

Recommendations on aligning research programme with policy Recommendations in the specialised area of NIS

NOVEMBER 2016

www.enisa.europa.eu

European Union Agency For Network And Information Security

About ENISA

The European Union Agency for Network and Information Security (ENISA) is a centre of network and information security expertise for the EU, its member states, the private sector and Europe's citizens. ENISA works with these groups to develop advice and recommendations on good practice in information security. It assists EU member states in implementing relevant EU legislation and works to improve the resilience of Europe's critical information infrastructure and networks. ENISA seeks to enhance existing expertise in EU member states by supporting the development of cross-border communities committed to improving network and information security throughout the EU. More information about ENISA and its work can be found at www.enisa.europa.eu.

Contact

For contacting the authors please use isdp@enisa.europa.eu For media enquiries about this paper, please use press@enisa.europa.eu.

Acknowledgements

Authors would like to thank Dr. George Leventakis for his input and feedback during the drafting of this report.

Legal notice

Notice must be taken that this publication represents the views and interpretations of the authors and editors, unless stated otherwise. This publication should not be construed to be a legal action of ENISA or the ENISA bodies unless adopted pursuant to the Regulation (EU) No 526/2013. This publication does not necessarily represent state-of the-art and ENISA may update it from time to time.

Third-party sources are quoted as appropriate. ENISA is not responsible for the content of the external sources including external websites referenced in this publication.

This publication is intended for information purposes only. It must be accessible free of charge. Neither ENISA nor any person acting on its behalf is responsible for the use that might be made of the information contained in this publication.

Copyright Notice

© European Union Agency for Network and Information Security (ENISA), 2016 Reproduction is authorised provided the source is acknowledged.

ISBN 978-92-9204-208-0, DOI 10.2824/323039

Table of Contents

Executive S	ummary	5
1. Introd	uction	6
.1 Scope	and Objectives	7
1.2 Overv	iew of Research, Innovation and Policy Support Programmes	7
1.3 Evalua	ntion Criteria	9
1.3.1	Effectiveness	9
1.3.2	Coherence	9
1.3.3	Relevance	9
1.3.4	EU added value	9
1.3.5	Impacts	9
2. Impact	t Assessment Pillars	10
2.1 Crypto	ography	10
2.1.1	European Network of Excellence in Cryptology (Phase II) – Ecrypt II	10
2.1.2	Computer Aided Cryptography Engineering – CACE	11
2.1.3	Secure, Embedded Platform with advanced Process Isolation & Anonymity Capabilitie	es –
SEP	IA 12	
2.1.4	Trusted Revocable Biometric Identities – TURBINE	12
2 Identi	ty Management	13
2.2.1	Secure Identity Across Borders Linked – STORK	13
2.2.2	Authentication and Authorisation for Entrusted Unions – AU2EU	14
2.2.3	Shaping the Future of Electronic Identity – FutureID	15
2.2.3	Trusted Architecture for Securely Shared Services - TAS3	15
2.2.5	Secure Widespread Identities for Federated Telecommunications - SWIFT	16
	y Enhancing Technologies	17
2.3.1	Attribute-Based Credentials for Trust – ABC4Trust	17
2.3.2	Privacy and identity management for community services - PICOS	18
2.3.3	Privacy and Identity Management in Europe for Life – PrimeLife	18
2.3.4	Context-aware data-centric information sharing – CONSEQUENCE	19
2.3.5	Privacy-aware Secure Monitoring - PRISM	20
2.4 Threat	t Detection and Mitigation	21
2.4.1	Worldwide Observatory of Malicious Behaviors and Attack Threats – WOMBAT	21
2.4.2	Nippon-European Cyberdefense-Oriented Multilayer threat Analysis – NECOMA	22
2.4.3	Securing Websites through Malware Detection and Attack Prevention Technologies - 23	- SWEPT
2.5 Critica	I Infrastructure Protection	24
2.5.1	A European Network of Excellence in Managing Threats and Vulnerabilities in the Ful	ture
Inte	rnet: Europe for the World – SysSec	24

03

	2.5.2	Tool for systemic risk analysis and secure mediation of data exchanged across linked CI	
	inforr	nation infrastructures – MICIE	24
	2.5.3	Technology-supported Risk Estimation by Predictive Assessment of Socio-technical Secur	ity –
	TRESF	PASS	25
2.6	Trustwo	orthy Digital Services	26
	2.6.1	Network of Excellence on Engineering Secure Future Internet Software Services and Syste	ems
	– NES	SoS	26
	2.6.2	Secure Provision and Consumption in the Internet of Services – SPaCloS	27
	2.6.3	Policy and Security Configuration Management – PoSecCo	28
	2.6.4	Holistic Approaches for Integrity of ICT-Systems – HINT	29
2.7	Cloud C	omputing Security	30
	2.7.1	TRustworthy Embedded systems for Secure Cloud Computing Applications – TRESCCA	30
	2.7.2	Trustworthy Clouds – Privacy and Resilience for Internet-scale Critical Infrastructure –	
	TCLO	UDS	30
	2.7.3	Privacy-Preserving Computation in the Cloud – PRACTICE	31
	2.7.4	Confidential and Compliant Clouds – Coco Cloud	32
	2.7.5	Secure Provisioning of Cloud Services based on SLA management – SPECS	33
3.	Main ac	hievements and Recommendations for the way ahead	34
3.1	Main Ao	hievements	34
3.2	The way	/ ahead	35
4.	Future V	Vork Programme Recommendations	40

Executive Summary

The EU Cybersecurity Strategy¹ includes a number of measures aimed to promote a Single Market for cybersecurity products together with fostering research and development investments and innovation. The development of a Digital Single Market is also the main objective of the Digital Agenda (currently Digital Single Market strategy²), one pillar being strengthening online trust and security, on which the growth of the European economy and the development of a strong digital business sector depend. The Digital Agenda sees internet trust and security as vital to a vibrant digital society and considers a high level of network and information security across the EU essential to ensure consumer confidence and to keep the online economy running. Although there is state-of-the-art research in Europe in the field of NIS, and this area is extensively supported by European funded programs, research is usually not focused on the aspects where NIS policies need available technologies to move forward on their implementation.

The scope of this report is to review existing analysis reports on EU funded Trust and Security Projects, summarize achievements that have significantly promoted specific pillars of NIS, identify and summarize specific outcomes that can promote and support emerging policy and legislative initiatives, namely eIDAS, GDPR, support industry policy in cybersecurity, and provide recommendations on the formulation of forthcoming work programmes. For the analysis of the selected projects, through their reports, six assessment pillars were identified, based on the ICT & Trust and Security interrelated thematic areas and emerging policy and legislative initiatives aspects. For each project, achievements that can significantly promote/favour specific pillars of NIS, are identified along with specific outcomes that can favour and support emerging policy and legislative initiatives - notably: eIDAS, GDPR, NIS and industry policy in cybersecurity cPPP.

Even given the limited subset of projects reviewed within the scope of this report, notable achievements and innovative approaches are identified. Particular note should also be taken of the promotion of horizontal aspects such as usability, standardization, societal acceptance, economic viability and legal compliance of the research results. Furthermore, several projects have been particularly successful in shortening the gap from research to innovation and thus promoting the establishment of a vibrant market in secure and trustworthy ICT in Europe. The analysis however indicated that there is still a large number of unresolved cybersecurity, privacy and trust issues (areas of the main legislative initiatives that are not covered) which necessitate further research across all ICT technology, components, applications and services.

The recommendations for the forthcoming research and innovation work programmes of H2020 and cybersecurity cPPP can be summarized as follows:

- Sustain close collaboration with all relevant stakeholders on research and innovation topics while supporting key EU policy initiatives;
- Promote market-oriented innovation and direct transferability of outcomes to products or services;
- Introduce horizontal requirements for new information and transparency models and endorse the adoption of by design and by default paradigms.

¹ http://eeas.europa.eu/policies/eu-cyber-security/cybsec_comm_en.pdf

² https://ec.europa.eu/digital-single-market/en/europe-2020-strategy

1. Introduction

The Europe 2020 strategy³ for smart, sustainable and inclusive growth identifies research as a driver for innovation, economic growth and sustainability. Through different framework programmes, EU funded research projects promote and support state-of-the-art research in Europe. The specialized field of Network and Information Security (NIS) is extensively supported by European-funded programmes, but is not always focused on the aspects where emerging policy and legislative initiatives need available technologies to move forward on their implementation. Within the scope of this report, the following policy and legislative initiatives have been considered and are briefly presented below.

The EU Cybersecurity Strategy⁴ includes a number of measures aimed to promote a Single Market for cybersecurity products together with fostering research and development investments and innovation. The development of a Digital Single Market is also the main objective of the Commission's Digital Agenda, one pillar being strengthening online trust and security, on which the growth of the European economy and the development of a strong digital business sector depend. The Digital Agenda and the Digital Single Market Strategy⁵, perceive trust and security in digital services vital for a vibrant digital society and consider a high level of network and information security across the EU essential to ensure consumer confidence and to keep the online economy running.

The Network and Information Security (NIS) Directive, adopted by the EU Council on 17 May 2016⁶, aims to put in place the necessary mechanisms at national and EU level to improve security levels and respond to cyber threats. The aim is to have a secure and trustworthy digital environment throughout the EU. This should include improving Member States' national cybersecurity capabilities, improving Member States cooperation and improving cooperation between public and private sectors.

The Regulation on electronic identification and trust services for electronic transactions in the internal market (elDAS Regulation)⁷ adopted on 23 July 2014 is a milestone to provide a stable regulatory environment to enable secure and seamless electronic interactions between businesses, citizens and public authorities. It lays down the foundations for people, companies (in particular SMEs) and public administrations to access safely cross border electronic services and seamlesly perform electronic transactions.

The General Data Protection Regulation (GDPR), which entered into force on 24 May 2016 and shall apply from 25 May 2018.⁸, aims to achieve a comprehensive reform of data protection rules in the EU. The objective of this new set of rules is to give citizens back control over of their personal data, and to simplify the regulatory environment for business. The data protection reform is a key enabler of the Digital Single Market.

³ http://ec.europa.eu/eu2020/pdf/COMPLET%20EN%20BARROSO%20%20%20007%20-%20Europe%202020%20-%20EN%20version.pdf

⁴ http://eeas.europa.eu/policies/eu-cyber-security/cybsec_comm_en.pdf

⁵ http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52015DC0192

⁶ http://ec.europa.eu/digital-agenda/en/news/commission-proposal-directive-concerning-measures-ensure-high-common-level-network-and

⁷ http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32014R0910&from=EN

⁸ http://ec.europa.eu/justice/data-protection/document/review2012/com_2012_11_en.pdf

1.1 Scope and Objectives

This work is undertaken under ENISA Work Programme 2016, as part of Work Package 1.3. - Research & Development, Innovation under the Strategic Objective 1 - To develop and maintain a high level of expertise of EU actors taking into account evolutions in Network and Information Security (NIS). The overall scope is to improve coordination and facilitate support in policy areas that rely on a technological base. The objectives of this report are to:

- Review findings from existing reports on the achievements of a subset of the ICT Trust & Security
 research projects, funded under the 7th Framework Programme, that have exceeded expectations and
 have been characterized as success stories;
- Summarize achievements from the aforementioned projects that have significantly promoted specific pillars of Network and Information Security (NIS);
- Identify and summarize specific outcomes that can promote emerging policy and legislative initiatives, such as the eIDAS Regulation and the General Data Protection Regulation, stimulate trust across different stakeholders and support industry policy in cybersecurity, including the cybersecurity contractual Public Private Partnership;
- Provide recommendations on promoting research approaches that can move forward Network and Information Security (NIS) at EU level;

It should be noted however that the overall aim of this report is not to supplement the role of reviewers of the projects, nor the relevant review meetings and procedures. ENISA did not analyse the deliverables of the projects but only information from publicly available reports.

1.2 **Overview of Research, Innovation and Policy Support Programmes**

The 7th Framework Programme for Research and Technological Development (FP7) was the EU's main instrument for funding research in Europe from 2007 to 2013. The total budget for this seven years period was € 50.5 billion which marked the priority of Europe in research, innovation and technological development. It consisted of 4 main blocks of activities forming 4 specific programmes, namely cooperation, ideas, people and capacities, plus a fifth specific programme on nuclear research. Information and Communication Technologies (ICTs) research activities were part of the co-operation programme and the total budget was € 9.1 billion. As mentioned in the 2014 Digital Agenda Scoreboard⁹, ICT was the largest research area in the FP7 Cooperation programme. The FP7 ICT worked on the approach of implementing strategic roadmaps, but also kept an open part for emerging ideas. Under both approaches, the EU has co-funded over the period 2007-2013 2,261 projects for a total Union funding of about €7.6 billion. In parallel the CIP ICT Policy Support Programme has allocated € 593.2 million of EU funding over the period 2008 – 2013, distributed to 233 different projects. The ICT PSP (Policy Support Programme) was one of specific programmes within the CIP (Competitiveness and Innovation framework Programme). Projects that acted within this programme are funded to support the realization of the Digital agenda for Europe. More specifically, the programme addressed issues and challenges related to effective exploitation of innovative, IT products and services.

⁹ https://ec.europa.eu/digital-single-market/en/news/scoreboard-2014-overview-participation-fp7-and-cip-programmes-ict-domain

In absolute terms Germany, United Kingdom, Italy, France and Spain accounted for 60% of total EU funding and 57% of participations. Cyprus, Greece, Slovenia, Austria and Belgium are the 5 Member States with the highest amounts of funding compared to the size of their ICT sector. According to the latest analysis of publications and patents of ICT research in FP7¹⁰, funded projects were particularly effective in strengthening scientific excellence as well; they have generated over 170,000 publications, have led to more than 1,700 patents and 7,400 commercial exploitations of products or services.

In the specific ICT research area of Trust and Security the overall focus was towards "developing knowledge and technologies for building an open, secure and trustworthy information society in Europe, where citizens and organisations can fully reap the benefits from the new technologies". Towards this direction, a number of interrelated thematic areas¹¹ were promoted and are briefly depicted below.

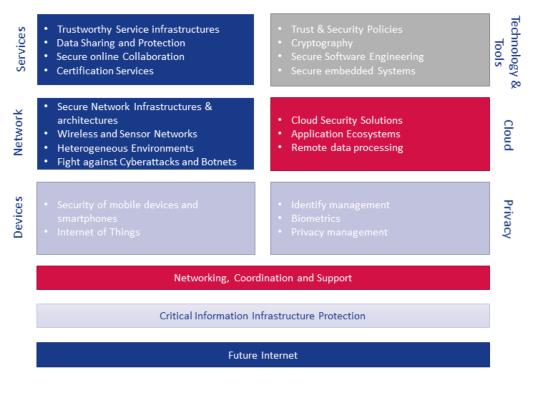


Figure 1: Main thematic areas of FP7 ICT Trust & Security⁸

A very high percentage of the EC funding in FP7 was received by organizations that have already participated in FP6. This holds especially true for universities and research organizations, where a comparably small number of organizations managed to build up the qualifications and capacities for

¹⁰ http://ec.europa.eu/newsroom/dae/document.cfm?action=display&doc_id=14504

¹¹ http://cordis.europa.eu/fp7/ict/security/projects_en.html

continuing to be key players in European-funded research. FP7 can therefore be considered as having balanced the need for openness and concentration central to global competition.

1.3 Evaluation Criteria

The evaluation criteria used to review findings and summarize achievements of EU Funded research projects were inspired by the Better Regulation "Toolbox"¹², and in particular Tool # 42: Identifying the evaluation criteria and Questions. According to the Toolbox "*All evaluations must assess the evaluation criteria of effectiveness, efficiency, coherence, relevance and EU added value*" and "*Evaluations … should also always assess the economic, social and environmental impacts* …". Based on these indications, five (5) evaluation criteria were defined and are briefly described in the following subsections.

1.3.1 Effectiveness

Effectiveness analysis considers how successful the project has been in achieving or progressing towards its objectives. The evaluation aims at forming an opinion on the progress made. The analysis also tries to identify if any unexpected or unintended effects have occurred.

1.3.2 Coherence

The evaluation of coherence involves looking at a how well or not different actions work together. Checking "internal" coherence means looking at how the various internal components of the project operate together to achieve its objectives. Similar checks can be conducted in relation to other ("external") interventions at different levels, for example with respect to projects in related areas and EU interventions within the same policy field or in areas which may have to work together.

1.3.3 Relevance

Relevance looks at the relationship between the needs and problems in society and the objectives of the project. For example, incorrect assumptions may have been made about the cause and effect relationships or circumstances may have changed and the current needs/problems may not be the same as the ones looked at when the project was proposed.

1.3.4 EU added value

EU-added value looks for changes which it can reasonably be argued are due to EU scope, rather than any other factors. Under the principle of subsidiarity (Article 5 Treaty on European Union), the EU should only act when the objectives can be better achieved by Union action rather than by potentially varying action by Member States.

1.3.5 Impacts

Evaluations should also always assess the economic, social and environmental impacts of EU-funded projects, with – in this specific context - particular emphasis on those impacts that are relevant for the creation of a Digital Single Market¹³.

¹² http://ec.europa.eu/smart-regulation/guidelines/toc_tool_en.htm

¹³ http://ec.europa.eu/priorities/digital-single-market_en

2. Impact Assessment Pillars

Impact Assessment is also part of the Better Regulation "Toolbox" and provides support to the political decision-making process. It pertains gathering and analysing evidence to support policy making, verifying, identifying and assessing whether EU action is needed and analysing the advantages and disadvantages of available solutions. Within the scope of this report six assessment pillars were identified, based on the ICT & Trust and Security interrelated thematic areas and emerging policy and legislative initiatives aspects. Namely these pillars are i) Cryptography, ii) Identity Management, iii) Privacy Enhancing Technologies, iv) Threat Detection And Mitigation, v)Critical Infrastructure Protection and vi) Trustworthy Digital Services. For each project, achievements that can significantly promote/favour specific pillars of NIS, are identified along to specific outcomes that can favour and support emerging policy and legislative initiatives - notably: eIDAS, GDPR, NIS and industry policy in cybersecurity, including the cybersecurity cPPP. The assessment of each project is a result of an analysis from existing (and publicly available) reports. It is worth emphasizing that the project list is by no means exhaustive, i.e. many other projects funded within the context of the same calls, that have also exceeded expectations and could thus be characterized as success stories, have not been included in this deliverable, due to lack of room and of time (as well as of – possibly – public information).

2.1 Cryptography

2.1.1 European Network of Excellence in Cryptology (Phase II) – Ecrypt II

ECRYPT's objective was to promote the collaboration of European researchers in information security, and especially in cryptology and digital watermarking. ECRYPT listed five core research areas, termed "virtual laboratories": symmetric key algorithms (STVL), public key algorithms (AZTEC), protocol (PROVILAB), secure and efficient implementations (VAMPIRE) and watermarking (WAVILA). Its continuation, ECRYPT II, was a Network of Excellence in the area of cryptology aiming towards durable integration of European research in both academia and industry.

ECRYPT II	ICT-2007.1.4 - SECURE, DEPENDABLE AND TRUSTED INFRASTRUCTURES	2008 - 2013
Effectiveness	The objectives of the project have been achieved through a wide range of dissemination, communication and awareness activities including a training program, a substantial contribution towards standardization bodies, and an active publication policy.	
Coherence	The ECRYPT II research roadmap was motivated by the changing environment and threat models in which cryptology is deployed, the gradual erosion of the computational difficulty of the mathematical problems on which cryptology is based, and the requirements of new applications and cryptographic implementations. The project was coherent with a number of other interventions which had similar objectives.	
Relevance	Research in Cryptology and digital watermarking is releval enablers for secure, dependable, and trusted ICT infrastruc	
EU added value Eu added value Ecrypt II engaged leading EU players to integrate their research capabi virtual labs focusing on i) symmetric key algorithms, ii) public key algorith and iii) hardware and software implementation. Additionally, it had a		lic key algorithms and protocols,

ECRYPT II	ICT-2007.1.4 - SECURE, DEPENDABLE AND TRUSTED INFRASTRUCTURES	2008 - 2013
	breadth to address the key questions in these areas that could only be achieved at the European level.	
Impacts	Cryptology and digital watermarking are research areas with a high strategic impact for European industry and for the society as a whole. The intense networking activity done in Ecrypt II not only brought together industrial and public recourses but also helped stimulate cybersecurity industry by aligning the demand for advanced cryptology.	

2.1.2 Computer Aided Cryptography Engineering – CACE

CACE objective was to design, develop and deploy a toolbox that would support the specific domain of cryptographic software engineering. The main motivation was that development of hardware devices and software products is facilitated by a design flow, and a set of tools (e.g., compilers and debuggers), which automate tasks normally performed by experienced, highly skilled developers. However, in both hardware and software examples the tools are generic since they seldom provide specific support for a particular domain.

CACE	ICT-2007.1.4 - SECURE, DEPENDABLE AND TRUSTED INFRASTRUCTURES	2008 - 2010
Effectiveness	Project objectives were achieved as final validated solutions enable (relatively) non-expert personnel to develop high-level cryptographic applications and business models by means of cryptography-aware high-level programming languages and compilers.	
Cryptographic software is one of the key enabling technologies of a secure and trust ICT infrastructure in Europe. Cryptographic software engineering can be a viable so for the European software industry to cope with the ever increasing volume of reque high-quality cryptographic software. Internally, project objectives were coherent, they were pursued via the development of an integrated set of tools. External overarching objective of improving the productivity of the cryptographic software in in Europe was – and will be even more so in the years to come – entirely coherer other actions aiming at gearing up the European ICT industry for the future chal related to secure operation of ICT infrastructures.		neering can be a viable solution ncreasing volume of requests for ojectives were coherent, in that ed set of tools. Externally, the cryptographic software industry o come – entirely coherent with
Relevance	The final solutions allow automatic analysis and transform to detect security critical implementation failures, e.g., sof channel attacks, when realizing low level cryptographic objectives are still relevant, since mission critical and n sensitive data are in need of sophisticated cryptographic software.	tware and hardware based side- primitives and protocols. These nodern applications processing
EU added value The challenges that the project addressed affect the industry supplying applications in all European Member States in the same manner. The challenges are not limited to regional or national boundaries. Thus, rese would be inefficient at a national level: limiting the scope to the acade research in a particular country would lead to a solution that is not suffic results usable and efficient for the European-wide use.		e manner. The tackled research ries. Thus, research in this area e to the academic or industrial
ImpactsDevelopment of better-quality and robust software at a much loc clear economic advantage to the European industry in the short ter in dealing with future roadblocks to ICT development in the longer		hort term and positions it better

2.1.3 Secure, Embedded Platform with advanced Process Isolation & Anonymity Capabilities – SEPIA SEPIA focused on three topics: security enhancements of mobile platforms, cryptography and privacy protecting technologies, delta-evaluation and certification methodologies. The project researched privacy protecting mechanisms based on strong cryptography and time- and cost-efficient certification processes reducing the time from design to market. Within the scope of the project, establishing trustworthiness was seen as an asset that is to be considered right from the design phase rather than being addressed as an add-on feature.

SEPIA	ICT-2009.1.4 - TRUSTWORTHY ICT	2010 - 2013
Effectiveness	SEPIA through theoretical and practical research, as well as the development of proof-of- concept prototypes, managed to meet its objectives. The final SEPIA reference platform was disseminated via demonstrators and as an open platform for further research and product development.	
Establishing trust is a multi-faceted problem, which requires assessments from in organisations. Internally, the project was coherent, since significant progress was respect to objectives characterized by a common overarching goal. Externally endeavour is perfectly aligned to other interventions, aiming at establishing a ICT infrastructure in Europe.		nificant progress was made with ning goal. Externally, the SEPIA
Relevance	The SEPIA project addressed challenges that are – and will be central for the development of prominent digital markets applications and the Internet of Things. The project tackled iss and protection of mobile devices as key enablers for new bu integration of mobile platforms.	s, such as mobile devices and suces of trustworthiness, security
EU added value	The solutions that have been constructed during the project a concerted efforts of Europe's leading researchers can be results. By operating at the European level, the consortium clusters of projects aiming at related or complementary g discuss and compare the results. The consortium was a m partners that brought together expertise and excellence from	used to validate the project's has been able to participate in goals, in order to disseminate, nix of industrial and academic
Impacts	SEPIA focused on topics that have a tremendous impact on and secure Digital Single Market in Europe. Mobile and evolving into powerful, ubiquitous personal assistants. As security-critical operations like authentication, payment, applications and transactions as regarded in the eIDAS regula	embedded devices are rapidly such, they will be involved in e-Banking and e-Government

2.1.4 Trusted Revocable Biometric Identities – TURBINE

TURBINE proposed a multi-disciplinary privacy enhancing authentication technology combining innovative developments in cryptography and fingerprint biometrics. Specific objectives of the project were to ensure that the crypto-protection deployed on the biometric data was non-invertible and had the lowest possible impact on biometric verification performance. Project results were assessed using very large fingerprint data bases held by two project partners to compare performance with and without crypto-protection.

TURBINE	ICT-2007.1.4 - SECURE, DEPENDABLE AND TRUSTED INFRASTRUCTURES	2008 - 2011
Effectiveness	TURBINE provided reliable biometric 1:1 verifications, multi-vendor interoperability, and system security, while addressing major issues related to privacy concerns associated to the use of biometrics for ID management. Its primary objective of rendering this innovation commercially viable was also achieved, by demonstrating that the technology is sufficiently mature for deployment as a solution to large scale eID requirements.	
Coherence	TURBINE addressed topics that were – and still are – coherent with other actions which have similar objectives. In particular, it explored: i) data protection and privacy issues and ii) requirements of key application sectors for eID management solutions. Expert groups were included in the project to advise the consortium.	
Relevance Relevance TURBINE addressed privacy concerns regarding the use of fing management. Through a comprehensive verification test and demo evaluated how single fingerprint data of an individual may be used to identities with different levels of trust without weakening the over		l demonstration environment, it used to generate several secure
EU added value	The challenges that the project addressed affect the industry supplying cryptographic applications in all European Member States. The breadth of technical expertise necessary to undertake this project could not be assembled at the national level.	
Impacts	TURBINE addressed research issues that have a tremendout opportunities as they can offer all the benefits of biometric eliminating the associated risks. Additionally, the Europe (EDPS) issued a positive opinion ¹⁴ on TURBINE's approach wh protection concerns, as imposed by GDPR, related to the use	ric security while mitigating or an Data Protection Supervisor nich provides evidence that data

2.2 Identity Management

2.2.1 Secure Identity Across Borders Linked – STORK

The aim of the STORK project was to establish a European eID Interoperability Platform to enable citizens to establish new e-relations across borders, just by presenting their national eID. STORK 2.0 followed up on STORK and validated the STORK platform in additional pilots, promoting interoperability of different approaches at national and EU level.

STORK	CIP-ICT-PSP-2007.1.2 - TOWARDS PAN-EUROPEAN RECOGNITION OF ELECTRONIC IDS (EIDS)	2008 - 2011
Effectiveness	The STORK interoperable solution for electronic identity (eID) was based on a distributed architecture that paved the way towards full integration of EU e-services while taking into account specifications and infrastructures currently existing in EU Member States. The main technology outcome of STORK was the creation of a pan-European federation of electronic identities along to common rules and specifications to assist mutual recognition of eIDs.	
Coherence	The STORK project aimed to establish a European eID Interoperability Platform that allows citizens to authenticate themselves using their own national credentials in order to access	

¹⁴ https://secure.edps.europa.eu/EDPSWEB/webdav/shared/Documents/Consultation/Opinions/2011/11-02-01_FP7_EN.pdf

STORK	CIP-ICT-PSP-2007.1.2 - TOWARDS PAN-EUROPEAN RECOGNITION OF ELECTRONIC IDS (EIDS)	2008 - 2011
	cross-border services provided by national service provider. The project's main contributions and achievements are coherent with other EU interventions and objectives.	
Relevance	Interoperability across different countries has been, and is still a challenge as far as identity is concerned, because of the many issues involved (security, privacy, compliance). STORK's user centric and cross-border approaches, and its results, are valuable for the development of future projects.	
EU added valueSTORK's goal was to ensure eID interoperability at European level incluse specifications, a common code for an architecture and a framework for deployment across EU. STORK and STORK 2 paved the way towards the prove European ID, since they has addressed main issues like enabling mutual rece 		a framework for sustainable towards the provision of a pan- bling mutual recognition of eID
		order eID services and build the

2.2.2 Authentication and Authorisation for Entrusted Unions – AU2EU

AU2EU brought advanced privacy-enhancing attribute-based credentials towards the cloud to simplify deployments, e.g., by reducing or avoiding the requirement to install user-side software. The aim of the project was to implement and demonstrate in a real-life environment an integrated eAuthentication and eAuthorisation framework to enable trusted collaborations and delivery of services across different organisational/governmental jurisdictions.

AU2EU	ICT-2013.1.5 - TRUSTWORTHY ICT	2013 - 2015
Effectiveness	AU2EU built on existing schemes and research results, mainly ABC4Trust, and efficient executed aligned activities defined in the Trust in Digital Life (TDL) strategic research agenda It developed tools allowing unifying authorisation policies, attributes and claims of different security domains, and providing the advanced authorisation and platform working across organisational borders.	
Coherence	The project is coherent with basic EU interventions in the area of identity management, increasing trust, security and privacy and aims at fostering the adoption of security technologies at European level.	
The projects advanced the technology in the fields of eAuthentication and eAut providing a privacy-friendly authentication architecture and platform across org borders. It has developed tools allowing unifying authorisation policies, attributes of different security domains, and providing the advanced authorisation platfor across organisational borders.		platform across organisational on policies, attributes and claims
EU added value The project has successfully advanced four different domains: assurance of claim indicators, policy enforcement mechanisms and processing under encryption techn address specific security and confidentiality requirements of large dis- infrastructures.		under encryption techniques to
Impacts Achievements of AU2EU will have a direct impact on the promotion and de trust services as defined within the eIDAS regulation. Moreover, the eAu		

AU2EU	ICT-2013.1.5 - TRUSTWORTHY ICT	2013 - 2015
	eAuthorization framework support concepts as (un)Traceabi party to claims provider, (un)Linkability between relying par are directly related to GDPR specifically in the areas of priva technologies and data subject rights.	ties and (non)Disclosure, which

2.2.3 Shaping the Future of Electronic Identity – FutureID

FutureID integrated existing eID technologies and trust infrastructures, emerging federated identity management services and modern credential technologies to provide a user-centric system for the trustworthy and accountable management of identity claims towards a privacy-aware and ubiquitous identity management infrastructure for Europe.

FUTUREID	ICT-2011.1.4 - TRUSTWORTHY ICT	2012 - 2015
Effectiveness	FutureID developed building blocks that can be used to provide interoperability between different identity management standards and organize an open marketplace for identity management where many service providers and identity providers can operate. End users can benefit from ubiquitously usable open source eID client, while application and service providers will be enabled to use trustworthy authentication services.	
Coherence FutureID bridged the gap between the various existing electronic identities and pro efforts towards the implementation of a trust infrastructure for authentication supp promoted reliable, accountable and coherent with EU initiatives deployment of ele- identity technologies.		for authentication support and
RelevanceFutureID can by exploited by different providers and operators, supporting the development of new and possibly diverging business cases while the infrastr expected to provide benefits to all stakeholders involved in the eID value chain.		ses while the infrastructure is
EU added value FutureID can support all stakeholders involved in the eID v from the availability of ubiquitously usable open source ell providers will use trustworthy authentication services with front investments in eID technologies or to meet legal oblig		client application and service ut the need of making large up-
FutureID offers the technical components that togeth online authentication and electronic signature identification and trust services requirements in the of eSignature services. Moreover, the architecture p and integrates state of the art privacy-enhancing attr GDPR requirements.		e considering the electronic f providing of the infrastructure emphasis on privacy protection

2.2.4 Trusted Architecture for Securely Shared Services - TAS3

TAS3 aimed at developing and implementing an architecture with trusted services to manage and process distributed personal information. It contributed to the design of an architecture able to meet the requirements of complex and highly versatile business processes and to enabling the dynamic user-centric management of policies.

TAS3	ICT-2007.1.4 - SECURE, DEPENDABLE AND TRUSTED INFRASTRUCTURES	2008 - 2011
Effectiveness	TAS3 focused on the development of a Trust Policy Management architecture, where issues like trust and privacy, identity management, authentication and authorisation as well as legal and privacy issues were efficiently handled. It efficiently validated and demonstrated the applicability of the open, secure and trusted architecture that was developed for the exchange of personal information in the domains of e-Employability and e-Health.	
Coherence	TAS3 developed architecture supports dynamic user-centric management of policies, ensures end-to-end secure transmission of personal information and user-controlled attributes between heterogeneous, context dependent and continuously changing systems.	
Relevance	Empowering individuals to be in control of their personal data and supporting their lifelong re-use of personal data while preserving personal privacy and confidentiality in dynamic environments are fundamental issues for the provision of electronic services.	
EU added value	TAS3 promotes trust and confidence in electronic transactions, and indirectly addresses the requirements of the electronic identification and trust services as described in the eIDAS regulation. Moreover, the proposed notification mechanism can also be used by service providers and organizations to easily implement requirements imposed by GDPR concerning mainly on mechanisms for notification of citizens when breaches do occur. Moreover, the techniques proposed in TAS3 are directly relevant for EU cyber preparedness.	
Impacts	TAS3 participated in the development of European Trust O towards the development of trust compliance policies and pu Such "policy and procedure specifications" need to be obse will deliver the information to certify and build trustworthines their providers, paving the way towards GDPR implementation	rocedures for Service Providers. rvable and auditable and these ss into the systems, services and

2.2.5 Secure Widespread Identities for Federated Telecommunications - SWIFT The SWIFT project leveraged identity technology as a key to integrate service and transport infrastructures for the benefit of users and the providers. It focused on extending identity functions and federation to the network while addressing usability and privacy concerns.

SWIFT	ICT-2007.1.4 - SECURE, DEPENDABLE AND TRUSTED INFRASTRUCTURES	2008 - 2010
Effectiveness	SWIFT developed an identity framework that transforms identity as a key enabling technology for convergence between networks, services, applications and content on the technical side and between operators, service providers, micro-operators and even users as providers on the business side. It has efficiently achieved its objectives to solve identity fragmentation, by extending IdM systems for multiple services at different network layers using the same ID and bridging platforms and layers.	
Coherence	The SWIFT framework advanced traditional IdM solutions and provided an environment for an advanced management of end users identities through identity aggregation from different individual identities, anonymous services access and cross-layer authentication and authorization.	
Relevance	The SWIFT framework extended and progressed identity man aggregation, anonymity, cross-layer SSO, advanced access of level, and between devices. Regarding privacy, it supported	control and mobility at network

SWIFT	ICT-2007.1.4 - SECURE, DEPENDABLE AND TRUSTED INFRASTRUCTURES	2008 - 2010
	parties linking different steps or actions due to identical identifiers, enforcement of privacy rules at different providers, and assurance of the user's autonomy in disclosing attributes.	
EU added value	The SWIFT project leveraged identity as a convergence layer between different players in the communication and services space, and aimed to make identity a communication end point through which service and network providers can discover the users and deliver their services. It covered a number of privacy issues and user concerns and tackled the relative regulatory issues of GDPR. Moreover, the SWIFT identity framework aimed to overcome the Identity fragmentation in EU, provide cross-layer IdM taking into account both application and network layers, support for multiple devices and provide independency from online components. These aspects consist requirements of the electronic identification and trust services architecture.	
Impacts	SWIFT leveraged digital Identities to solve mainly identity fra systems for multiple services at different network layers. significant impact on networks and network services providi and guaranteeing end users about the authenticity of the ser	An effective IdM can have a ng new service delivery options

2.3 **Privacy Enhancing Technologies**

2.3.1 Attribute-Based Credentials for Trust – ABC4Trust

ABC4Trust's focus was to improve internet privacy by developing capabilities to introduce attribute-based credentials into identity management systems, allowing users to only reveal the minimum information required by the application, without giving away full identity information.

ABC4TRUST	ICT-2009.1.4 - TRUSTWORTHY ICT	2010 - 2015
Effectiveness	ABC4Trust successfully addressed the federation and interchangeability of technologies that support trustworthy yet privacy-preserving Attribute-based Credentials (ABCs). The proposed architecture is able to decompose future (reference) implementations of Privacy-ABC technologies into sets of modules and specify the abstract functionality of these components in such a way that they are independent from algorithms or cryptographic components used underneath.	
Coherence	ABC4Trust is applicable to the architectures of existing widely deployed identity protocols and frameworks such as WS-*, SAML, OpenID, OAuth and X.509 and also alleviates some of their security, privacy, and scalability issues.	
Relevance	The project outcomes provide benefits in the concept of "partial identities" and the legal principle of data minimisation as included in GDPR, allowing people to control release of their data.	
EU added value	ABC4Trust facilitates the implementation of a trustworthy protecting digital society which provides an added value in G Privacy ABCs alone and together with other mature Privacy have a high potential to influence the ongoing development i and privacy. This will influence the understanding and c technical and organisational measures are adequate to ensur	DPR implementation. Enhancing Technologies (PETs) n the domain of data protection definition of what appropriate

ABC4TRUST	ICT-2009.1.4 - TRUSTWORTHY ICT	2010 - 2015
Impacts	ABC4Trust promotes European privacy values in infrastructur and communities by increasing accountability, trustworthine elaborate access control and user-centred Identity Managen	ss of information, allowing more

2.3.2 Privacy and identity management for community services - PICOS

The objective of PICOS was to develop and build a state-of-the-art platform for providing the trust, privacy, and identity management aspects of social community services and applications on the Internet and in mobile communication networks.

PICOS	ICT-2007.1.4 - SECURE, DEPENDABLE AND TRUSTED INFRASTRUCTURES	2008 - 2011
Effectiveness	PICOS met its objective through the implementation of Sub-communities and Partial Identities concepts that allows users to reveal only selected personal information as an attribute and the Privacy Advisor tool to guide the users in aspects of their privacy and identity management. The notion of Private Rooms was also introduced enabling users to establish a personal area for managing their private information and content, enhancing their privacy by enabling them to store and selectively publish their private information to a certain set of other users.	
Coherence	The resulting platform provided a state-of-the-art community, supporting identity management system that can be used by the industrial members of PICOS creating benefits and insights in the European IT and telecommunications industry beyond the scope of the project. By involving all stakeholders on the community value chain, PICOS will strengthen integrated European privacy and trust products and Europe's competitive advantage for trust in on-line applications and services.	
Relevance	PICOS concepts and developments provide the basis for the enhancement of products and services with regards to privacy and data protection, confirming also their key role during the participation and engagement in online communities.	
EU added value	PICOS through insights on citizens' perception and understanding of privacy, achieved implementation of privacy-enhancing technologies for trustworthy, privacy-friendly community transactions addressing several areas of the GDPR.	
Impacts	The results of PICOS have an impact at different levels of integrating privacy enhancing concepts as part of a holistic a trust in social communities.	

2.3.3 **Privacy and Identity Management in Europe for Life – PrimeLife**

PrimeLife's vision was to provide privacy, trust and ID management through tools such as browser plug-ins, social networks and encryption. It was built upon and extended the FP6 Project PRIME, which dealt with enabling citizens to exercise their legal rights to control personal information in online transactions. PrimeLife aimed to resolve core privacy and trust issues involving protection of privacy for web-based applications, making existing privacy enhancing technologies useable and foster the adoption of privacy enhancing technologies by providing open source components and educational materials.

PRIMELIFE	ICT-2007.1.4 - SECURE, DEPENDABLE AND TRUSTED INFRASTRUCTURES	2008 - 2011
Effectiveness	PrimeLife developed a number of mechanisms and open source tools for privacy and identity management that can be used as building blocks of future privacy-enabled technologies. Project results further advanced state-of-the-art in the sphere of interface usability, configurable policy languages, federation of web services, privacy-enhanced identity management enablers, and privacy-enhancing cryptography.	
	PrimeLife has extended identity management towards tra source tools such as the W3C Privacy Dashboard for tracking usage of personal data through encryption.	· ,
Coherence	PrimeLife contributed to the development of a new generation of web-based applications and services, removing trust and security barriers and enabling end users to control personal information in on-line transactions.	
Relevance	The privacy-enhancing technique developed during the projects lifetime still corresponds to the needs and problems within the EU and can be used for virtual communities (social networks) and collaborative applications on the Internet.	
EU added value	In the fields of transparency in general data processing and information exchange, project tools can be re-used and extended, as the Privacy Dashboard, with the focus on emerging ICT systems and life-log of personal data within social communities.	
Impacts	By promoting aspects like user reputation, certification an control their privacy, Primelife contributed to addressin obligations as imposed by GDPR.	0 0 ,

2.3.4 Context-aware data-centric information sharing – CONSEQUENCE

Consequence focused on the engineering of an interoperable architecture for data sharing, facilitating dynamic policy management enforcement and end-to-end data protection across multiple organizations and techniques for organisation of neutral data sharing agreements.

CONSEQUENCE	ICT-2007.1.4 - SECURE, DEPENDABLE AND TRUSTED INFRASTRUCTURES	2008 - 2011
Effectiveness	Consequence combined known technologies extending and combining them to achieve the required goal and delivered new research results (e.g. DSA and EPL languages). The use of the controlled natural language (CNL4DSA), the insertion of a help-on-line facility partly mitigating usability issues and a world-wide patent depict project's achieved objectives.	
Coherence	Consequence defined a generic, scalable, context-aware, secure and resilient architecture within a framework that enable dynamic management policies based on agreements that ensure end-to-end secure protection of data-centric information, addressing the increasing need for quick, dynamic and secure information sharing.	
Relevance	The proposed framework took into account not only technological, but also economic and social aspects of data exchange while promoting Data Sharing Agreements (DSA) for managing shared data among multiple participants in several specific domains and contexts and EPL languages.	

CONSEQUENCE	ICT-2007.1.4 - SECURE, DEPENDABLE AND TRUSTED INFRASTRUCTURES	2008 - 2011
EU added value	Consequence advanced available technologies for quick, dynamic and secure information sharing in multi-organisational environments with independent IT Infrastructures addressing the emerging need for information sharing as expressed in all major EU policy interventions.	
Impacts	The integrated capability of the developed solution for converting a high level specification of security requirements into low-level enforceable policies can be exploited in several different domains, through respective customization and integration.	

2.3.5 **Privacy-aware Secure Monitoring - PRISM**

PRISM's aim was to devise a privacy-preserving network monitoring system with enforcement of the applicable data protection legal framework. It investigated the possibility to preserve the customers' privacy, by avoiding disclosure of raw captured data even inside the controller domain itself, while preserving the possibility of executing monitoring applications, including the possibility to detect and react to attacks and trace back abuses and having as result to improve public security.

PRISM	ICT-2007.1.4 - SECURE, DEPENDABLE AND TRUSTED INFRASTRUCTURES	2008 - 2010
Effectiveness	PRISM developed a privacy-preserving network monitoring system where carefully designed data protection mechanisms can coexist with suitably adapted monitoring applications. Moreover, it addressed the challenge of out-sourcing monitoring applications without privacy concerns. A regulatory assessment was also performed based on the EuroPriSeCriteria ¹⁵ .	
Coherence	PRISM is coherent with EU interventions in the area of privacy. The interest in monitoring systems resides in their results and even if they do not introduce directly any privacy concern, their need to access a data trace does. The middleware policies ensure that the processing of data gathered through monitoring will be carried out in line with the set of rules and limitations provided by respective data protection obligation and requirements.	
Relevance	PRISM moved traffic analysis and data reduction to the edge of the measurement system where possible, and replaced general techniques with specific analysis targeted toward specific tasks. This approach allows aggressive data reduction and protection for scalability as well as privacy protection.	
EU added value	The approach undertaken managed to adapt to the regulat separation between the entities accessing the gathered data managing access permissions while reducing the data tha process and store.	and the entities controlling and
Impacts	PRISM can impact the way citizens perceive their network and increase their trust in communication infrastructur applications are able to operate in a privacy-preserving manuderlying legal obligations and restrictions.	res since network monitoring

¹⁵ https://www.european-privacy-seal.eu/EPS-en/Criteria

2.4 **Threat Detection and Mitigation**

2.4.1 Worldwide Observatory of Malicious Behaviors and Attack Threats – WOMBAT WOMBAT aimed at the development of new means to address the current and future threats related to the Internet and IT services. It focused on real-time gathering of security-related raw data, with particular attention put on leveraging existing tools and exploring the development of tools dedicated to wireless (WiFi, RFID, Bluetooth) networks, threat analysis and techniques to enrich the raw secure-related data.

WOMBAT	ICT-2007.1.4 - SECURE, DEPENDABLE AND TRUSTED INFRASTRUCTURES	2008 - 2011
Effectiveness	The project reached its objectives, in particular as reported in the WOMBAT experimental reports. Root Cause Analysis framework and prototype of early warning system developed during the project have been successfully tested and applied to various WOMBAT datasets to perform intelligence analyses. Moreover, the WOMBAT Consortium provided end-users with the open-access to WOMBAT API (WAPI) - a set of API developed by the project partners to allow integrated access to different attack datasets.	
Coherence	Current EU and national initiatives prove that combating cybercrime is one of the major priorities in the security field in general. In addition, problem of the usability and accessibility of security-related information is still challenging. Therefore the goals, approach and outputs of the WOMBAT project are still coherent with the scope of the current cyber security efforts. WOMBAT scope and focus were also coherent with NIS Working Group 2 WG2 focused on information exchange and incident coordination.	
Relevance	The WOMBAT objectives were in line with expectations of potential end-users (i.e.: ISPs, CERTS, antivirus companies, security researchers, security-conscious organizations and home users) related to threat analysis. Objectives of the project were relevant to the end-user needs, and current obstacles related to sharing the security data, trade-off between safety and flexibility of access to the data, and also independency of the analyses of security threats. Moreover, the project addressed also issues related to the insufficient level of confidence of the European citizens related the cyber security and addressed the needs for raising security awareness in Europe.	
EU added value	Results of WOMBAT were a step towards obtaining more global and comprehensive view of the security-related data, thus they can contribute to supporting cyber-security experts in their decision making process for countermeasures selection. Also, the project results can foster cyber security investments in EU organisations.	
Impacts	The potential impact of WOMBAT activities can strengthe business) trust in the use of networks, software and e-service project have a potential to provide IT users with means to p personal data, which is consistent with the current Europea the new GDPR regulation.	es. Moreover, the outputs of the protect their digital identity and

2.4.2 Nippon-European Cyberdefense-Oriented Multilayer threat Analysis – NECOMA

NECOMA addressed aspects of data collection, aiming at expanding currently used data gathering mechanisms and adapting them to threat data analysis purposes. Moreover, the project aimed to analyse threat-related data including both the target and victim perspective, instead focusing only on attack mechanisms and system vulnerabilities. NECOMA aimed also at developing cyber security metrics to assess attack impact and novel cyber defence mechanisms that could be used with these metrics.

NECOMA	ICT-2013.10.1 - EU-JAPAN RESEARCH AND DEVELOPMENT COOPERATION	2013 - 2016
Effectiveness	One of the main outputs of the project was the implementation of the threat analysis platform with a set of unified interfaces for accessing heterogeneous security related information that can be used both for real as well as for non-real time analyses. The prototype of the platform allowed to monitor and analyse a number of security incidents and attack patterns across different layers (end-point layer and infrastructure layer).	
Coherence	Current EU and national initiatives prove that combating cybercrime is one of the major priorities in the security field in general. In addition, problem of the usability and accessibility of security-related information is still challenging, therefore the goals, approach and outputs of the WOMBAT project are still coherent with the scope of the current cyber security efforts. Moreover, NECOMA objectives and scope are coherent with other, previous EU initiatives funded under FP7 ICT schemes, e.g. with the WOMBAT project.	
Relevance	NECOMA contributed to the development of new approaches and instruments addressing the fight against cyber-attacks. The proposed scenarios are in line with the currently emerging threats, in particular combating botnets and malware, as well as cyber security of mobile/micro devices are the topics addressed in European and US roadmaps related to cyber security, e.g. "A Roadmap for cybersecurity research" and "The Red Book: A Roadmap for Systems Security Research". Those threats and scope are also in line with recently published cyber threats landscape by ENISA. Moreover, the comprehensiveness of the proposed approach (including both victim and attacked infrastructure perspective analysis) is relevant to the current needs and trends.	
EU added value	As the project is funded within the EU-Japan collaboration scheme, NECOMA included project partners both from EU and Japan fostering international cooperation in the field of cyber security and promoting EU cybersecurity preparedness.	
Impacts	The NECOMA consortium intensively collaborated with the the project results and in order to augment the exploits members. Moreover, NECOMA industrial partners are active providing DDoS mitigation solutions and are major Europe- security.	ation potential for consortium ly involved in development and

2.4.3 Securing Websites through Malware Detection and Attack Prevention Technologies – SWEPT The SWEPT project focus was put on protection of websites against cyber-attacks, malware and on mitigation of web vulnerabilities. The main goal of the consortium was to develop a solution that will be able to minimize impact of malicious attacks on websites, maximizing their security posture with the assumption that website owners or administrators intervention is not necessary (or limited intervention is needed) to secure the website.

SWEPT	ICT CIP-PSP 2007-2013	2014 – 2017
Effectiveness	The proposed SWEPT security solution mixes two approaches, namely proactive security (website attacks prevention) and reactive security (including detection and mitigation). At the current stage of the project the consortium effectively progresses towards the defined objectives. Two business-oriented pilots are planned for year 2016: Pilot for ISP, website administrators and owners, and Pilot 2 for web designers and developers.	
Coherence	The SWEPT initiative is coherent with other initiatives in this research area. SWEPT consortium formally interacts with ACDC project (FP7) in order to maximize benefits coming from future implementation of both projects' outputs. Complementarities between SWEPT and ACDC projects have been reported in an official deliverable and enable future integration of projects results, namely SWEPT can use threat and vulnerability data from the ACDC Central Clearing House (CCH) and analogically threats and vulnerabilities detected using the SWEPT platform can feed the CCH.	
Relevance	The project approach reflects the needs for securing websites and targets the majority of actors from the Internet ecosystem, in particular website owner and administrators, web hosting providers and ISPs. Nowadays, one of the main challenging issues is the lack of resources in the majority of organisations to invest on websites security (both in terms of funding and time/human resources). In this sense, SWEPT introduces an approach that will be cost-effective, automated and easy to implement addressing this main challenge. Finally, the SWEPT outputs can be integrated and can complement 3rd party security products of web security companies.	
EU added value	The successful implementation of the SWEPT platform will bring benefits to individual website owners and administrators, and small/SME organizations with limited resources that must balance between security of their websites and cost of security investments. This could be achieved by the SWEPT approach promoting not only secure design of the websites (Security-by-Design) but also by fostering the automation of response (automated detection and threat mitigation) in case of malicious attack. The project outputs will contribute to increasing the European consumers trust in websites and web applications, including emerging markets of e-services.	
Impacts	The expected impact reaches a variety of stakeholders from impacting also common Internet users that can be ultima website infection. Additionally, the SWEPT project has the a "de facto" standards and good practices in the context of w of certification that will assess the security of given websit security measures. Therefore, the project outputs will h certification/auditing standards and standardisation bodies.	ately affected by the malicious ambition to define and develop rebsites protection and a model the in accordance to the SWEPT

2.5 Critical Infrastructure Protection

2.5.1 A European Network of Excellence in Managing Threats and Vulnerabilities in the Future Internet: Europe for the World – SysSec

SysSec was a Network of Excellence project extending the FORWARD project and aimed at building strong synergies with industry and policy makers by advancing the field of Systems Security. Three areas were identified as the most important and crucial in securing ICT systems: malware, targeted attacks and social engineering/phishing. The project also identified the major technologies which require more investment in their security: social networks, on-line games, e-commerce, e-banking, sensors/drones, embedded systems, smart environments, legacy systems, Critical Infrastructures, mobile/wireless networks, implantable devices and cloud computing.

SYSSEC	ICT-2009.1.4 - TRUSTWORTHY ICT	2010 - 2014
Effectiveness	The main output of the project was the Roadmap for Systems Security Research. Moreover, SysSec consortium created and maintained a virtual centre of excellence with the goal to consolidate system security researchers across EU.	
Coherence	The project was coherent with the vision of Horizon H2020 programme, taking into account industrial and societal perspective of cyber security challenges. The SysSec threat identification and recommendations were also consistent with ENISA Threat Landscape reports published during the SysSec project. SysSec efforts was highly coherent with the activities of NIS PPP Working Groups dealing with risk management (WG1) by SysSec educational activities, with security information exchange (WG2) by identification of Future Internet vulnerabilities, and with secure ICT research and innovation through the SysSec Roadmap contribution.	
Relevance	The identified research outputs are relevant to the actual cyber security trends and the Future Internet challenges, addressing such topics as privacy preservation, big data challenges, security of smart cities and smart infrastructures (e.g. smart grids).	
EU added value	SysSec established a strong community of experts in the field of systems security with an ambition to play a noticeable role in the changing cyber security environment. Creation of a synergy between research/academia and policy makers - both through the Red Book content as well as by the SysSec community involvement –also adds value for the EU cyber security and CIP initiatives. It should be noted that Red Book includes clearly articulated research gaps, the main challenges and recommendations for future R&D actions that can be reflected in the EU interventions.	
Impacts	The main impact of the project can be expected on policy ma In particular identification of the Grand Challenge Research F Security is strong advice to the collaboration between R agencies in order to improve cyber security of ICT.	Problems in the area of Systems

2.5.2 Tool for systemic risk analysis and secure mediation of data exchanged across linked CI information infrastructures – MICIE

The MICIE project was focused on the Critical Infrastructure (CI) protection domain and resilience of CI against malicious activities and failures caused by natural phenomena. It developed and validated an alerting system, able to identify threats related to given CI component in real time and to identify dependencies of threaten CI with other critical facilities.

MICIE	ICT-SEC-2007.1.7 - INFORMATION AND COMMUNICATION TECHNOLOGIES: CRITICAL INFRASTRUCTURE PROTECTION	2008 - 2011
Effectiveness	The core of the alerting system prototype was the Prediction Tool – the central module of the early warning system. Other expected results were also achieved, namely the off-line design of CI models and the mediation gateways to collect CI-related security events with ability to describe them using common meta-data model.	
Coherence	Critical Infrastructures have to ensure the highest security levels to be able to fulfil their duty in any circumstances. Modelling and analysing them and their interdependencies are essential to discovering hidden vulnerabilities and threats.	
Relevance	The MICIE project was consistent with end-user needs related to daily operation of Critical Infrastructures and reflected in the Work Programme, namely better understanding and management of complex and interdependent interactions between different CI components, as well as systematic risk analysis and security configuration dedicated to CI. Risk analysis was also the main focus of the NIS PPP WG1 working group. The MICIE project objectives and results were consistent with and can contribute to the EU proposal of Critical Infrastructure Warning Information Network (CIWIN) that is a pillar of the European Programme for Critical Infrastructure Protection (EPCIP).	
EU added value	Based on the results of MICIE system validation, it can be concluded that MICIE solution have a potential to increase the quality of services provided with European Critical Infrastructures. Automated support for the operator that will be assisted in detecting failures, malicious attempts of attacks and appropriated countermeasures can contribute to the cost-savings and increased resilience of the EU CI networks. Contribution to the modelling of CIs and CI dependencies can also be perceived as an added value due to still immature and inadequate models currently in use.	
Impacts	Implementation of results of the MICIE can impact CI owners resilience against disruptions. In result, this may have a president (societal impact). Moreover, contributing to CIWIN can impa	positive impact of CI end-users

2.5.3 Technology-supported Risk Estimation by Predictive Assessment of Socio-technical Security – TREsPASS

The TREsPASS project's main objectives are to develop tools supporting analysis and visualisation of information about security risks, and to propose possible countermeasures for them. The developed tool will identify various attack paths (their possibility and impact) and analyse which countermeasures are the most effective. The project combines technical approach (analysis of assets and protocols vulnerabilities) with social aspects.

TRESPASS	ICT-2011.1.4 - TRUSTWORTHY ICT	2012 - 2016
Effectiveness	The expected outputs of the TREsPASS project will be includ allowing organisations to employ analytic, model-based met processes. This framework will allow for the iterative develop models and will also include tools for prediction of attacks a attack properties extracted from these models. Finally, the tool able to calculate the effects of an attack and the most ap	thods in their risk management ment of socio-technical security and their prioritisation based on project will deliver a preventive

TRESPASS	ICT-2011.1.4 - TRUSTWORTHY ICT	2012 - 2016
	mitigation strategies taken into account the cost-effectiveness of those countermeasures. Up to date (close to the end of the project) it seems that objectives will be effectively achieved.	
Coherence	Since the project aims at identification and protection against security threats related to information and at improvements of existing risk management methods, it is coherent with a number of complementary EU funded R&D projects and address Risk Management Emerging Challenge (NIS PPP WG1).	
Relevance	The project addresses three case scenarios from different domains: a cloud infrastructure, a telecommunication infrastructure and remote payment system with a focus on security technologies, and the business models related to given domain.	
EU added value	By integrating European expertise on socio-technical security into a widely applicable and standardised framework, TREsPASS has the ambition to decrease the number of security incidents in Europe and support organisations and their customers to take more conscious decisions about security investments. In result, TREsPASS can contribute to the increased resilience of European businesses and to social and economic benefits.	
Impacts	The TREsPASS consortium partners include organisations from from the academia/RTO domain, as well as from SMEs a consortium combines social and the technical expertise and with the cyber security practice. Therefore, TREsPASS impa- cyber security practitioners contributing to the developm management tools development and their maturity.	and large institution, thus the integrates theoretical research acts research communities and

2.6 Trustworthy Digital Services

2.6.1 Network of Excellence on Engineering Secure Future Internet Software Services and Systems – NESSoS

NESSoS aimed at constituting and integrating a long lasting research community on engineering of secure software-based services and systems. The main assumption was to address security concerns from the beginning of design, thus incorporating security principles in the engineering processes.

NESSOS	ICT-2009.1.4 - TRUSTWORTHY ICT	2010 - 2014
Effectiveness	The NESSoS consortium has reached its objectives by performing community building activities and by setting up the joint virtual research lab (JVRL) for collaborative working. NESSoS project also integrated a number of security service-oriented tools into the NESSoS workbench called SDE (Service Development Environment). Moreover, NESSoS has developed an educational program for master degree related to security engineering for Future Internet services.	
Coherence	The NESSoS project was coherent with the NIS objectives innovation principles. Moreover, NESSoS project was cons funded under the related topics, e.g. interoperability of the SDE platform was achieved. NESSoS researchers also actively Information Security Platform (NIS).	sistent with other EU projects SPaCloS Tool with the NESSOS

NESSOS	ICT-2009.1.4 - TRUSTWORTHY ICT	2010 - 2014
Relevance	The NESSoS project and the community established and acting after the project address the need for support to networking and coordination of research aimed at improving trustworthy of the current ICT.	
EU added value	The main expected added value of NESSoS is improvement of competitiveness of EU industry in trustworthy ICT market. NESSoS contributes to the development of trustworthy European infrastructures and security of networked services and improved interoperability of these services. NESSoS provides also a support for standardisation efforts in the area of secure services development. Moreover, NESSoS network of excellence provides a necessary support in coordination and integration of research activities in Europe.	
Impacts	NESSoS aimed at re-addressing, integration, and fostering secure/trustworthy ICT area, and had a goal to increase and among research communities. NESSoS and its after-projec impact industrial stakeholders with the goal of contributing and supporting a growth of software-based service sys supported the European competitiveness in the Future Intern	d spread the expert knowledge ct community collaborate and to the industrial best practices stems. Finally, NESSoS efforts

2.6.2 Secure Provision and Consumption in the Internet of Services – SPaCloS SPaCloS aimed to develop and combine currently used technologies for penetration testing, security testing, model validation and related automated reasoning techniques, model inference, model extraction and automatic learning and to integrate them into the SPaCloS tool supporting secure design and development of Internet services.

SPACIOS	ICT-2009.1.4 - TRUSTWORTHY ICT	2010 - 2014
Effectiveness	 The SPaCloS project reached its objectives and the consortium has particularly developed: techniques for security testing that allow security properties (e.g. confidentiality and authentication) to be testable, vulnerability-based testing techniques that incorporate tests or test strategies deriving from vulnerabilities (e.g. XSS), techniques for model inference/extraction from the behaviour or code of the implementation, including generation of test cases and related automated reasoning techniques, security goals and a model of the attacker. 	
Coherence	These techniques are implemented and integrated into the SPaCloS Tool that is publicly available for cyber security experts and analysts. The consortium performed integration activities for achieving interoperability of the SPaCloS Tool with the NESSoS SDE platform. Therefore the project was coherent and was complementary to the EU research initiatives launched in parallel to SPaCloS and also after its finalization. Moreover, the scope of the SPaCloS is in line with the Commission efforts towards securing the Internet of Services and with Digital Agenda for Europe. The SPaCloS project was a follow-up of the AVANTSSAR (funded under ICT-2007.1.4 call).	
Relevance	The project was relevant to the actual trends (i.e. growing Inte the main security testing challenges related to IoS, contribut and trustworthiness in the entire lifecycle of services.	,

SPACIOS	ICT-2009.1.4 - TRUSTWORTHY ICT	2010 - 2014
EU added value	The project was an added value to the security validation technologies and processes. Result of the project contributed to the development of innovative tools for analysis and validation of a service not only at the design stage, but also during the service consumption.	
	Moreover, the SPaCloS shared its results and experience gained during the course of the project within industry, research organisation as well as contributed to the number of working groups and standardization organizations.	
Impacts	The results of the project have a great potential for success practices and processes (by involvement such industrial par may strengthen efforts towards trustworthy services available and best practices collected and published during the project security testing area and communities acting in this area. C impacted with the project results are service developers and with the novel security testing capabilities, and finally e-service	rtners as SAP or Siemens). This e over Internet. Lessons learned t may impact standardisation in Other stakeholders that may be producers that will be provided

2.6.3 **Policy and Security Configuration Management – PoSecCo**

The PoSecCo project addressed the challenges related to ISPs/ IT service providers and complexity of their systems. The project had a goal to support of resolving conflicts between interdependent high-level security requirements, low-level security configurations and corresponding security policies.

POSECCO	ICT-2009.1.4 - TRUSTWORTHY ICT	2010 - 2013
Effectiveness	PoSecCo developed a set of integrated tools to manage the security and policy requirements. The proposed framework included the central model repository (the MoVE tool), system for identification security and policy requirements (the CoSeRMaS system), tool for specification of policies and resolving conflicts with security requirements (the IT Policy tool), and decision support system for security (SDSS).	
Coherence	The PoSecCo was coherent with the EC research initiatives dealing with the problem of growing complexity of IT systems and compliance between security requirements at the different levels. Enabling traceability and mapping between requirements and security configuration of the system was also coherent with the NIS PPP WG1 group focused on risk management.	
Relevance	High (and still growing) complexity of the systems and evolving security and configuration requirements, as well as continuously changing policies and law regulations are undoubtedly one of the major obstacles that service providers must face to achieve demanded security compliance. Additional difficulties arise with the growth of "shared IT systems", i.e. with the growing popularity of cloud-based services or infrastructures. In this light, cost-efficient system for managing security policies and configurations (often resulting from the 3 rd party needs) is highly relevant to the actual needs, trends and challenges.	
EU added value	The economic and organizational benefits of an improved p management for security purposes was studied by the co contribute to the increased effectiveness of IT securit incorporating self-managed features and decision support so and security requirements-aware policy modelling as well as in European IT services can contribute to greater competitive	onsortium. Such initiatives can y configuration processes by ystems. Also, more appropriate conflict detection and resolving
Impacts	The PoSecCo approach can impact on organizations that are level requirements and low-level software system configu	

POSECCO	ICT-2009.1.4 - TRUSTWORTHY ICT	2010 - 2013
	approach achieved a demanded compliance of developed/ laws and regulations without reducing their security.	provided services with existing
	Moreover, the project adopted some existing industry-stan and for auditing.	dards for change management

2.6.4 Holistic Approaches for Integrity of ICT-Systems – HINT

The HINT project was focused on trust in hardware devices, including two techniques namely Physically Unclonable Functions (PUFs) used for chip authentication, and side channel analysis-based Hardware Trojan (HT) detection for verification of chip integrity and counterfeit detection.

The major objective was to implement a common security framework for verification of a system integrity based on Trusted Computing technologies and to demonstrate the potential and capabilities of the developed solutions in real-life applications.

HINT	ICT-2011.1.4 - TRUSTWORTHY ICT	2012 - 2015
Effectiveness	HINT proposed a novel PUF technology for chip authentication. To increase effectiveness of Hardware Trojan (HT) detection, the project studied and assessed several measurement (such as power, EM, timing information) and detection alternatives. Each of them has been implemented and demonstrated.	
Coherence	HINT addressed several legislative actions taken by the European Commission with the goal of hardware integrity and trustworthiness assurance. The project was also coherent and complementary with other the EURO-MILS project funded under the same topic and dealing with security of embedded systems.	
Relevance	Nowadays ICT systems are combination of software and hardware components for which security must be equally assured. Such systems work in many critical applications such as avionics, Critical Infrastructures and their control systems, embedded systems in health and transport or smart cards (ID cards, financial sector). The security of such systems, where the authenticity and integrity of the hardware components can be the possible attack targets, is continuously challenged. On the other hand, currently existing approaches based on PUFs and HT detection schemes are not ready for the market adoption and wide use in the real conditions due to lack of stability. Taking into account the above facts, growing trends of counterfeiting of hardware ICT components and growing threat of "Trojans" in Integrated Circuits (IC), the project objectives, scope and results were relevant to the current needs and challenges.	
EU added value	The HINT project aimed to contribute for increased ICT trustwork multi-level approach towards device integrity and authentic e.g. smart cards or ICT in medical sector are future trustworthiness of these systems and protection of the contribute to increase of the societal acceptance of such solution market adoption.	city. Since such technologies as re/emerging applications, the ir hardware components can
Impacts	The project results had possible impact on overall security of higher security of end-user devices. HINT had a very wide homeland security market, the embedded security market, personal identity market as was identified by the HINT co results had impact on standardisation bodies, as the HINT cre ISO standard for the PUF technology.	potential impact, including the the smart card market and the nsortium. Moreover, the HINT

2.7 Cloud Computing Security

2.7.1 **TRustworthy Embedded systems for Secure Cloud Computing Applications – TRESCCA** TRESCCA aimed to define the basis of a secure and trustable cloud platform by ensuring strong logical and physical security on the edge devices, using both hardware security and virtualization techniques. It proposed and demonstrated hardware/software solutions allowing stakeholders to delegate the processing of their sensitive data to a remote processing engine, thus ultimately enabling a new breed of cloud services and applications.

TRESCCA	ICT-2011.1.4 - TRUSTWORTHY ICT	2012 - 2015
Effectiveness	TRESCCA developed mechanisms that enable end users and cloud operators to delegate the processing of their sensitive data to the un-trusted other. Lack of these mechanisms limits the potential of the cloud computing market, since cloud operators and end users may not have established mutual trust relationships.	
Coherence	The objectives of the project, particularly the ones related to creating a dependable chain of trust, have substantial synergies potential with a number of actions related to effectively addressing security issues and supporting trust and security research.	
Relevance	TRESCCA objectives are considered relevant, since cloud computing is an inevitable trend, but lack of trust limits the potential of the cloud computing market. Through hardware security modules and virtualization with live migration to isolate individual processes, the basis for a secure and trusted cloud platform is created. Safety-critical applications can run in a secure environment on the user side and non-safety-critical ones can be outsourced to the cloud safely.	
EU added value	The collaboration, dialog at a European level and participation in clusters of projects facilitated the validation and merging of approaches and proposals for standardization that could be quite different if the work had been carried out at a national level. Openness was also an important characteristic as most of the project's outcomes have been made public and released under free software licenses.	
Impacts	TRESCCA project promoted the concept of secure and trustable cloud platforms by ensuring strong logical and physical security on the edge devices, using both hardware security and virtualization techniques, while considering the whole cloud architecture and key metrics, namely: cost, performance, and acceptability.	

2.7.2 **Trustworthy Clouds – Privacy and Resilience for Internet-scale Critical Infrastructure – TCLOUDS** TClouds goal was to provide a computing and network platform to enable resilient and privacy-enabled deployment of Internet-scale critical information and communication infrastructures. Projects' aim was to provide this while addressing the challenges of cross-border privacy, end-user usability and acceptance, which are essential for wide deployment of such an infrastructure.

TCLOUDS	ICT-2011.1.4 - TRUSTWORTHY ICT	2010 - 2013
Effectiveness	The project has achieved important results, and in particular: 1) A Trustworthy Infrastructure Cloud enables individual providers to offer more resilient and privacy-aware infrastructure clouds. 2) Privacy and Resilience for Commodity Clouds enables end users to put a security layer on top of existing commodity infrastructure clouds to enforce their security objectives. 3) Federated Cloud-of-cloud Middleware offers privacy-protection and resilience beyond any individual cloud.	
Coherence	Clouds may evolve into a single point of failure, threaten all dependent ICT, and put the Future Internet at risk. Thus, there are many synergies between the project and other actions.	
Relevance	Protecting critical infrastructures providing communications, energy, or healthcare is still very relevant, since it presents increasing ICT challenges as ICT itself has become vital to them. The project specifically targeted Internet-scale ICT infrastructures (the so called "infrastructure clouds"). These infrastructures promise scalable virtualised computing, network, and storage resources over the Internet. They provide scalability and cost-efficiency but pose significant new privacy and resilience challenges.	
EU added value	Establishing trust in cloud environments requires mechanisms for assessing the operational trust on the cloud which includes assessing the trustworthiness of self-managed services and is considered as a vital requirement for moving critical applications out of private cloud environments.	
Impacts	The project targeted application domains with high impacts of smart power grids, connecting renewable energy sources example of an Internet of Things. The second was home hea provided to citizens. Collaboration with complementary sta resulted in increased impact and fostered a European trustw	and users. This is a premier althcare, where prophylaxis was andardisation and FP7 projects

2.7.3 **Privacy-Preserving Computation in the Cloud – PRACTICE**

The PRACTICE project aims to build a secure cloud framework that allows for the realization of advanced and practical cryptographic technologies providing sophisticated security and privacy guarantees for all parties in cloud computing scenarios.

PRACTICE	ICT-2013.1.5 - TRUSTWORTHY ICT	2013 - 2016	
Effectiveness	PRACTICE goal is to create the conditions for users to have data confidentiality and integrity guarantees without having to trust their cloud providers. The progress so far seems to indicate that the project will achieve its objectives.		
Coherence	The traditional computing paradigm is experiencing a fundamental shift: organizations no longer completely control their own data, but instead hand it to external untrusted parties, cloud service providers, for processing and storage. There currently exist no satisfactory approach to protect data during computation from cloud providers and from other users of the cloud. Thus, project objectives are very timely and coherent with other actions aiming at improving cloud security.		
Relevance	PRACTICE is among the first projects addressing the issue of data leakage for computations in the cloud while maintaining beyond current approaches that can only protect data at m insiders may misbehave. Moreover, it will investigate ecor	g economies of scale. This goes est within storage clouds once	

PRACTICE	ICT-2013.1.5 - TRUSTWORTHY ICT	2013 - 2016	
	quantify the economic aspects and return on security investment, as well as evaluate legal aspects regarding private data processing and outsourcing.		
EU added value	Secure computation and secure computation services for the cloud have a potential of being a disruptive technology that will change the economics of technology development and deployment. The ability to provide cryptographic and more general secure computation services in the cloud can bring forth new economic and technological opportunities for Europe, and new efficiencies from which multiple sectors of industry in Europe will benefit.		
Impacts	PRACTICE is strongly industry-driven and will demonstrate its defined use cases in statistics and collaborative supply chain based on real-life use cases underpinning the business intere focus is on near-term and large-scale commercial exploitation where project results are quickly transferred into novel produ done on encrypted data, even insiders can no longer disclose This opens new markets, increases their market share, and m markets where reach has been limited due to confidentiality PRACTICE enables European customers to save money by glo cheapest providers while still maintaining guaranteed securit	management. PRACTICE is est of the partners. The project n of cutting-edge technology ucts. Since computation is e secrets or disrupt the service. nay allow conquering foreign and privacy concerns. abally outsourcing to the	

2.7.4 Confidential and Compliant Clouds – Coco Cloud

Coco Cloud aims to empower cloud users to securely and privately share their data in the cloud. This is expected to increase the trust of users in cloud services, and thus favour widespread adoption of cloud technology, with substantial benefits for the users and for the digital economy in general.

COCO CLOUD	ICT-2013.1.5 - TRUSTWORTHY ICT	2013 - 2016
Effectiveness	The project has achieved its overarching goal of enabling control of the disseminated data based on mutually agreed data sharing agreements that are uniformly and end-to-end enforced. These agreements may reflect legal, contractual or user defined preferences, which may be conflicting and thus an appropriate balance and model for their enforcement must be found.	
Coherence	The project goal is creating an efficient and flexible framework for secure data management from the client to the cloud, and vice-versa. The research work is internally coherent, since it develops along three main dimensions that are technically sound: 1) facilitation of the writing, understanding, analysis, management, enforcement and dissolution of data sharing agreements; 2) appropriate selection of enforcing mechanisms, depending on the underlying infrastructure and context; 3) legal compliance in the data sharing process. Externally, the activity is coherent with major related initiatives in the field of protection of personal information.	
Relevance	The objectives of the project are relevant, since the (and the inherent loss of control that goes along with must be carefully controlled to ensure it is always p form/level of protection depends on the peculiar ch as well as on the situation, context, and environmer data protection (including personal information) by	that) means that sensitive data rotected. The most appropriate aracteristics of the application, nt. Coco Cloud solutions enable

COCO CLOUD	ICT-2013.1.5 - TRUSTWORTHY ICT	2013 - 2016	
	This is essential to citizens, governments and organizations across all sectors, including healthcare and banking and it will be even more so in the future.		
EU added value	By taking a "compliance by design" approach, the project places an early emphasis on understanding and incorporating legal and regulatory requirements into the data sharing agreements. Coco Cloud contributes to fulfil the pervasive need for data protection in cloud services that arises from different stakeholders, including business organizations and citizens, and overcoming the limitations of currently available technology offerings. These are important achievements towards the creation of a Digital Single Market and the requirements imposed by GDPR.		
Impacts	Providing assurance on data protection and data usage control is a key prerequisite for facilitating data sharing among individuals and organisations (or among organisations) to create new ventures and novel means of leveraging the data value. Thus, the outputs of the project can indeed favour the creation of a cloud ecosystem, where data is securely shared.		

2.7.5 Secure Provisioning of Cloud Services based on SLA management – SPECS SPECS focuses on the development and implementation of an open-source framework that will offer security-as-a-service relying on security parameters as specified in service level agreements (SLAs). SPECS also provides techniques to systematically manage their lifecycle.

SPECS	ICT-2013.1.5 - TRUSTWORTHY ICT	2013 - 2016
Effectiveness	SPECS's solution offers intuitive user centric interfaces to negotiate, enforce, monitor and real-time remediate to possible fluctuations in the Quality of Security (QoSec) by suggesting and/or applying proper actions/countermeasures.	
Coherence	SPECS is coherent with related actions such as participation in the Data Protection, Security and Privacy (DPSP) cluster initiative, contribution in standardization activities, definition of a Security Metric Catalogue and collaboration with relevant projects.	
Relevance	Providing comprehensible and enforceable security assurance by Cloud Service Providers (CSP) can be considered as a vital aspect of deploying trustworthy Cloud ecosystems. SPECS's proposed framework puts also emphasis on small/medium/federated CSP's and can be also integrated "as-a-Service" into existing ecosystems.	
EU added value	SPECS propose solutions for Continuous Security Monitoring, which implements SLA monitoring solutions dedicated to continuously control the security offered by CSP and to help ensuring the granted security service level objectives through agreed SLAs and eventually provide comprehensible and enforceable security assurance.	
Impacts	Providing comprehensible and enforceable security Providers (CSP) is a critical factor to deploy trustworth directly to EU cybersecurity strategy and NIS objective	y Cloud ecosystems and relates

3. Main achievements and Recommendations for the way ahead

3.1 Main Achievements

The overall aim of ICT research in the Seventh Framework Programme was to develop knowledge and technologies for building an open, secure and trustworthy information society in Europe. As already supported by ex post evaluation and impact assessment reports key innovative results have been produced as immediate results while indirect benefits have also been acknowledged regarding provision of a knowledge base to support key EU policy initiatives and alignment of research activities between Member States.

Even given the limited subset of projects, reviewed within the scope of this report, notable achievements and innovative approaches can be identified in the areas of trustworthy network and service infrastructures, user-centric identity and privacy management and technologies, trusted computing, cryptology and advanced biometrics. Particular note should also be made to the promotion of horizontal aspects such as usability, standardization, societal acceptance, economic viability and legal compliance of the research results. Many projects in ICT Security and Trust have been particularly successful in shortening the gap from research to innovation and thus promoting the establishment of a vibrant market in secure and trustworthy ICT in Europe.

However, such impact could not have been achieved without assembling key experts concentrating efforts of Europe's leading researchers. The backing of several European universities and companies provided a critical thrust behind each project that a national level research program might not be able to provide. Only with European partners from different European countries have the projects been able to deliver results that allow the European industry supplying security solutions to fully leverage the potential of the advancements proposed.

Apart from the technical results and their innovation potentials, several FP7 projects also managed to support EU's efforts to achieve policy promotion and coherence. The ICT Trust & Security Programme has been thought to *"implement the EU Cybersecurity Strategy and to address the technological and industrial issues that derive from the Network and Information Security (NIS) policy of DG CONNECT, including the implementation of research and innovation agenda related to cybersecurity, privacy and trustworthy ICT".* In addition to NIS, promotion and support of other emerging legislative initiatives at EU level, namely eIDAS and GDPR has been also achieved.

Similar to the reports prepared under the Security and Trust Coordination and Enhanced Collaboration (SecCord) project¹⁶, Figure 2 below, attempts to summarize the promotion and support offered by each project to the three main legislative initiatives that have been identified above. It is however apparent that still a large number of unresolved cybersecurity, privacy and trust issues (areas of the main legislative initiatives that are not covered) necessitate further research across all ICT technology, components, applications and services.

¹⁶ http://www.seccord.eu/

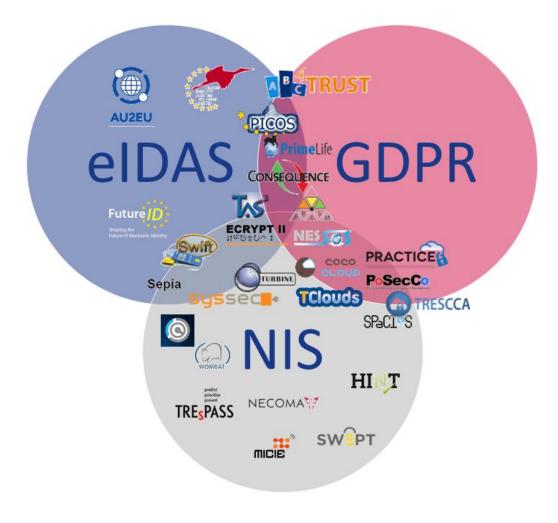


Figure 2: Overview of Projects contribution per main legislative initiatives

3.2 The way ahead

ICT is the backbone every modern society, thus the EU needs to become the single market of preference for governments and industry where trusted core NIS technologies and services for industry and citizens are concerned. The ENISA Threat Landscape 2015¹⁷ provides an analysis of the state and the dynamics of the cyber-threat environment. Among other findings it acknowledges that cyber-threats have undergone significant evolution and just as in 2014, cyber-threat agents have had the tranquillity and resources to implement a series of advancements in malicious practices. An overview and comparison of cyber-threat landscapes for 2015 and 2014 is presented in Table 1 below.

¹⁷ https://www.enisa.europa.eu/activities/risk-management/evolving-threat-environment/enisa-threat-landscape/etl2015/etl2015/at_download/fullReport

TOP THREATS 2014	ASSESSED TRENDS 2013	TOP THREATS 2015	ASSESSED TRENDS 2014	CHANGE IN RANKING
1. Malicious code: Worms/Trojans	O	1. Malware	0	\rightarrow
2. Web-based attacks	0	2. Web based attacks	0	\rightarrow
3. Web application /Injection attacks	0	3. Web application attacks	O	\rightarrow
4. Botnets	U	4. Botnets	U	\rightarrow
5. Denial of service	0	5. Denial of service	0	\rightarrow
6. Spam	U	6. Physical damage/theft/loss	•	↑
7. Phishing	0	7. Insider threat (malicious, accidental)	0	1
8. Exploit kits	U	8. Phishing	•	\checkmark
9. Data breaches	0	9. Spam	U	\checkmark
10. Physical damage/theft /loss	0	10. Exploit kits	0	\checkmark
11. Insider threat	•	11. Data breaches	•	\checkmark
12. Information leakage	0	12. Identity theft	•	1
13. Identity theft/fraud	0	13. Information leakage	0	\checkmark
14. Cyber espionage	0	14. Ransomware	0	1
15. Ransomware/ Rogueware/Scareware	U	15. Cyber espionage nds: ❶ Declining, ⊃ Stable, ႁ Increa	•	\checkmark

Legend: Trends: \bigcirc Declining, \bigcirc Stable, \bigcirc Increasing Ranking: \uparrow Going up, \rightarrow Same, \checkmark Going down

Table 1: Overview of cyber-threat landscapes for 2015 and 2014

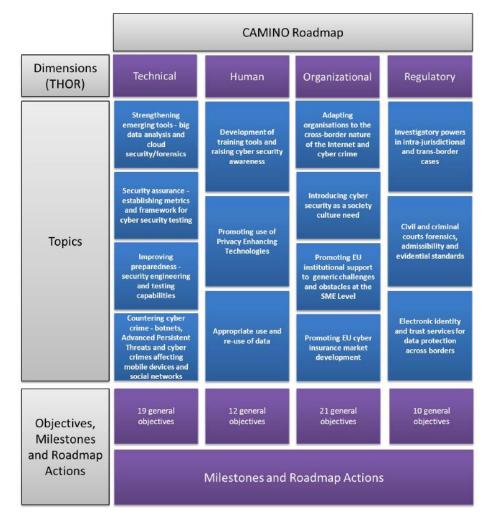
It is therefore apparent that due to the continuous evolvement of the landscape, identification and prioritising of forthcoming research and innovation topics should be performed in close collaboration with industrial stakeholders across Europe towards a more focused and coordinated approach. A lot of work has already been done with industrial stakeholders within the NIS Platform. WG3 identified key challenges and desired outcomes in terms of innovation-focused, basic and applied research in the fields of cyber security, privacy, and trust and proposed ways to promote multidisciplinary research that foster collaboration among researchers, industry, and policy makers through the Strategic Research Agenda (SRA)¹⁸. According to the SRA, the main the main research priorities to be further investigated in the future are summarized in the following key objectives:

- Fostering assurance
- Focussing on data
- Enabling secure execution
- Preserving privacy
- Increasing trust
- Managing cyber risks
- Protecting ICT infrastructures
- Achieving user-centricity

EU level public-private partnerships in research and innovation were first introduced in 7th research Framework Programme (FP7), mainly through Joint Technology Initiatives (JTIs) and they were implemented through dedicated legal entities - Joint Undertakings. Public-private partnerships is considered a powerful tool to deliver on innovation and growth in Europe, also supported by the respective Communication¹⁹ from 2013. The new EU research framework programme – Horizon 2020 – may be implemented through public-private partnerships (PPPs) in the case of research and innovation activities of strategic importance to the Union's competitiveness and industrial leadership, or to address specific societal challenges. On 2015, the European Commission adopted the Digital Single Market (DSM)²⁰ Strategy, which establishes a Public-Private Partnership (PPP) on cybersecurity in the area of technologies and solutions for online network security in the course of 2016.

The contractual PPP (cPPP) objective is to allow the EU to retain a high degree of technological capacity in securing its digital economy and ensuring access to products and services reflecting European values such as privacy. The cPPP will focus on Research and Innovation but also go beyond and address measures that can help impose connection to end users, improve the reporting of validation activities with users of research results and promote participation of relevant EU Industry. As the technology progresses, new areas emerge and have to be explored addressed and secured. Therefore, the governance model should be flexible enough and well represented by all relevant public and private sector stakeholders to address this evolvement.

Based on the latest finding and reports from the research projects funded under the *SEC-2013.2.5-1* - *Developing a Cybercrime and cyber terrorism research agenda* – *Coordination and Support Action* call, the proposed future research roadmap should pertain Technical, Human, Organizational and Regulatory


¹⁸ https://resilience.enisa.europa.eu/nis-platform/shared-documents/wg3-documents/strategic-research-agenda-final-v0.96/at_download/file

¹⁹ http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52013DC0494&from=EN

²⁰ http://ec.europa.eu/priorities/digital-single-market/

dimensions. A provisional instantiation of this roadmap from Comprehensive Approach to cyber roadMap coordINation and develOpment (CAMINO) project²¹ is presented below.

Figure 3: CAMINO project Roadmap¹⁸

The technical dimension relates to concrete technological approaches and solutions that will strengthen emerging tools and techniques and improve security assurance and preparedness. Human dimension relates to human factors and behavioural aspects, training tools, promotion of privacy enchanting technologies and appropriate use and re-use of data. The organisational dimension relates to processes, procedures and policies within organisations, adapting to the cross-border nature of the Internet and promoting cooperation and collaboration. Finally, the regulatory relates to law provisioning on information sharing and flow of information and standardization in the areas of electronic transactions. SRA has taken one step further and has also compiled a set of indicative examples of expected benefits and contributions per each identified objective.

²¹ http://www.fp7-camino.eu/

TOPIC / BENEFITS	BUSINESS	CITIZENS	SOCIETY
Fostering Assurance	Business will be able to operate across Digital Single Market (DSM) thanks to more uniform assurance/protection requirements and achieved levels.	Citizens will be able to compare offerings and make informed decisions based on cybersecurity assurance/protection levels.	Trust in digital space will increase.
Focussing on Data	Business will be able to build innovative data-driven services while being compliant with the data protection and privacy legislation.	Citizens will have means to monitor and enforce policies on data usage, as well as to express their preferences.	Wealth of data will be exploited for various purposes, from healthcare research to fraud detection.
Enabling secure execution	Business will save costs on security management and post-incident activities.	Citizens will enjoy higher level of protection while having more simplicity.	Integration and seamless move between life domains (e.g. work and home) will be achieved.
Preserving privacy	Less privacy breaches will lead to the increase of trust and will become competitive feature.	Citizens will have more guarantees that their privacy is respected.	Societal values will be preserved, such as respect of minorities, dignity, etc.
Increasing trust	Proportion of trust based on demonstrable trustworthiness will be increased.	Citizens will be enabled to make more informed decisions.	Society will evolve to trust digital institutions in a similar way to their trust in the physical world.
Managing cyber risks	More frequent and accurate assessment will lead to more effective use of resources.	Citizens will be able to make instant decisions based on risk "traffic light".	Notion of cybersecurity risk will become an essential part of digital culture.
Protecting the ICT infrastructure	Reduction of "out-of-business" due to ICT infrastructure downtimes and reduction of industrial espionage.	Availability of services that rely on ICT infrastructures.	Less disruptions in critical services for society.
Achieving User-centricity	More users, therefore potential customers, will access digital services.	Simplification will increase the use of advanced protection mechanisms.	Wellbeing achieved by citizens that feel comfortable with new or complex technologies.

Table 2: SRA expected benefits/contributions per research commonality¹⁵

4. Future Work Programme Recommendations

Promote market-oriented innovation and direct transferability of outcomes to products or services.

The need to establish online trust has been identified early upon by the European Commission with a number of policy initiatives supporting this objective such as the NIS Directive, General Data Protection Regulation, the eIDAS Regulation and the ePrivacy Directive. However, with the progress in the field of information and communication technologies, and especially due to the decrease in calculation and storage costs, new challenges to privacy and data protection, and eventually online trust, have emerged. Forthcoming H2020 and Cyber Security contractual Public-Private Partnership (cPPP) work programmes are already oriented towards promoting synergies between different areas of research and innovation; yet additional effort should be made to ensure more market-oriented innovation and direct transferability of outcomes to products or services.

Introduce horizontal requirements for new information and transparency models and endorse the adoption of by design and by default paradigms.

At the end user's level, this concern has given rise to an increasing appearance of online tools, often opensource and/or freeware, affirming that they can offer certain privacy-preventive functionality for the average user, secure communication, protection against tracking, safeguarding of personal data, anonymous browsing, etc. However, in many cases the functionality of such tools can only be compared against the initial commitments and not the actual development and operation of the tool.

Proper information and transparency is a key issue in any data processing, so as to allow individuals to understand how their data are being processed and to make relevant informed choices. As indicated in ENISA 2015 report²², transparency needs to expand beyond the original point of data collection and individuals should be adequately informed about the logic and the criteria applied in the context of analytics and automated decision-making processes. To this end, new information and transparency models need to be developed and could comprise a horizontal requirement in forthcoming work programme pillars Purely textual information or existing privacy policies do not seem to cope with the evolution of services and to comprehensively inform users on the processing of data occurring in the complex data value chain. Along with transparency (or as part of it), providing access to users on their data is an important privacy condition as well as an obligation of data controllers.

Sustain close collaboration with all relevant stakeholders on research and innovation topics while supporting key EU policy initiatives

Tools and models that put the data subject in charge of managing their data and promote transparency and user control online seems a promising and emerging research field. The forthcoming revision²³ of the ePrivacy Directive is one of the key policy initiatives aimed at reinforcing trust and security in electronic

²² Privacy by Design in Big Data: https://www.enisa.europa.eu/publications/big-data-protection

²³ https://ec.europa.eu/digital-single-market/en/news/public-consultation-evaluation-and-review-eprivacy-directive

communications in the EU with a focus on ensuring a high level of protection for citizens and a level playing field for all market players. However, in order to bridge the gap between the legal framework and the available technological implementation approaches, research and innovation activities that will bring together all relevant stakeholders and will provide building blocks of various degrees of maturity should also be promoted.

41

ENISA

European Union Agency for Network and Information Security Science and Technology Park of Crete (ITE) Vassilika Vouton, 700 13, Heraklion, Greece

Athens Office

1 Vass. Sofias Marousi 151 24, Athens, Greece

TP-05-16-089-EN-N

PO Box 1309, 710 01 Heraklion, Greece Tel: +30 28 14 40 9710 info@enisa.europa.eu www.enisa.europa.eu ISBN: 978-92-9204-208-0 DOI: 10.2824/323039

