITU but also formats developed by
other entities, as long as they are commonly used by information security operations.

The figure on the following page illustrates relationships between all standards for sharing of security
information described in this document with the exception of the high-level frameworks (i.e, SCAP
and CYBEX), which we omitted simply to reduce clutter since these frameworks reference many of the
other standards. It should be read as follows:

 Solid vertical and diagonal lines: lead from standards that embed or
reference other standards, e.g. CVRF uses vocabularies defined by CVE and
CWE.

 Dotted vertical and diagonal lines: lead from standards that evolved from
others, e.g. X-ARF is an extended variant of MARF.

 All horizontal lines: lead to standards that are used by others any way, e.g.
OVAL is used by multiple other standards.

Some of the standards in the diagram reference others that were published later. This is due to the
fact that many of the standards incorporated additional references during their evolution.

3 The "Actionable Information for Security Incident Response" provides more in-depth discussion of what
“actionable” for incident response and information security in general.
4 Information is often defined as more processed and structured, while data as raw and less organized. However,
for the purpose of this document these two terms are used interchangeably.

Standards and tools for exchange and processing of actionable information

November 2014

Page 3

Standards and tools for exchange and processing of actionable information

November 2014

Page 4

Many standards in some way related to sharing security information were omitted. They are listed
below for completeness:

 Standards that are no longer developed or maintained and not used by any new tools:
Common Digital Evidence Storage Format (CDESF)5, Common Event Expression (CEE)6, SECDEF
and related standards, Resource-Oriented Lightweight Indicator Exchange (ROLIE)7.

 Standards that are not used in practice: Real-time Inter-network Defence (RID) 8 , Policy
Language for Assessment Results Reporting (PLARR) 9 , Asset Reporting Format 10 (ARF),
Assessment Summary Results, Structured Assurance Case Metamodel (SACM), eXtensible
Access Control Markup Language (XACML), Digital Forensics XML (DFXML), CMSS (Common
Misuse Scoring System).

 Standards are too generic, not applicable for exchange of actionable information: Common
Configuration Enumeration (CCE), Open Checklist Interactive Language (OCIL), Semantics of
Business Vocabulary and Business Rules (SBVR), TMSAD (Trust Model for Security Automation
Data), SACM (Security Automation and Continuous Monitoring), Common Weakness Risk
Analysis Framework (CWRAF)

 Standards under development, driven by CERTs but still lacking adoption - Intrusion Detection
Extensible Alert (IDEA) and Data Harmonization Ontology for Abuse Helper.

 Other standards with not relevant for sharing actionable information, in particular Trusted
Network Connect (TNC) standards. For ETSI ISI standards we take only the first two (ISI-001-1
and ISI-002) into account, as the rest of the standard deals with aspects of security
management that lie beyond the scope of this document.

5 See http://www.dfrws.org/CDESF/
6 See https://cee.mitre.org/
7 See https://tools.ietf.org/html/draft-field-mile-rolie-00
8 See http://tools.ietf.org/html/rfc6545
9 See http://measurablesecurity.mitre.org/incubator/plarr/
10 See http://scap.nist.gov/specifications/arf/

Standards and tools for exchange and processing of actionable information

November 2014

Page 5

2.1 Formats for low-level data

The formats in this category were developed to represent data collected by security monitoring
systems (e.g., on the network level). Most of them have not been formally standardized. Further
analysis is generally required to extract useful (i.e., actionable) information. All of formats described
in this section use a custom binary serialization format (see Section 3.2.7).

2.1.1 NetFlow

Full name: NetFlow

Year of publication: 1990

Governing body: Cisco Systems

Description:
NetFlow is a protocol that was originally developed for exporting traffic
summaries in the form of IP flow records from active network devices (i.e.,
routers, switches) that is now used by many passive flow sensors. It was
introduced by Cisco Systems, but similar export features are present in
networking equipment from other vendors. Netflow data is produced by a
network device or sensor which transfers the data by either UDP or SCTP to a
collector that aggregates and organizes the data so that it can be queried and
analyzed. A distinction should be made between NetFlow v5 which is based on
a fixed record format, and NetFlow v9, which supports the definition of
customized record formats.

Realtionships: NetFlow v9 formed the basis for IPFIX

Types of indicators: IP packet headers, traffic volumes, routing information (e.g., indexes of
switch/router interfaces)

Examples of tools: SiLK,11 Argus12

Reference: RFC 3954

2.1.2 IPFIX

11 See https://tools.netsa.cert.org/silk/
12 See http://argus.tcp4me.com

Full name: Internet Protocol Flow Information Export

Year of publication: 2004

Governing body: IETF

Description: IPFIX is a standard that evolved from NetFlow that is formalized in an RFC that
defines how the flow information should be formatted for export from
network devices and sensors (“flow meters”). Like NetFlow records, IPFIX
records describe a single logical IP connection corresponding to the 5-tuple in
an IP header, generally include fields describing traffic volumes (in bytes and
packets) for the connection, but may also include any number of other fields
that summarize information about the connection.

https://tools.netsa.cert.org/silk/
http://argus.tcp4me.com/

Standards and tools for exchange and processing of actionable information

November 2014

Page 6

13 See http://libipfix.sourceforge.net

Realtionships: provides a generic framework for describing any flow-like data; based on
Cisco NetFlow 9

Types of indicators: IP packet headers, traffic volumes

Examples of tools: SiLK, Argus, libIPFIX13

Reference: RFC 3917

http://libipfix.sourceforge.net/

Standards and tools for exchange and processing of actionable information

November 2014

Page 7

2.1.3 PCAP

Full name: packet capture file

Year of publication: 1998 (libpcap 0.4)

Governing body: TCPDUMP project

Description: PCAP is the format used by many popular packet capture tools, and is used to
store or transmit captured network traffic. The format is very simple and allows
the storage of time zone, clock accuracy and link type along with the captured
network packets.

Realtionships: used by CybOX

Types of indicators: network packets

Examples of tools: libpcap,14 tcpdump, Snort,15 Wireshark16

Reference: http://www.tcpdump.org

2.1.4 PcapNG

2.1.5 CEF

14 See http://www.tcpdump.org and http://www.winpcap.org
15 See https://www.snort.org
16 See https://www.wireshark.org
17 See http://www.winpcap.org/ntar/

Full name: PCAP Next Generation Dump File Format

Year of publication: 2004

Governing body: Wireshark project

Description: PcapNg is a format for the storage and transmission of packet traces. The
primary design goals of PcapNg are extensibility and portability: the format
allows additional descriptive data to attached to PCAP traces. The PcapNg
standard defines a format for representing additional capture metadata. This
includes facilities for describing the capture device and the filter used at
capture time. It also includes provisions for storing NetFlow and Remote
Network Monitoring (RMON) data. PcapNg is now defined as an Internet Draft.

Realtionships: based on PCAP, with extensions for additional metadata for encapsulating IP
flow information

Types of indicators: network packets

Examples of tools: NTAR,17 libpcap, Wireshark

Reference: http://pcapng.com

Full name: Common Event Format

Year of publication: 2006

http://www.tcpdump.org/
http://www.tcpdump.org/
http://www.winpcap.org/
https://www.snort.org/
https://www.wireshark.org/
http://www.winpcap.org/ntar/
http://pcapng.com/

Standards and tools for exchange and processing of actionable information

November 2014

Page 8

2.2 Actionable observables

In contrast to unprocessed data, these formats are used to represent certain characteristics of threats
(e.g., system libraries used by a malware sample) that have been explicitly identified by the producer
of the information. This kind of information is often referred to as “indicators”, “detection indicators”
or, more narrowly, “indicators of compromise” since it can be used to detect attacks and other
malicious activity (e.g., botnet communication).

2.2.1 CybOX

18 See http://www.arcsight.com
19 See https://github.com/CybOXProject/python-cybox

Governing body: ArcSight Inc.

Description: CEF is a syslog-based format for the transmission of event information
between event producers and consumers. CEF messages contain data about
the originating device, event signature, a human readable description, and
severity. The specification also includes a dictionary of predefined keys for
describing security-related events.

Realtionships: based on syslog

Types of indicators: devices involved, event type, network addresses, users, files, network
metadata, firewall rules and events, other OS artifacts

Example of tools: ArcSight SIEM18

Reference: http://mita-tac.wikispaces.com/file/view/CEF+White+Paper+071709.pdf

Full name: Cyber Observable eXpression

Year of publication: 2012

Governing body: MITRE

Description: CybOX is a standardized language for representing observables. An observable
may be used to detect an event, or check a property of a malware-infected
system. Examples of observables that can be described in CybOX include file
deletion events, changes to registry keys values and communication via HTTP.

Realtionships: used in STIX, CAPEC, and MAEC to represent observables; uses PCAP.

Types of indicators: OS artifacts, APIs, X.509 certificates, network flows, network artifacts, files,
SMS messages, images, email messages

Serialization: XML

Examples of tools: python-cybox,19 cybiet

Reference: http://cybox.mitre.org

http://www.arcsight.com/
https://github.com/CybOXProject/python-cybox
http://mita-tac.wikispaces.com/file/view/CEF+White+Paper+071709.pdf
http://cybox.mitre.org/

Standards and tools for exchange and processing of actionable information

November 2014

Page 9

2.2.2 MAEC

2.2.3 MMDEF

20 See https://anubis.iseclab.org
21 See http://www.threattracksecurity.com
22 See http://www.threatexpert.com
23 See http://www.cuckoosandbox.org
24 See https://github.com/buffer/thug

Full name: Malware Attribute Enumeration and Characterization

Year of publication: 2010

Governing body: MITRE

Description: MAEC is a structured language for describing malware behaviors, artifacts, and
attack patterns. The MAEC schema defines a standard set of malware
attributes that includes simple attributes like name, size, cryptographic hashes
and, AV classifications. It also includes ways of describing low-level executable
behavior, including descriptions of processes spawned, system calls made, files
created, registry keys modified, and network communications. Finally, it can
be used to describe malicious behaviors found or observed in malware at a
higher level, indicating the vulnerabilities it exploits, behavior like email
address harvesting from contact lists or disabling of a security service.

Realtionships: uses CybOX and MMDEF, used in STIX

Types of indicators: malware characteristics, malware actions

Serialization: XML

Examples of tools: Anubis,20 ThreatTrack,21 ThreatExpert,22 Cuckoo Sandbox,23 Thug24

Reference: http://maec.mitre.org

Full name: Malware Metadata Exchange Format

Year of publication: 2009

Governing body: IEEE

Description: MMDEF is an XML format allowing for the sharing of malware samples,
behavioral information and other metadata. MMDEF was developed to
facilitate information exchange in the antivirus industry.

Realtionships: MMDEF can be used in MAEC to describe malware

Types of indicators: filenames, file hashes, malware behavior, origin

Serialization: XML

Examples of tools: Cuckoo

Reference: http://standards.ieee.org/develop/indconn/icsg/mmdef.html

https://anubis.iseclab.org/
http://www.threattracksecurity.com/
http://www.threatexpert.com/
http://www.cuckoosandbox.org/
https://github.com/buffer/thug
http://maec.mitre.org/
http://standards.ieee.org/develop/indconn/icsg/mmdef.html

Standards and tools for exchange and processing of actionable information

November 2014

Page 10

2.2.4 OpenIOC

2.2.5 Snort rules

25 See http://www.mandiant.com/resources/download/ioc-editor/
26 See http://www.mandiant.com/resources/download/ioc-finder/
27 See https://github.com/STIXProject/openioc-to-stix
28 See http://suricata-ids.org

Full name: Open Indicators of Compromise

Year of publication: 2011

Governing body: MANDIANT

Description: OpenIOC is an XML-based language designed to group and communicate
forensic information. It is suitable for descriptions of technical characteristics
that identify a known threat, an attacker’s methodology, or other evidence of
compromise. OpenIOC is focused on describing malware artifacts, indicators
and attacker TTPs. The format is extensible, allowing the definition of new data
types using custom indicator sets.

Realtionships: used in STIX

Types of indicators: networking information, browser artifacts, OS artifacts, memory forensic
information

Serialization: XML

Examples of tools: MANDIANT IOC Editor,25 Mandiant IOC Finder,26 OpenIOC-to-STIX27

Reference: http://openioc.org

Full name: Snort

Year of publication: 1998

Governing body: Sourcefire / Cisco Systems

Description: Snort rules are designed for the real-time analysis of network traffic. The IDS
uses a set of snort rules to detect and alert on packets that might represent
harmful or suspicious network traffic. The rules operate at various layers of OSI
model, including elements of IP packet headers, HTTP protocol headers, and
patterns in packet payload.

Realtionships: used in STIX

Types of indicators: IP addresses, ports, flags, protocol, direction, patterns in payload, HTTP
request and response parameters

Serialization: custom text-based

Examples of tools: Snort, Suricata28

Reference: http://snort.org

http://www.mandiant.com/resources/download/ioc-editor/
http://www.mandiant.com/resources/download/ioc-finder/
https://github.com/STIXProject/openioc-to-stix
http://suricata-ids.org/
http://openioc.org/
http://snort.org/

Standards and tools for exchange and processing of actionable information

November 2014

Page 11

2.2.6 YARA rules

2.3 Enumerations

The term enumeration is used here to signify a standard that is used to define the meaning of a
vocabulary used by the security community. That vocabulary is generally either a set of (a) global
identifiers for shared data objects that need to be referenced in a common way, or (b) data labels that
need to be clearly defined. Some of the standards specify such vocabularies directly or while others
provide guidelines for the creation of enumerations for a particular domain but do not actually
enumerate the vocabulary.

2.3.1 CAPEC

29 See http://plusvic.github.io/yara/
30 See https://www.virustotal.com
31 See http://jsunpack.jeek.org

Full name: Yet Another Regex Analyzer

Year of publication: 2008

Governing body: none, community engagement coordinated by Víctor Manuel Álvarez

Description: YARA is a tool and a signature format for the analysis and identification of
malware. YARA allows an analyst to write logical expressions based on built-in
signature-matching functions to test for malware features.

Realtionships: used in STIX

Types of indicators: binary signatures, strings

Serialization: Custom text-based

Examples of tools: YARA29 (software), VirusTotal,30 jsunpack31

Reference: https://github.com/plusvic/yara

Full name: Common Attack Pattern Enumeration and Classification

Year of publication: 2008

Governing body: MITRE

Description: CAPEC is a publicly available catalog of attack patterns that includes a
description language schema and classification taxonomy. CAPEC entries are
descriptions of particular attack patterns, that is, the techniques and
procedures used to carry out the sequence of steps that makes up the pattern.

Realtionships: used in STIX, IODEF-SCI; uses CybOX

Reference: https://capec.mitre.org

http://plusvic.github.io/yara/
https://www.virustotal.com/
http://jsunpack.jeek.org/
https://github.com/plusvic/yara
https://capec.mitre.org/

Standards and tools for exchange and processing of actionable information

November 2014

Page 12

2.3.2 CPE

2.3.3 CVE

2.3.4 CWE

32 NVD is the registry of CVE with extra information and a search engine.

Full name: Common Platform Enumeration

Year of publication: 2007 (ver. 1.1)

Governing body: NIST

Description: The CPE standard provides a consistent and structured naming scheme for
operating systems, software packages and classes of hardware devices. It is
based on the generic syntax for Uniform Resource Identifiers (URIs) and
includes a method by which vendors can validate that their product names are
accurately represented in the CPE system. CPE identifies abstract classes of
products, not specific instances (e.g., it does not include serial numbers). As an
example, consider the entry for Internet Explorer ver. 8.0.6001:

cpe:/a:microsoft:internet_explorer:8.0.6001.

Realtionships: included in IODEF-SCI, and used in MAEC and CybOX

Reference: https://capec.mitre.org

Full name: Common Vulnerabilities and Exposures

Year of publication: 1998

Governing body: MITRE

Description: CVE is a list of known security vulnerabilities and exposures. The main goal of
CVE is to define a standard set identifiers (CVE-ID numbers) that can be used
to reference publicly-known vulnerabilities. The CVE list is maintained by
MITRE, which publishes the list through the National Vulnerability Database
(NVD)32. CVE-ID numbers are assigned by CVE Numbering Authorities (CNAs),
software vendors and other organizations that have met requirements
specified by MITRE.

Realtionships: used by IODEF-SCI, STIX, CVRF, IDMEF, VERIS; referenced by OSVDB

Reference: https://cve.mitre.org

Full name: Common Weakness Enumeration

Year of publication: 2008

Governing body: MITRE

Description: CWE is a list of commonly occurring software weaknesses and vulnerabilities.
The primary goal of the CWE project is to avoid introducing vulnerabilities in
the first place by educating software developers.

https://capec.mitre.org/
https://cve.mitre.org/

Standards and tools for exchange and processing of actionable information

November 2014

Page 13

2.3.5 ISI

2.3.6 OSVDB

2.3.7 SWID Tags

Realtionships: used by IODEF-SCI, CVRF, CWSS, STIX

Reference: http://cwe.mitre.org

Full name: Information Security Indicators

Year of publication: 2013

Governing body: ETSI

Description: ISI is a security management framework consisting of a family of standards for
describing and assessing an organization’s security posture. The family includes
ISI-001, an approach for the classification of vulnerabilities, and ISI-002, which
is used to categorize event and incidents. The ISI framework is meant to provide
an organization with measurement approaches for assessing the impact of
events and vulnerabilities.

Realtionships: uses CAPEC

Reference: http://www.etsi.org/deliver/etsi_gs/ISI/001_099/00101/01.01.01_60/gs_isi0010
1v010101p.pdf

Full name: Open Sourced Vulnerability Database

Year of publication: 2002

Governing body: OSF

Description: OSVDB is a vendor-independent vulnerability database, managed by a non-
profit foundation. An entry consists of a disclosure timeline, description,
classification, possible solutions or mitigations, a vulnerable products list,
references (including a CVE-ID if available), CVSS score, and credits.

Realtionships: used by STIX and VERIS; uses CVSS; references CVE

Reference: http://osvdb.org

Full name: Software Identification Tags

Year of publication: 2009

Governing body: TagVault (ISO/IEC 19770-2:2009)

Description: The software identification tag (SWID tags) standard defines an XML schema
that can used to describe software assets. It records unique information about
an installed software application, including its name, edition, version, serial
number, whether it is a part of a bundle and more. SWIDs are mostly used to
create local inventory of applications installed on computers within an

http://cwe.mitre.org/
http://www.etsi.org/deliver/etsi_gs/ISI/001_099/00101/01.01.01_60/gs_isi00101v010101p.pdf
http://www.etsi.org/deliver/etsi_gs/ISI/001_099/00101/01.01.01_60/gs_isi00101v010101p.pdf
http://osvdb.org/

Standards and tools for exchange and processing of actionable information

November 2014

Page 14

2.3.8 TLP

2.3.9 WASC TC

2.4 Scoring and measurement frameworks

These standards specify frameworks for the quantitative description of threats. They support the
decision making process by enabling a more formal analysis of risks than would be possible from an
informal description.

organization. This tagging supports compliance and asset management
procedures, and can improve reaction times to security issues.

Realtionships: used in SCAP; can be used to generate CPE names

Reference: http://tagvault.org/swid-tags/

Full name: Traffic Light Protocol

Year of publication: unknown

Governing body: US-CERT

Description: TLP is a simple protocol used to label sensitive information to ensure that only
the correct audience is given access to it. The TLP defines a fixed vocabulary of
four colours (white, green, amber, red) to indicate information sharing levels.
The TLP is used by various organizations, inside and outside of IT security. It
may be used to mark the sensitivity of a document, or information element, in
any format that supports labels of this sort.

Realtionships: data classification in STIX and X-ARF, can be informally used to tag any
information in human-readable form

Reference: https://www.us-cert.gov/tlp

Full name: Web Application Security Consortium Threat Classification

Year of publication: 2004

Governing body: WASC

Description: WASC Threat Classification project maintains a dictionary of types of attacks
against web applications. The aim of the project is to develop and promote an
industry standard of terminology for describing attacks. WASC TC assigns
“WASC IDs” to types of attacks so that any given attack methodology can be
unambiguously referenced by its WASC ID number.

Realtionships: used by VERIS

Reference: http://projects.webappsec.org/w/page/13246978/Threat%20Classification

http://tagvault.org/swid-tags/
https://www.us-cert.gov/tlp
http://projects.webappsec.org/w/page/13246978/Threat%20Classification

Standards and tools for exchange and processing of actionable information

November 2014

Page 15

2.4.1 CCSS

2.4.2 CVSS

2.4.3 CWSS

Full name: Common Configuration Scoring System

Year of publication: 2010

Governing body: NIST

Description: Like CVSS, CCSS defines several groups of scoring metrics (base, temporal and
environmental) to help assess an impact of misconfiguration of a particular
asset (e.g., the impact of misconfiguration of user rights to invoke certain
commands). CCSS is based on the Common Vulnerability Scoring System (CVSS)
and can can assist organizations in developing a view of the overall security
state of a system.

Realtionships: based on CVSS; used as a part of SCAP (from ver. 1.2); can be used in
IODEF-SCI

Reference: http://csrc.nist.gov/publications/nistir/ir7502/nistir-7502_CCSS.pdf

Full name: Common Vulnerability Scoring System

Year of publication: 2004

Governing body: FIRST

Description: CVSS is a scoring system for describing and rating IT vulnerabilities. CVSS is
composed of three groups: base, temporal, and environmental, each of which
includes a set of metrics. The base score has the most significant influence on
the final score. Scores range from 0 to 10, where 10 corresponds to the most
critical vulnerability.

Realtionships: used by IODEF-SCI, STIX, OSVDB; similar to CWSS

Reference: http://www.first.org/cvss

Full name: Common Weakness Scoring System

Year of publication: 2008

Governing body: MITRE

Description: CWSS is a mechanism for scoring weaknesses discovered in software so that
fixes can be prioritized. Conceptually, CVSS and CWSS are very similar: where
CVSS is used to score specific vulnerabilities, CWSS is used to score weaknesses
that could potentially be exploited. CWSS scores are associated with
weaknesses identified on the CWE list, and range from 0 to 100. CWSS 1.0 was
released in July 2014 (3 years after version 0.8) and according to the authors
future development is uncertain.

Realtionships: used by IODEF-SCI; uses CWE; similar to CVSS

http://csrc.nist.gov/publications/nistir/ir7502/nistir-7502_CCSS.pdf
http://www.first.org/cvss

Standards and tools for exchange and processing of actionable information

November 2014

Page 16

2.4.4 XCCDF

2.5 Reporting Formats

The formats described in this section provide a reporting structure that can be used to capture high-
level, comprehensive descriptions of threats. They support reporting that combines multiple types of
information, including indicators, affected assets, actions that were taken, and other contextual
information, and to that end often include mechanisms for incorporating data represented in other
standard formats.

2.5.1 ARF

Reference: http://cwe.mitre.org/cwss

Full name: Extensible Configuration Checklist Description Format

Year of publication: 2005

Governing body: NIST

Description: The XCCDF standard defines a language for expressing security policy and
configuration guidance (e.g., a policy for minimum length of users’ passwords).
It is typically combined with OVAL, which is used to assess security compliance
by performing low-level checks based on the variables and values in an XCCDF
policy document. The XCCDF specification also provides a data model and
format for storing the output of these checks.

Realtionships: used in SCAP and can be combined with OVAL; can be used in IODEF-SCI

Reference: http://scap.nist.gov/specifications/xccdf/

Full name: Abuse Reporting Format

Year of publication: 2005

Governing body: none formal, coordinated by Yakov Shafranovich

Description: ARF is an extension to MIME developed for email spam reporting. ARF allows
the creation of email messages that contain spam reports with spam samples
attached. The main part of an ARF specification is the definition of the
message/feedback-report MIME content type that is intended to represent a
machine-readable spam report. In addition to the original spam message, the
report contains the source IP of the message, original message ID, the date the
message was received and a message classification (abuse, spam, virus, other,
non-spam). According to the standard an ARF message should also contain a
human-readable version of the report.

Realtionships: superseded by MARF

Types of indicators: spam reports and samples

Serialization: text-based (MIME)

http://cwe.mitre.org/cwss
http://scap.nist.gov/specifications/xccdf/

Standards and tools for exchange and processing of actionable information

November 2014

Page 17

2.5.2 CVRF

2.5.3 IODEF

33 See http://search.cpan.org/~rjbs/Email-ARF/lib/Email/ARF/Report.pm
34 See https://code.google.com/p/collective-intelligence-framework/

Examples of tools: Email::ARF,33 Email::ARF::Report, arffilter

Reference: http://www.shaftek.org/publications/drafts/abuse-report/

Full name: Common Vulnerabilities Reporting Framework

Year of publication: 2011

Governing body: ICASI

Description: CVRF is a data exchange format designed to support the automation of
software vulnerability data reporting and consumption. A CVRF document
describes the whole vulnerability handling lifecycle, from the discovery of the
vulnerability to shipping a patched version of vulnerable software.

Realtionships: uses CVE and CWE

Types of indicators: product vulnerabilities

Serialization: XML

Examples of tools: none publicly available, used internally in vendors’ communications

Reference: http://www.icasi.org/cvrf

Full name: Incident Object Description Exchange Format

Year of publication: 2007

Governing body: IETF, Managed Incident Lightweight Exchange (MILE) working group

Description: Incident Object Description Exchange Format (IODEF) is an XML format for
exchanging operational and statistical security incident information. The data
model allow the encoding of information about hosts, networks, services,
attacks methodologies and forensic data. IODEF was designed for information
exchange between CERTs.

Realtionships: based on, and compatible with IDMEF, extended to IODEF-SCI

Types of indicators: timing, incident description with confidence rating, network and OS artifacts,
exploit and vulnerability references, contact information, incident history

Serialization: XML

Examples of tools: Collective Intelligence Framework (CIF),34 ArcSight

Reference: RFC 5070

http://search.cpan.org/~rjbs/Email-ARF/lib/Email/ARF/Report.pm
https://code.google.com/p/collective-intelligence-framework/
http://www.shaftek.org/publications/drafts/abuse-report/
http://www.icasi.org/cvrf

Standards and tools for exchange and processing of actionable information

November 2014

Page 18

2.5.4 IODEF-SCI

2.5.5 IDMEF

2.5.6 MARF

35 See https://github.com/TakeshiTakahashi/IODEF-SCI/wiki/IODEF-SCI-tools
36 See https://www.prelude-ids.org
37 See http://www.ossec.net
38 See http://www.la-samhna.de/samhain/

Full name: IODEF for Structured Cybersecurity Information

Year of publication: 2014

Governing body: NICT

Description: IODEF-SCI is a set of IODEF extensions for embedding structured information
within an IODEF document. IODEF-SCI uses other formats for the
representation of the embedded information, and defines new classes for
types of information that are not defined in IODEF.

Realtionships: uses CAPEC, CVE, CVRF, CCE, CWE, CPE, CVSS, CWSS, CCSS, , OVAL, XCCDF,
CRE; based on IODEF

Types of indicators: attack patterns, platforms, vulnerabilities, weaknesses, scores, event reports,
incident remediation description, verification checklists

Serialization: XML

Examples of tools: IODEF SCI tools35

Reference: RFC 7203

Full name: Intrusion Detection Message Exchange Format

Year of publication: 2007

Governing body: IETF

Description: IDMEF defines a data and transport model for sharing security event data
exported by intrusion detection systems and by event correlation engines.

Realtionships: uses CVE; base for IODEF

Types of indicators: IDMEF descriptions includes information about the analyzer itself, timing
(analyse/create/detect time), network data about the source and target and
an event classification that can include a CVE reference

Serialization: XML

Examples of tools: Snort, Prelude,36 Suricata, OSSEC,37 Samhain,38 ArcSight

Reference: RFC 4765, RFC 4766

Full name: Messaging Abuse Reporting Format

https://github.com/TakeshiTakahashi/IODEF-SCI/wiki/IODEF-SCI-tools
https://www.prelude-ids.org/
http://www.ossec.net/
http://www.la-samhna.de/samhain/

Standards and tools for exchange and processing of actionable information

November 2014

Page 19

2.5.7 OVAL

Year of publication: 2010

Governing body: IETF

Description: The MARF is a version of ARF standardized by IETF. The format is an extension
to MIME for email spam reporting. MARF allows the creation of email
messages that contain spam reports with spam samples attached. In addition
to supporting the reporting of spam, MARF can be used to report DKIM, SPF,
and SMTP authentication failures.

Realtionships: based on ARF; extended by X-ARF

Types of indicators: spam reports and samples

Serialization: text-based (MIME)

Examples of tools: Email::ARF, Email::ARF::Report, arffilter

Reference: RFC 5965, RFC 6430, RFC 6590, RFC 6650, RFC 6651, RFC 6652, RFC 6692

Full name: Open Vulnerability and Assessment Language

Year of publication: 2005 (version 3, previous releases were significantly different)

Governing body: MITRE

Description: OVAL is a language for specifying automated tests of system configurations and
defines the format for the results of such assessments. Vendors include OVAL
specifications in vulnerability advisories to share information about
vulnerabilities and misconfigurations in a machine-readable format. OVAL may
also be used to distribute descriptions of threat indicators.

Realtionships: used as a part of SCAP, STIX, IODEF-SCI

Types of indicators: information about vulnerabilities, configuration policies, threat indicators like
information about modified registry keys, etc.

Serialization: XML

Standards and tools for exchange and processing of actionable information

November 2014

Page 20

2.5.8 STIX

2.5.9 VERIS

39 See http://www.tripwire.com/it-security-software/scm/tripwire-enterprise/
40 See http://www.openvas.org
41 See http://www.saintcorporation.com
42 Tactics, Techniques and Procedures
43 See http://www.microsoft.com/interflow
44 See https://crits.github.io
45 See section 4.2.5
46 See https://github.com/STIXProject/python-stix

Examples of tools: Tripwire Enterprise,39 OpenVAS,40 SAINT41

Reference: https://oval.mitre.org

Full name: Structured Threat Information eXpression

Year of publication: 2012

Governing body: MITRE, DHS

Description: STIX is a language for describing a wide range of security-related information.
Its data model is built upon eight principal concepts: observables, indicators,
incidents, TTPs 42 , exploit targets, campaigns, threat actors and course of
actions. STIX use cases include: analyzing threats, specifying indicators for
threats, managing prevention and response activities, and sharing threat
information.

Realtionships: STIX uses CybOX, MAEC, CAPEC, CVRF, OVAL, Snort and YARA signatures,
CVSS, OSVDB, TLP, CPE, CWE, CAPEC, OpenIOC

Types of indicators: IP addresses and ranges, e-mail messages, files, DNS domains, URLs, malware
artifacts, C&C activity, anonymous activity, malicious hosts, data exfiltration
activity, compromised PKI certificates, compromised login credentials, IMEI
and IMSI numbers

Serialization: XML

Examples of tools: Microsoft Interflow,43 CRITs,44 MANTIS,45 python-stix46

Reference: http://stixproject.github.io

Full name: Vocabulary for Event Recording and Incident Sharing Framework

Year of publication: 2010

Governing body: Verizon

Description: VERIS is a format used in Verizon’s yearly “Data Breach Investigation Report”
for defining and sharing incident information. VERIS also provides a set of
categories and metrics designed to provide a common language for describing
security incidents in a structured form that is used to characterize trends within
industry sectors.

http://www.tripwire.com/it-security-software/scm/tripwire-enterprise/
http://www.openvas.org/
http://www.saintcorporation.com/
http://www.microsoft.com/interflow
https://crits.github.io/
https://github.com/STIXProject/python-stix
https://oval.mitre.org/
http://stixproject.github.io/

Standards and tools for exchange and processing of actionable information

November 2014

Page 21

2.5.10 X-ARF

2.6 High-level frameworks

This section covers standards for process frameworks for exchanging security information. Neither of
the two standards in this section directly define new data standards. Instead, they outline generic
frameworks for interoperability and automation that leverage formats and protocols defined by other
standards.

2.6.1 CYBEX

47 See https://abusehq.abusix.com

Realtionships: CVE, WASC TC

Types of indicators: IPs, URLs, malware hashes, attack vectors, victim characteristics

Serialization: JSON

Examples of tools: none publicly available

Reference: http://www.veriscommunity.net

Full name: Extended Abuse Reporting Format

Year of publication: 2013

Governing body: Abusix

Description: X-ARF is an extension to ARF/MARF intended to enable reporting of other types
of abuse incidents. The extension allows the reporting of login attacks, fraud
(phishing), malware and malicious domains. X-ARF messages can be encrypted
and cryptographically signed.

Realtionships: based on MARF; uses TLP

Types of indicators: IP addresses, domain names

Serialization: text-based (MIME)

Examples of tools: abusehq.com47

Reference: https://github.com/abusix

Full name: Cybersecurity Information Exchange, Recommendation ITU-T X.1500

Year of publication: 2011

Governing body: ITU-T

Description: Recommendation ITU-T X.1500 describes techniques for the exchange of
security information. Its includes guidance in on several key functions related
to information exchange: structuring security information, identifying security
information and entities; establishment of trust between entities; requesting
and responding with security information; and assuring the integrity of the
security information exchange.

https://abusehq.abusix.com/
http://www.veriscommunity.net/
https://github.com/abusix

Standards and tools for exchange and processing of actionable information

November 2014

Page 22

2.6.2 SCAP

48 See http://www.open-scap.org
49 See http://benchmarks.cisecurity.org/downloads/audit-tools/

Realtionships: CYBEX consists of 29 formats and protocols, including the following: ARF,
CAPEC, CPE, CVE, CVSS, CWE, CWSS, IODEF, MAEC, OVAL, SCAP, XCCDF

Examples of tools: cybiet

Reference: ITU-T X.1500 series documents

Full name: Security Content Automation Protocol

Year of publication: 2010

Governing body: NIST

Description: SCAP is a process framework for the automation of security procedures related
to vulnerability management, measurement, and remediation. The SCAP
standard is the result of a community-driven synthesis of a number of open
security standards and protocols. The framework defines methods for
enumerating and assessing software weaknesses and vulnerabilities, and for
the automation of policy compliance evaluation.

Realtionships: SCAP defines 11 formats as its components, including the following: CCE, CPE,
CVE, CVSS, OVAL, XCCDF, CCSS

Examples of tools: Intel Policy Auditor, OpenSCAP,48 CIS-CAT49

Reference: http://scap.nist.gov

http://www.open-scap.org/
http://benchmarks.cisecurity.org/downloads/audit-tools/
http://scap.nist.gov/

Standards and tools for exchange and processing of actionable information

November 2014

Page 23

3 Transport and Serialization

By adopting one of the standard formats described in the previous chapter, an organization can
minimize ambiguity in the information, while also benefiting from the tools that support exchange
using those standards. Nevertheless, there are other important technical considerations for an
information exchange implementation, in particular, the transport mechanisms that are used to
query, request and transfer data. Also, when using custom (i.e., non-standard) data formats, the
choice of a serialization method can have significant consequences for overall performance and ease
of integration with existing tools.

3.1 Transport mechanisms

This section describes some of the most common mechanisms for the transport of actionable
information. In principle all of these mechanisms can be used to transport arbitrary data formats (see
Section 3.2), however from a practical point of view various technical limitations (e.g., maximum
message size) make some combinations infeasible (e.g., sending a large XML document through
Twitter). Additionally, binary data usually has to be encoded (e.g., in base64), unless the underlying
protocol supports transferring this kind of payload verbatim.

The security of the whole information exchange process depends largely on the security of the
underlying transport mechanism, therefore it is crucial that appropriate measures are taken to protect
this layer. There are multiple approaches to this problem - TLS with PKI is commonly used to ensure
integrity of information,50 while encryption combined with some authentication scheme (e.g., API keys
or passwords) provides confidentiality. Many transport mechanisms do not explicitly address
availability, although certain technologies are inherently more resilient (e.g., ones that allow easy
replication of resources) than others.

3.1.1 Static files over HTTP

Serving files over HTTP51 is by far the most popular approach for transferring data.52 It is generally
straightforward to publish files to a web site and expose those files through HTTP, requiring no special
infrastructure beyond a web server. Data files can be published with the same ease as web pages.
HTTP is the simple text-based protocol that powers the web, and can be used to transfer information
(including binary data) between a client and a server, most notably a web browser and a web server.
An HTTP server can be set up easily and most common web server applications like Apache53 or Nginx54
are ready to use almost immediately after installation. HTTP is a request-response stateless
synchronous protocol which defines several methods to indicate actions to be performed on an
identified resource and is able to transport large files. An HTTP resource, which can be a static file or
dynamically generated content is referred to by its Uniform Resource Locator (URL), which can
function as a unique identifier for a logical chunk of information.

Sharing data as files served by web servers works best for publishing static datasets. The HTTP protocol
does not provide a built-in mechanism for filtering requested data, which means a client must always
download a whole resource. The advantage of this sharing method is the ease of implementation.

50 The terms “confidentiality”, “integrity” and “availability” are used in accordance with the CIA triad model
(http://www.albany.edu/acc/courses/ia/classics/clark87.pdf).
51 See https://tools.ietf.org/html/rfc2616
52 See http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.168.5917&rep=rep1&type=pdf
53 See http://httpd.apache.org
54 See http://nginx.org

http://www.albany.edu/acc/courses/ia/classics/clark87.pdf
https://tools.ietf.org/html/rfc2616
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.168.5917&rep=rep1&type=pdf
http://httpd.apache.org/
http://nginx.org/

Standards and tools for exchange and processing of actionable information

November 2014

Page 24

Sharing data is as simple as generating a file and placing it in a path accessible for the web server, and
access requires nothing more than an HTTP client.

HTTP-based access may be secured using a username and password (possibly as part of a multi-factor
authentication scheme), or using certificate-based authentication. Access controls can be tailored for
each resource, distinguished by a unique URL. The SSL/TLS protocol (i.e., HTTPS) can be enabled for
confidentiality and data integrity.

Sharing static files over HTTP is actively used by security data clearinghouses (e.g., both Shadowserver
Foundation and Team Cymru), large providers of security information (e.g., Spamhaus) and other big
vendors and communities, including EmergingThreats, Abuse.ch, DShield.

3.1.2 Email

Email messages can carry any type of data, including text and binary files, which allows them to be
used for exchange of security related information represented in various formats. Typically, the email
body carries some free-form text description of data, which is attached as a file that uses a structured
file format. Email messages are transferred using SMTP, which is an asynchronous protocol. It should
be noted that email is not an efficient way to share large datasets. Also, large files sent via email are
often blocked by mail servers in order to protect them from abuse of storage and processing
resources. In fact, email transport cannot be considered 100% reliable as messages are commonly
scanned for spam and malware and filtering methods are never completely reliable. This fact should
be kept in mind when email is used to send important alerts and announcements.

SMTP is one of the oldest Internet protocols and is implemented in many tools and libraries. The
implementation of a system receiving or sending events - incident reports, alerts - should in most cases
be fairly easy. Mail delivery agents (MDA) such as procmail55 or maildrop56 can be used to simplify
integration and perform filtering of received messages, which in later steps can be processed by
automated systems or delivered to user accounts where information can be easily accessed using an
email client.

SMTP does not provide a mechanism for secure transport which means messages must be secured
using other methods, typically S/MIME57 or OpenPGP.58

Email is used in systems used by national and governmental CERTs, including RTIR, Megatron,
AbuseHelper, and by major security organizations like Google.59

3.1.3 RESTful interface

An interface conforming to the REST (REpresentational State Transfer) architectural style, also called
a RESTful interface, provides a uniform way to create, read, update and delete resources. RESTful
interfaces are gaining popularity thanks to their simplicity, which differentiates them from some older
technologies like SOAP and other standards for implementing remote procedure calls over a network.

Communication between a client and a server via a RESTful interface is request-response based and
stateless. Like HTTP, resources are identified via their URIs. Services using RESTful interfaces typically
support additional operations on resources, for example, searching or filtering and consequently
provide more flexible interfaces to data than is possible by simply hosting a static file on an HTTP

55 See http://www.procmail.org
56 See http://www.courier-mta.org/maildrop/
57 See http://tools.ietf.org/html/rfc5751
58 See http://tools.ietf.org/html/rfc4880
59 Google Safe Browsing Alerts for Network Administrators: http://www.google.com/safebrowsing/alerts/

http://www.procmail.org/
http://www.courier-mta.org/maildrop/
http://tools.ietf.org/html/rfc5751
http://tools.ietf.org/html/rfc4880
http://www.google.com/safebrowsing/alerts/

Standards and tools for exchange and processing of actionable information

November 2014

Page 25

server. There are many frameworks for developing applications that expose RESTful interfaces.
Popular frameworks include Django,60 Flask,61 Apache Wink62 and Symfony.63

The most common implementation of the REST style is on top of the HTTP protocol. HTTP RESTful
interfaces can be secured the same way as any HTTP-based service. Additionally, access to the
interface can be allowed only for clients which hold valid API key.

The popularity of REST continues to grow - many familiar web services provide RESTful APIs — and
most of modern systems for data exchange offer it, including CRITs, MISP, and n6.

3.1.4 Farsight SIE

Farsight Security Information Exchange (SIE) is a platform that was developed specifically for sharing
large volumes of security information in real time. Using the platform, information producers can
upload data feeds from sensors they operate. Consumers can receive information from the platform
by subscribing to channels that contain live streams with data from passive DNS, darknet traffic,
firewall and IDS alerts, Conficker sinkhole, as well as data related to spam and phishing.

Typically, receiving the data requires a server connected to the broadcast ethernet switch within the
Farsight Security data center. The exchange of data happens over tagged VLANs configured on this
network. Each channel is presented as a data stream of UDP datagrams on an independent VLAN,
allowing consumers to select the ones containing information they wish to receive. This design allows
the efficient sharing of data at rates reaching 300 Mbps. The data is shared using the NMSG64 binary
format, which is based on Google’s Protocol Buffers.65

Data feeds can be also accessed through the Farsight SIE Remote Access service.66 The service allows
consumers to obtain data feeds over an SSH tunnel without the needing to place any hardware in
Farsight’s data center. The protocol allows the selection of SIE channels, and provides a way to rate
limit traffic. It also allows filtering, which is especially important when accessing high volume SIE
channels. The protocol is lossy due to the rate limiting of data transfers, but the service notifies users
about loss. This allows users to adapt to losses by, for example, adding more strict filtering parameters.

3.1.5 Twitter

Twitter is an online social networking and microblogging service that enables users to send and read
short 140-character text messages ("tweets"). Registered users can read and post tweets, but
unregistered users can only read them. Twitter resources can be accessed through the website
interface, SMS, mobile device app, RESTful API67 (publishing and requesting information) or Streaming
API68 receiving a low-latency stream of Tweet data). Twitter is a great tool for sharing short messages
like alerts and notifications with links to external sources of information. These messages are public
by default, but a Twitter account can also be made private so that messages are only accessible by
users who have been approved by the account owner.

60 See https://www.djangoproject.com
61 See http://flask.pocoo.org
62 See http://wink.apache.org
63 See http://symfony.com
64 See https://archive.farsightsecurity.com/NMSG_Data_Types/
65 See https://github.com/google/protobuf/
66 See https://www.farsightsecurity.com/Services/SRA/
67 See https://dev.twitter.com/docs/api/1.1
68 See https://dev.twitter.com/docs/api/streaming

https://www.djangoproject.com/
http://flask.pocoo.org/
http://wink.apache.org/
http://symfony.com/
https://archive.farsightsecurity.com/NMSG_Data_Types/
https://github.com/google/protobuf/
https://www.farsightsecurity.com/Services/SRA/
https://dev.twitter.com/docs/api/1.1
https://dev.twitter.com/docs/api/streaming

Standards and tools for exchange and processing of actionable information

November 2014

Page 26

Integration of a Twitter based channel for information sharing requires a developer account and
authentication. A user can develop his own client application for accessing information by using
various client libraries. The API delivers data in JSON format, although no structure is imposed on the
information contained in the “tweet” itself.

Examples of channels where an automated system (bot) publishes information include
@MalwareChannel and @fail2ban. An example of a channel with human-produced information is
@bgpmon.

3.1.6 Internet Relay Chat

Internet Relay Chat (IRC) is a protocol for real-time text-based asynchronous communication in a
client-server architecture. It was designed for human communication - exchanging of free-form text
messages. It does not store history and messages are limited to 512 characters and might be rate-
limited by IRC servers. While IRC can be used to implement a simple notification system, it is not
suitable for sharing large amount of data. The protocol is open69 and can be easily implemented from
scratch or integrated using one of many available libraries.

IRC is based on TCP and can make use of TLS to secure the communication. The most common way of
exchanging messages is through a channel, which can be described as a chat room facilitating group
communication. Messages send to a channel are broadcasted to all clients that joined it. It is also
possible for users to communicate with each other without necessity of joining a channel.

IRC servers connect in a form of a spanning tree and create an IRC network. The network, aside from
allowing communication between users, can provide services by means of IRC bots. These are usually
IRC clients equipped with scripts for automated processing of user requests. They are typically used
to provide a query service and can act as a messaging proxy forwarding information from monitoring
systems to a set of subscribers (channels or individual clients).

The Shadowserver Foundation uses IRC to share data about observed malicious IP addresses and
provides query bot services for obtaining information about malware samples processed by their
sandbox.

3.1.7 Extensible Messaging and Presence Protocol

The Extensible Messaging and Presence Protocol (XMPP), originally known as Jabber, is an XML-based
protocol for message-oriented communication. Its main purpose is to provide near real-time
messaging (i.e., chat services), presence information and contact list maintenance. It is an open
standard, designed to be extensible, which has found many uses in various applications and platforms,
both proprietary and open-source. The architecture of the XMPP network allows anybody to run their
own server and the protocol itself leverages SASL and TLS for securing communication between peers.

XMPP was primarily designed with the intent to support the implementation of human text-based
communication software. The body of an XMPP message holds content in the form of unstructured
text, using a structure that is similar to IRC. The protocol has been adapted through various extensions
to enable the machine-to-machine (M2M) exchange of structured data.

XMPP can be used to set up an information sharing channel but it was not designed to transmit large
data volumes. Because it uses an XML-based format, the overhead of XMPP messages can be high,
both in terms of processing time and bandwidth required, especially when transmitting binary
content, which has to be base64 encoded. XMPP can be transported over TCP and, in cases where

69 See https://tools.ietf.org/html/rfc1459

https://tools.ietf.org/html/rfc1459

Standards and tools for exchange and processing of actionable information

November 2014

Page 27

firewalls may block it, it can be implemented over HTTP and WebSocket. The protocol is implemented
in various clients, servers and libraries, allowing rapid deployment of an XMPP data exchange channel.

AbuseHelper is an example of an information management system built on XMPP. The protocol is used
for inter-component communication.

3.1.8 hpfeeds

The hpfeeds70 platform and protocol were created by the Honeynet Project71 in order to carry high-
volume real-time data from a globally distributed network of honeypots. Data shared within hpfeeds
is strictly security related but it is primarily used to support research rather than incident handling
operations. The hpfeeds protocol is binary and lightweight. It supports authentication and arbitrary
binary payloads, including the ability to share malware samples. The protocol provides separation of
data feeds by using named channels to which a client can subscribe or publish. The producer of
information decides on the format for the transmitted data. Access to the channel is protected by an
authentication key. The hpfeeds protocol uses TCP for transport and can be secured with SSL/TLS.

The hpfriends72 system is a modification of hpfeeds that employs a novel data sharing model: a social
graph representing relationships between users is used to determine permissions. The hpfriends
system uses the same wire protocol as hpfeeds, which makes it backwards compatible.

Reference implementations of hpfeeds clients exist in the Python, C, Go, Ruby and JavaScript (with
node.js) languages. The hpfeeds broker is licensed as open source software,73 but the source code of
hpfriends has not been publicly released.

The hpfeeds broker and hpfriends system are still under development. Their support is already built
into some tools, for example, the Dionaea74 honeypot.

3.1.9 Really Simple Syndication

The Rich Site Summary or Really Simple Syndication (RSS) standard is used to publish lists of new
information available on frequently updated web sites, like blog entries and news headlines. It is
primarily used to deliver abstracts from recently published articles together with additional meta-
data. An RSS document is an XML file which can be transported over any communication protocol, but
it is typically made available via HTTP. The file is read by RSS client software that periodically checks
the server for updates. Such software is able to import information from various RSS feeds and allows
user to perform common actions on it, including searching and filtering.

RSS feeds usually contain a list of short descriptions represented as free-form text and meta-data that
includes a link to the original source of information. RSS is not typically used by information sharing
systems as a primary channel for delivering the data itself, but may be used to communicate
information about new data that has been made available, as is the case for Project Honey Pot75 and
malwaredomainlist.com.

3.1.10 Trusted Automated eXchange of Indicator Information

Trusted Automated eXchange of Indicator Information (TAXII) is a threat information exchange
standard designed for sharing data in XML format. In particular, TAXII was designed as the transport

70 See https://github.com/rep/hpfeeds
71 See http://honeynet.org
72 See http://hpfriends.honeycloud.net
73 See https://github.com/rep/hpfeeds
74 See http://dionaea.carnivore.it
75 See https://www.projecthoneypot.org

https://github.com/rep/hpfeeds
http://honeynet.org/
http://hpfriends.honeycloud.net/
https://github.com/rep/hpfeeds
http://dionaea.carnivore.it/
https://www.projecthoneypot.org/

Standards and tools for exchange and processing of actionable information

November 2014

Page 28

protocol for STIX. Simplicity and speed of sharing of information across organization were the main
objectives of TAXII development. TAXII uses the HTTP protocol for message transfer. Future versions
of the standard may support other message formats and protocols.

The TAXII specification defines services (the functional components of an architecture based on TAXII),
messages and message exchanges (sequences of messages including handshakes) which form the
basis of a TAXII-based information sharing platform. TAXII enables three data-sharing models:
producers and consumers sharing information via a central hub; a single publisher producing data for
multiple subscribers; and pairs of producer/consumers sharing information through a peer-to-peer
arrangement. Libraries for handling TAXII messages exist in the Python and Java languages. YETI,76 a
reference implementation of TAXII, is written in Python.

One of example of a commercial sharing platform using TAXII is Microsoft Interflow77. TAXII is also
implemented within CRITs (see section 4.2.2) to share STIX/CybOX documents with other CRITs
instances. The development of TAXII was sponsored by the U.S. Department of Homeland Security
(DHS) and the specification was written by the MITRE Corporation.

3.2 Serialization methods

In order to be stored and exchanged between different systems, data structures containing actionable
information must be translated into a stream of bytes. This process is called serialization. There are
many methods of serialization, producing different types of output. The choice of a serialization
approach can have an enormous impact on data storage and exchange, impacting data volumes and
the processing performance. The choice of serialization format can also affect how complex relations
between objects are represented. Finally the choice of serialization format will affect the tools that
will be available for working with the data.

This section covers serialization methods most commonly used for representation of actionable
information in the context of incident response. While most of them produce output in text, binary
formats may be preferable whenever data are binary by nature (e.g., PCAP and images) or the size of
resulting files is a critical issue. One may choose to use different methods for different purposes, for
example, BSON for storage of raw data and an elaborated XML formats for results of meta-analysis to
be exchanged with others.

All standard formats described in the first chapter are coupled with particular serializations, usually
based on XML. Therefore, a choice of serialization method is generally only available when using a
custom data format.

3.2.1 Freeform text

Security data represented in a free-form text format includes alerts sent via email from one person to
others, security advisories and other high-level reporting. The text may be provided in the form of flat
text file, a PDF or in any of the many office document formats. Information in this form is certainly
very easy to produce (no specialized tools required) and is a natural in way to communicate among
human analysts. However, since they depend on human interpretation, processing free-form text
documents can be time consuming and prone to errors. At the same time, it can be difficult or
impossible to automate processing these documents. Mail systems and most ticketing systems (e.g.,
RTIR) will happily accept free-form text messages. However, their further processing is limited –
usually only the most common types of information (e.g., email addresses and IP addresses) can be
automatically extracted.

76 See https://github.com/TAXIIProject/yeti
77 http://technet.microsoft.com/en-us/security/dn750892

https://github.com/TAXIIProject/yeti
http://technet.microsoft.com/en-us/security/dn750892

Standards and tools for exchange and processing of actionable information

November 2014

Page 29

Typical uses:

 email communication

 advisories

 security alerts (human to human)

Pros:

 very easy to produce and read by humans

Cons:

 difficult for machine processing

Example 1) “Wanted! John Smith. Born January 21, 1985. Height: approximately 183 cm. Seen
wearing a green military jacket…”

3.2.2 Raw logs

Many system logs contain security-related information. Most logs are text files with one event per line
whose structure was arbitrarily defined by the authors of the application. While text-based system
logs are usually easy to read for humans, the huge variation of formats and susceptibility to different
configuration settings makes them difficult for machine processing. Custom parsers are required for
logs from different systems, devices and applications. Such parsers for commonly encountered log
formats are included as part of the collection frameworks of many security log management products.

Typical uses:

 web servers

 firewalls

Pros:

 easy to produce and distribute

 easy to read by humans

Cons:

 difficult to parse by machines

 difficult to represent structured data

Example 2) 2014-07-16 08:23:12 New person added: John Smith, 30 years of age, 183 cm height

3.2.3 CSV

The acronym CSV, 78 which stands for “character-separated values”, or, alternatively, “comma-
separated values”, refers to any flat text format with one information record per line, where field
values are separated with an arbitrary character, typically a comma, a semicolon or a vertical bar. In
some cases, extra white characters are used for padding. CSV files can be read by humans and are
suitable for machine handling with simple text-processing tools. They can also be easily imported into
many data processing tools. However, since the meaning of fields in a particular file is implicitly
defined by the data producer, additional information is needed to properly interpret the data. In many
cases, the first line of a CSV file contains labels for the fields, but this may or may not be enough
information to properly interpret a file. In practical terms, each CSV file format may require a different
parser in order to be processed automatically.

78 https://www.rfc-editor.org/rfc/rfc4180.txt

https://www.rfc-editor.org/rfc/rfc4180.txt

Standards and tools for exchange and processing of actionable information

November 2014

Page 30

For data that can be naturally represented as text, CSV files introduce very little overhead since only
the values themselves and separators are stored in a file. Binary data must of course be encoded,
which will introduce some storage and processing overhead. Finally, like any “flat” format, a CSV file
format will make it more difficult to represent relationships between data records.

Typical uses:

 any information extracted from log files

 bulk lists of events with a number of fixed attributes

Pros:

 easy to produce and parse by humans and machines

 little overhead in file size

Cons:

 only one type of records per file, no relations between records

 each CSV requires custom parser configuration

Example 3) "DATE_OF_BIRTH","NAME","HEIGHT","FAVORITE_COLOR"

 "1985/01/21","John Smith",183,"Green"

 "1990/01/12","Jill Smith",162,"Blue"

3.2.4 XML

Extensible Markup Language (XML) is a standard for encoding data tended for both human and
machine consumption. Documents in XML-based formats are hierarchically structured text files,
where data structures, fields and values are represented as text organized around a syntax based on
nested elements delimited tags. Almost any arbitrary data structure can be represented in XML in
some way, including complex description languages like OpenIOC. However, the XML standard itself
does not specify the structure for particular document types. Instead, XML includes a powerful (and
complex) language for defining schemas. For any given application, an XML schema will need to be
defined for each document type. All of the XML-based security information exchange standards define
such schemas: STIX, IDMEF and IODEF (see section 2.5) all define their vocabulary in terms of a specific
set of XML element types.

XML documents can be easily parsed. There are many tools and software libraries available for
processing XML, and dedicated tools and APIs exist for specific XML-based formats. XML-based
documents can be re-encoded in JSON or YAML.

Typical uses:

 almost any data and data structure can be represented in XML

 most industry standards for security information exchange are XML based

Pros:

 easy to parse by humans and machines

 very flexible

Cons:

 adds overhead due to verbosity of the representation

Standards and tools for exchange and processing of actionable information

November 2014

Page 31

Example 4)
<person name="John Smith">
<height>183</height>
<favorite_color>Green</favorite_color>
</person>

3.2.5 JSON

Javascript Object Notation is a standard text format used for encoding data into human-readable
structured collections of name-value pairs that can also be easily processed by machines. The JSON
data structure syntax is based on Javascript, but is widely used in a language-independent context a
standard way of transmitting data. JSON, like XML, is a generic description syntax. Virtually any
document or data structures can be described using JSON. Additional information is required to
validate and understand the structure of specific JSON-based formats. Although a formal scheme for
defining JSON schemas 79 does exists, descriptions of JSON structures are generally described
informally as part API documentation. JSON is often described as a lightweight alternative to XML
because of its simpler syntax.

Typical uses:

 almost any data and data structure can be represented in JSON,

 many modern REST APIs use JSON-formatted requests and results

Pros:

 easy to parse by humans and machines,

 directly maps to existing data structures in most programming languages

 very flexible

Cons:

 with the structure comes some overhead

Example 5) {

 "name": "John Smith",

 "height": 180,

 "favoriteColor": "Green"

 }

3.2.6 Other text formats

Many security tools define their own text-based formats for representing configuration information
and output. Some examples include YARA and Snort rules. They all can be read by humans (while not
necessarily fully understood) or easily applied directly in appropriate software. However, automated
extraction of certain pieces of information from such data (e.g., IP addresses from Snort rules) is not
trivial and calls for dedicated libraries or parsers. This is because data structures are represented in
application-specific languages, with their own unique syntax.

Example 6) rule WantedDeadOrAlive

 {

79 http://json-schema.org

http://json-schema.org/

Standards and tools for exchange and processing of actionable information

November 2014

Page 32

 strings:

 $a = "John Smith"

 $b = "Joe Black"

 condition:

 any of them

 }

3.2.7 Binary formats

Finally, data can be exchanged in the form of streams of binary records or as binary files. Clearly, binary
data cannot be easily processed by humans and requires tools to parse or otherwise extract
information, as well as other background information in order to interpret that information. On the
other hand, binary formats are usually more compact than corresponding representations as text.

In practice, binary formats are used either to address a performance issue encountered using an
existing text format, or because an appropriate binary standard already exists for the data that needs
to be handled. In the former case, typically a generic serialization protocol, like Protocol Buffers or
BSON, is used, rather than designing a new format. The most common examples of existing formats
are those used to transmit and store network monitoring data. The PCAP format is widely used to
store raw packet capture data, while NetFlow (or IPFIX) is used to transmit or store network flow data.
A variety of tools are available for working with both formats.

Standards and tools for exchange and processing of actionable information

November 2014

Page 33

4 Information Management Tools

This chapter describes a variety of tools used by incident response teams to collect, manage and
analyze security information. The goal of this chapter is not to provide an exhaustive list of all available
solutions but rather to point out important representative examples of the types of tools available. To
make sure that only relevant examples were included, we only selected tools that are used
operationally by incident response teams and that are actively maintained. This requirement led to
the exclusion of some abandoned projects (e.g., the EU-funded National and European Information
Sharing and Alerting System, NEISAS), as well as systems still under development like the Cyber
Defence Data Exchange and Collaboration Infrastructure (CDXI), which might be important but are
currently still in the design phase.

Free and open-source projects were given preference, although some exceptions were made, most
notably for Splunk, which is a commercial tool with a free version available; for IFAS and Taranis, which
are freely available to a selected group of CERTs; and for n6, only parts of which are open-sourced.

This chapter consists of three sections. Each section describes a group of tools that share a primary
purpose. For each tool, we describe the features provided for each of the processing stages defined
in the "Actionable Information for Security Incident Response."

4.1 Automated distribution of data

Systems in this category were created primarily with the goal of collecting large volumes of threat data
coming from multiple sources and distributing it to potentially impacted parties. The main users of
such tools are national and governmental CERTs.

4.1.1 AbuseHelper

AbuseHelper is a software framework for the automated processing of incident reports, developed by
CERT-FI, CERT-EE and Codenomicon (formerly Clarified Networks). It was released under an open-
source license in 2010 and since then has been adopted by several national-level CERTs. AbuseHelper
has an extensible, modular, event-oriented architecture consisting of multiple specialized scripts
(bots) communicating over XMPP (See Section 3.1.7) and processing data streams in real time. The
software is available at https://bitbucket.org/clarifiednetworks/abusehelper.

80 https://bitbucket.org/clarifiednetworks/abusehelper/wiki/Data%20Harmonization%20Ontology

Collection: multiple specialized modules for fetching data from different sources

 transport using HTTP or email via IMAP

 native support for streaming sources (e.g., using IRC)

Preparation: dedicated parsers for each source
 normalization to a flat key-value format with predefined keys
 semantics of keys defined through a proposed ontology80 (in

development)
 dedicated modules for enrichment (expert bots)
 enrichment using GeoIP, passive DNS (implemented as queries to

external services)
 mapping events to registered clients, implemented through XMPP multi-

user chat rooms

https://bitbucket.org/clarifiednetworks/abusehelper
https://bitbucket.org/clarifiednetworks/abusehelper/wiki/Data%20Harmonization%20Ontology

Standards and tools for exchange and processing of actionable information

November 2014

Page 34

4.1.2 Information Feed Analysis System

IFAS is a system developed by HKCERT and CSIRT Foundry. It uses AbuseHelper for collection,
normalization and enrichment of threat data from external sources. Internally, IFAS employs Logstash
and Elasticsearch for log transformation and storage. IFAS provides an alerting capability, a real-time
dashboard, statistical reports and search (via Kibana). At the time of writing this report there was no
public website available.

4.1.3 IntelMQ

IntelMQ is an open source project developed by CERT.PT (with contributions done in the spare time
of an employee of CERT.at) whose goal is to create a highly-modular system for the collection,
processing and distribution of security information. It is the second iteration of the Incident Handling
Automation Project 81 (IHAP) project and its distributed architecture is inspired by AbuseHelper.
IntelMQ tries to improve on previous iterations by adding persistent storage (unlike AbuseHelper),
and simplifying module development. IntelMQ uses Redis82 for intercomponent communication and
provides a graphical web interface to manage the system’s configuration. It is available from
https://github.com/certtools/intelmq.

81 http://www.enisa.europa.eu/activities/cert/support/incidenthandlingautomation
82 Redis inmemory keyvalue store, http://redis.io

Storage: no-built in database
 logging to text files

Analysis: no-built in analyses

Distribution: native exchange via XMPP possible
 emails with CSV files attached

Collection: via AbuseHelper

Preparation: via AbuseHelper

Storage: Elasticsearch

Analysis: custom reports defined by analysts (IFAS Reporter)

Distribution: alerts via emails (IFAS Alerter)
 JSON/CSV/STIX planned
 human-oriented interface

Collection: realized through many source-specific modules
 native support for real-time data feeds

Preparation: multiple specialized modules for parsing and enrichment
 data model based on the ontology proposed for AbuseHelper80
 uses JSON for serialization
 compatible with the AbuseHelper internal key-value format in order to

maintain the existing time investment of AbuseHelper installations

Storage: multiple backends supported: Splunk, Elasticsearch, MongoDB,
PostgreSQL

https://github.com/certtools/intelmq
http://www.enisa.europa.eu/activities/cert/support/incidenthandlingautomation
http://redis.io/

Standards and tools for exchange and processing of actionable information

November 2014

Page 35

4.1.4 Megatron

Megatron is an automation system for CERTs, created by CERT-SE. Its main function is processing
indicator data from multiple sources, storing it for reporting purposes, and notifying affected
constituent organizations. Initially the source code for Megatron was only shared within a limited
group of CERTs, but in 2013 it was released publicly under an open-source license. It is available from
https://github.com/cert-se/megatron-java.

4.1.5 n6 - Network Security Incident eXchange

n6 (Network Security Incident eXchange) is a complete system for the automated collection, storage
and distribution of security data that was developed by NASK, the parent organization of CERT
Polska.83 It provides a centralized repository of threat data and flexible sharing mechanisms that allow
fine-grained control over the information exchange process. n6 has been used by CERT Polska to
distribute information to its constituents since 2011. Access to the platform is free of charge, but the
software is currently closed source. 84 In 2014 the system underwent a major upgrade, which
introduced stream processing, a unified data model and a new REST API.

83 Authors of this report are involved in the development of n6.
84 A large part of the n6 source code will be released under an open-source license by the end of 2014.

Analysis: no automated analyses

Distribution: data can be sent to multiple systems in real-time
 modules for distributing data to external organizations (not yet released

publicly)

Collection: batch processing
 external scripts used to fetch files to a designated local location

Preparation: built-in configurable parsers for text-based and XML formats
 enrichment: GeoIP, DNS
 a subscriber database is used to determine which organizations were

affected by an event (based on IP, autonomous system or domain)

Storage: SQL database, simple data model
 lines of unprocessed input files are stored for reference

Analysis: none

Distribution: affected organizations can be notified via email (text data sent inline)
 limited JSON and XML export capability for internal use by a CERT

Collection: multiple dedicated modules for various external and internal sources
 asynchronous, event-oriented architecture

Preparation: full normalization - single data model for events coming from all sources
 enrichment using GeoIP and DNS
 on-the-fly aggregation of similar events
 a subscriber database is used to determine which organizations were

affected by an event (based on IP, autonomous system, domain or
country)

https://github.com/cert-se/megatron-java

Standards and tools for exchange and processing of actionable information

November 2014

Page 36

4.1.6 Warden

Warden is an information sharing system developed by CESNET and used by multiple academic
institutions in the Czech Republic. A central Warden server receives automated feeds containing
security events from participating organizations and is responsible for distributing it to subscribed
clients. Source code for Warden is available under an open source license.85 It is available from
https://csirt.cesnet.cz/Warden/Intro.

4.2 Supporting analysis

This diverse category covers tools that can support various aspects of the analytical work of incident
response teams. Most of the systems help with the management of information, providing ways to
store and query information. To some degree they also provide facilities for collaborative work and
information exchange but usually less emphasis is placed on this functionality.

4.2.1 Collective Intelligence Framework

CIF is an open-source tool developed by REN-ISAC for warehousing security information. It allows the
collection of data from multiple sources in a central repository, and provides facilities to query the
data. It is available from https://code.google.com/p/collective-intelligence-framework/.

Similar functionality is provided by Cikl, a reimplementation of CIF in Ruby. It is currently available as
an “experimental” release as work continues on the conversion from Perl to Ruby. Its main design
goals are improved performance, scalability, functionality, and ease of installation. It is available from
https://github.com/cikl/cikl.

85 Source code of Warden is available under following address: ftp://homeproj.cesnet.cz/tar/warden/ (there is
no link on the official website).

Storage: unprocessed input data preserved for reference
 main repository is stored in an SQL database

Analysis: none

Distribution: REST API for external organizations
 multiple output formats: JSON, CSV, IODEF
 authentication via client X.509 certificates

Collection: multiple detection systems (e.g., IDS, honeypots) deployed in
participating organizations

 event-oriented architecture

Preparation: all events use a simple format with several fixed attributes (e.g., sensor,
attacking IP)

Storage: no long term storage

Analysis: none

Distribution: client's subscribe to event streams
 API based on SOAP
 authentication via client X.509 certificates

https://csirt.cesnet.cz/Warden/Intro
https://code.google.com/p/collective-intelligence-framework/
https://github.com/cikl/cikl
ftp://homeproj.cesnet.cz/tar/warden/

Standards and tools for exchange and processing of actionable information

November 2014

Page 37

4.2.2 Collaborative Research Into Threats

Recently released under an open source license, CRITs is a tool with the specific goal of supporting the
workflow of analysts responsible for developing indicators from threat data. It is a centralized
repository for various types of threat information (IoC, binaries, PCAP) and uses a data model
influenced by STIX and CybOX. By employing a plugin-based architecture, it allows the integration of
scripts that analyze and correlate collected data that can be used to automate aspects of analysts’
workflow. It can be dowloaded from https://crits.github.io.

Collection: batch processing
 fetching files from multiple sources over HTTP
 sources defined via configuration files

Preparation: built-in configurable generic parsers for CSV, JSON, XML and free-text
 periodic enrichment of data through queries to external services: DNS,

reputation databases

Storage: explicitly uses IODEF data model
 event-oriented
 PostgreSQL
 confidentiality level set per event

Analysis: none built-in

Distribution: server provides two APIs: REST and RPC based on Protocol Buffers
 client application provides multiple output formats: IODEF, JSON, CSV,

Snort rules, text
 periodic feed (e.g., blacklist) generation

Collection: multiple types of supported data: binaries, PCAP, emails, IP, domains,
IoC, campaigns, certificates, events, raw data, and targets

 Import: CybOX, STIX
 transport: TAXII, REST API

Preparation: enrichment of stored data implemented using plugins ("services")
 correlation with external data (e.g., passive DNS, VirusTotal, DNS

lookups)
 matching YARA rules

Storage: MongoDB
 data model based on CybOX and STIX

Analysis: analysis of stored data is done by plugins
 extraction of DNS and HTTP data from PCAPs (via ChopShop)
 identification of similar binaries by fuzzy hashing
 unpacking of binaries (UPX)
 extraction of metadata from multiple file types
 integration with external analysis services (e.g., sandboxes)

Distribution: supported output formats: CybOX, STIX, JSON
 transport via TAXII
 REST API for internal use

https://crits.github.io/

Standards and tools for exchange and processing of actionable information

November 2014

Page 38

4.2.3 Malware Information Sharing Platform

MISP is an open source system for the management and sharing of IoCs, initially built to support the
NATO Computer Incident Response Capability (NCIRC). Its main goal is to facilitate sharing information
related to targeted attacks and malware. Its primary features include a centralized searchable data
repository, a flexible sharing mechanism based on defined trust groups and semi-anonymized
discussion boards. MISP focuses on the exchange of the most valuable indicators selected and
annotated by analysts, and not on processing high-volume automated data feeds. It is available at
https://github.com/MISP/MISP.

4.2.4 MalCom

Malware Communications Analyzer (MalCom) is a tool for analysis of network traffic, in particular
traffic generated by malware samples. It correlates observed activity with multiple sources of threat
information and presents it using interactive graph-based interface. It can be downloaded from
https://github.com/tomchop/malcom.

Collection: REST API
 import via web form, XML, OpenIOC, and CSV

Preparation: whenever data is imported into MISP, new detection indicators are
matched against previously collected ones, providing links between new
and old events

Storage: central SQL database
 normalized format (events/incidents and atomic attributes)
 not designed for high-volume automated feeds

Analysis: no automated analyses

Distribution: export as OpenIOC
 export as IDS signatures
 export as custom XML and CSV
 REST API

Collection: PCAP or live network traffic
 indicators from threat feeds (predefined open sources or private ones

Preparation: DNS data
 YARA rule matching

Storage: MongoDB

Analysis: correlation between communications and known indicators
 visual graph-based representation
 supports manual analysis

Distribution: REST API
 access control is supported by mapping API keys to the tags associated

with stored data

https://github.com/MISP/MISP
https://github.com/tomchop/malcom

Standards and tools for exchange and processing of actionable information

November 2014

Page 39

4.2.5 The MANTIS Cyber Threat Intelligence Management Framework

MANTIS is an open-source web application (implemented using the Django framework) whose main
purpose is the management of structured threat information. It has native support for working with
documents in the STIX, CybOX, OpenIOC and IODEF formats, and aims to provide an environment that
can be used for the research and development of these standards. It is available from http://django-
mantis.readthedocs.org.

4.3 General purpose log management

There are many solutions for log management currently on the market, both commercial and open
source. Typically, these systems are deployed to centralize log collection and monitoring of an
organization’s infrastructure as part of a security monitoring solution. However, they can be also
configured or adapted to handle other types of data (e.g., indicators) and to implement many of the
functions of the more specialized tools that were described in the previous two sections.

4.3.1 Enterprise Log Search and Archive

Enterprise Log Search and Archive (ELSA) is a centralized repository for log data whose design was
inspired by Splunk (see section 4.3.3), and which was developed with the goal of supporting high data
ingest rates. ELSA provides a graphical web interface with an integrated query language that can be
used to search the database, correlate and aggregate the data. Source code is available on an open
source licence from https://code.google.com/p/enterprise-log-search-and-archive/.

Collection: import via web interface or using an API
 supports IODEF, STIX, CybOX, OpenIOC

Preparation: none

Storage: internal data model preserves original structure of supported formats
 limited capacity

Analysis: none

Distribution: REST API
 multiple formats: IODEF, STIX, CybOX, OpenIOC, JSON

Collection: no built-in collection mechanisms specific to security data
 generic syslog input
 HTTP and local IPC inputs for batch imports

Preparation: parsers for several common log formats (e.g., Snort and Cisco)
 parsers for other formats can be defined through configuration files

Storage: SQL database
 full-text indexing

Analysis: customizable dashboards
 correlation with external data sources (e.g., databases, VirusTotal)

through query language

Distribution: queries can be scheduled and results sent by email

http://django-mantis.readthedocs.org/
http://django-mantis.readthedocs.org/
https://code.google.com/p/enterprise-log-search-and-archive/

Standards and tools for exchange and processing of actionable information

November 2014

Page 40

4.3.2 Elasticsearch + Logstash + Kibana

Elasticsearch, Logstash and Kibana (ELK) together form a popular software stack to parse, index,
search and visualize data. Logstash is used to receive and transform data from multiple sources,
Elasticsearch provides a distributed datastore with advanced query capabilities and Kibana provides
an interactive graphical frontend that can be used to build customized dashboard views. All three tools
are mature open source projects. They are available from http://www.elasticsearch.org.

4.3.3 Splunk

Splunk is a commercial monitoring and analytics tool that can handle large volumes of data. A free
version of Splunk is available, although it has somewhat limited capabilities. It is an example of
general-purpose log management software that CERTs can use to process security information. By
extending it with a couple simple scripts, it is possible to build a complete data processing pipeline on
top of it. More information about Splunk can be found at the company’s website:
http://www.splunk.com.

Collection: collection of data performed by external tools
 internally handled by Logstash
 multiple channels (files, message brokers, scripts, etc)
 event-oriented, works in real-time

Preparation: Logstash filters
 GeoIP, DNS
 matching of IP addresses to a list of predefined networks

Storage: Elasticsearch
 scalable document store

Analysis: no automated analyzes
 graphical user interface provided by Kibana: generic query language and

configurable dashboards

Distribution: Elasticsearch has a REST API but it is designed for internal use, not
sharing with external parties

 output format: JSON

Collection: no built-in collection mechanisms for security data so external tools are
required

 multiple transport channels supported (syslog, files, message queues,
etc.)

 real-time or batch processing

Preparation: no built in parsers for specific formats
 generic facilities for parsing text, CSV, JSON and XML
 simple data model based on lists of key-value pairs
 semantics and syntax are not enforced
 enrichment possible by integration with external sources (e.g., GeoIP and

SQL databases)

Storage: custom database suited for large-scale deployments
 full-text search

http://www.elasticsearch.org/
http://www.splunk.com/

Standards and tools for exchange and processing of actionable information

November 2014

Page 41

4.4 Handling high-level information

While previous categories covered tools that were focused on managing lower-level security data,
logs, and indicators, the two systems described below were designed to manage information at a
higher level of abstraction. This includes artifacts like tickets in a workflow system, incident reports,
security advisories, warnings, and similar types of information that will be interpreted by a human
analyst or incident handler.

4.4.1 Request Tracker

Request Tracker (RT) is an open-source ticketing system, that offers a plugin (RTIR) that supports
incident handling workflows. This is an example of a tool that can be used to manage the whole
lifecycle of incidents, from reporting to remediation. Email is the primary mean of interaction with the
system but it also offers a web user interface and REST APIs. Unlike the systems we have described so
far, RTIR is not a security data storage and analysis platform. Instead, it provides incident handling
specific semantics on top of the task tracking features of RT. That said, the architecture of RTIR allows
for a wide range of customizations, and can be integrated with external tools that support analysis
functions. RTIR is available from http://bestpractical.com/rtir/.

4.4.2 Taranis

Taranis is a system developed by NCSC-NL to facilitate situational awareness and manage the flow of
advisories, announcements and other high-level reporting typically generated by a typical CERT. NCSC-
NL uses it internally to gather data from approximately a thousand different sources, and to manage
the production and distribution of reporting based on that information. The software is not available
publicly but trusted CERTs can obtain it free of charge and deploy their own instances of the system
with any set of sources. More information is available at
https://www.ncsc.nl/english/services/incident-response/monitoring/taranis.html.

Analysis: generic query language with statistical capabilities (modeling, trend
analysis, etc.) - can be used for manual interaction or automated analyses

 users can create custom dashboards

Distribution: no built-in mechanisms specific to information security
 alerting capability based on arbitrary criteria
 external scripts can be easily integrated to export data in desired formats

Collection: accepts emails but contents are not parsed by default
 processes incident reports and related communication

Preparation: through external tools only

Storage: SQL database, can be accessed directly for integration or customization
purposes

Analysis: none relevant to security information

Distribution: emails, using built-in templates or content generated by external tools

http://bestpractical.com/rtir/
https://www.ncsc.nl/english/services/incident-response/monitoring/taranis.html

Standards and tools for exchange and processing of actionable information

November 2014

Page 42

Collection: many sources, support for multiple transport mechanisms (email, web
pages, RSS)

 most sources provide unstructured text
 built-in crawler that detects changes in monitored sources automatically
 most sources provide vulnerability alerts and other warnings related to

threats that might be relevant to constituents

Preparation: the system assists with clustering of similar news items
 includes a tool to rate the risk associated with vulnerabilities (through a

custom model based on impact and chance) but the assessment itself is
performed manually by analysts

Storage: internal PostgreSQL database

Analysis: analysis is a step in the workflow supported by Taranis, but analysis itself
is not automated within the tool

Distribution: includes multiple methods to output information, including email,
website, SMS

 output is in textual form, generated through templates
 integration with external instances of Taranis is possible

Standards and tools for exchange and processing of actionable information

November 2014

Page 43

Annex A: Abbreviations

The table below presents the list of abbreviations used in the document.

Abbreviation Explication

API Application Programming Interface

ARF Abuse Reporting Format

ARF Asset Reporting Format

BSON BInary JSON

CAPEC Common Attack Pattern Enumeration and Classification

CCE Common Configuration Enumeration

CCSS Common Configuration Scoring System

CDESF Common Digital Evidence Storage Format

CDXI Cyber Defence Data Exchange and Collabiration Infrastructure

CEE Common Event Expression

CEF Common Event Format

CERT Computer Emergency Response Team

CIF Collective Intelligence Framework (software)

CMSS Common Misuse Scoring System

CPE Common Platform Enumeration

CRE Common Remediation Enumeration

CRITs Collaborative Research Into Threats (software)

CSV Character-Separated Values or Comma-Separated Values

CVE Common Vulnerability Expression

CVRF Common Vulnerabilities Reporting Framework

CVSS Common Vulnerability Scoring System

CWE Common Weakness Enumeration

CWRAF Common Weakness Risk Analysis Framework

CWSS Common Weakness Scoring System

CYBEX Cybersecurity Information Exchange

CybOX Cyber Observable Expression

DBIR Data Breach Investigation Report (Verizon publication)

DFXML Digital Forensics XML

DHS Departament of Homeland Security

DNS Domain Name System

ELK Elastic Search, Logstash, Kibana (software stack)

ELSA Enterprise Log Search and Archive

ETSI European Telecommunications Standards Institute

FIRST Forum of Incident Response and Security Teams

HTTP Hypertext Transfer Protocol

ICASI Internet Consortium for Advancement of Security on the Interne

IDEA Intrusion Detection Extensible Alert

IDMEF Incident Object Description Exchange Format

Standards and tools for exchange and processing of actionable information

November 2014

Page 44

IDS Intrusion Detection System

IEEE Institute of Electrical and Electronics Engineers

IETF Internet Engineering Task Force

IFAS Information Feed Analysis System

IHAP Incident Handling Automation Project

IOC Indicator of Compromise

IODEF Incident Object Description Exchange Format

IODEF-SCI IODEF for Structured Cybersecurity Information

IPFIX Internet Protocol Flow Information Export

IRC Internet Relay Chat

ISI Information Security Indicators

ITU International Telecommunication Union

JSON JavaScript Object Notation

MAEC Malware Attribute Enumeration and Classification

MalCom Malware Communications Analyzer

MARF Messaging Abuse Reporting Format

MDA Mail Delivery Agent

MILE Managed Incident Lightweight Exchange

MIME Multi-purpose Internet Mail Extension

MISP Malware Information Sharing Platform

MMDEF Malware Metadata Exchange Format

n6 Network Security Incident eXchange

NEISAS National and European Information Sharing and Alerting System
(software)

NICT National Institute of Information and Communications Technology
(Japan)

NIST National Institute of Standards and Technology (USA)

NTAR Network Trace Archival and Retrieval library

OASIS Organization for the Advancement of Structured Information Standards

OCIL Open Checklist Interactive Language

OpenIOC Open Indicators of Compromise

OSF Open Security Foundation

OSVDB Open Sourced Vulnerability Database

OVAL Open Vulnerability and Assessment Language

PCAP Packet CAPture [file]

PDF Portable Document Format

PLARR Policy Language for Assessment Results Reporting

REST Representiationl State Transfer

RFC Request For Comments [document series]

RID Real-time Inter-network Defense

RMON Remote Network Monitoring

ROLIE Resource-Oriented Lightweight Indicator Exchange

RSS Rich Site Summary or Really Simple Syndication

RT Request Tracker (software)

Standards and tools for exchange and processing of actionable information

November 2014

Page 45

RTIR Request Tracker for Incident Response (software)

SACM Security Automation and Content Monitoring

SACM Structured Assurance Case Metamodel

SASL Simple Authentication and Security Layer

SBVR Semantics of Business Vocabulary and Business Rules

SCAP Security Content Automation Protocol

SCTP Stream Control Transmission Protocol (Internet standard)

SecDEF Security Description and Exchange Format

SMS Short Message Service

SMTP Simple Mail Transfer Protocol

SQL Structured Query Language

SSL Secure Socket Layer

STIX Structured Threat Information Expression

SWID Tags Software Identification Tags

TAXII Trusted Automated eXchange of Indicator Information

TCP Transmission Control Protocol

TLP Traffic Light Protocol

TLS Transport Layer Security

TMSAD Trust Model for Security Automation Data

TTP Tactics,Techniques and Procedures

UDP User Datagram Protocol

UPX Ultimate Packer for eXecutables (software)

URL Uniform Resource Locator

VERIS Vocabulary for Event Recording and Incident Sharing

WASC Web application Security Consortium

X-ARF Extended Abuse Reporting Format

XACML eXtensible Access Control Markup Language

XCCDF Extensible Configuration Checklist Description Format

XML Extensible Markup Language

XMPP Extensible Messaging and Presence Protocol

YAML YAML Ain't Markup Language

YARA Yet Another Regex Analyzer (software)

Standards and tools for exchange and processing of actionable information

November 2014

Page 46

PO Box 1309, 710 01 Heraklion, Greece
Tel: +30 28 14 40 9710
info@enisa.europa.eu
www.enisa.europa.eu

ISBN: 978-92-9204-105-2

doi: 10.2824/37776

ENISA
European Union Agency for Network and Information Security
Science and Technology Park of Crete (ITE)
Vassilika Vouton, 700 13, Heraklion, Greece

Athens Office
1 Vass. Sofias & Meg. Alexandrou
Marousi 151 24, Athens, Greece

