

www.enisa.europa.eu European Union Agency For Network and Information Security

QWACs Plugin
Proof of concept browser plugin to support the two-

step verification of qualified certificates for web-site

authentication

DECEMBER 2017

http://www.enisa.europa.eu/

QWACs Plugin
 December 2017

02

About ENISA

The European Union Agency for Network and Information Security (ENISA) is a centre of network and
information security expertise for the EU, its member states, the private sector and EU citizens. ENISA
works with these groups to develop advice and recommendations on good practice in information security.
It assists member states in implementing relevant EU legislation and works to improve the resilience of
Europe’s critical information infrastructure and networks. ENISA seeks to enhance existing expertise in
member states by supporting the development of cross-border communities committed to improving
network and information security throughout the EU. More information about ENISA and its work can be
found at www.enisa.europa.eu.

Contact
For queries in relation to this paper, please use isdp@functional.mailbox
For media enquires about this paper, please use press@enisa.europa.eu.

Legal notice
Notice must be taken that this publication represents the views and interpretations of ENISA, unless
stated otherwise. This publication should not be construed to be a legal action of ENISA or the ENISA
bodies unless adopted pursuant to the Regulation (EU) No 526/2013. This publication does not
necessarily represent state-of the-art and ENISA may update it from time to time.

Third-party sources are quoted as appropriate. ENISA is not responsible for the content of the external
sources including external websites referenced in this publication.

This publication is intended for information purposes only. It must be accessible free of charge. Neither
ENISA nor any person acting on its behalf is responsible for the use that might be made of the
information contained in this publication.

Copyright Notice
© European Union Agency for Network and Information Security (ENISA), 2017
Reproduction is authorised provided the source is acknowledged.

https://www.enisa.europa.eu/
mailto:press@enisa.europa.eu.

QWACs Plugin
 December 2017

03

Contents

Executive Summary 5

1. Introduction 7

 Conceptual background of the project 7

 The trajectory towards “qualified”: A developing market for website authentication 7

2. Requirements 10

 Validation of QWACs (R1) 10

 Facilitate user recognition of QWACs (R2) 10

 Easy installation (R3) 10

 Universal applicability (R4) 10

3. Browsers 12

 Mozilla Firefox 13

 Google Chrome 14

 Microsoft Edge 14

 Other Browsers 14

4. Extension Architectures 16

 Extension types 16

 Mozilla Firefox 16

4.2.1 Legacy extension system 17
4.2.2 Modern add-on types 18

 Google Chrome 19

4.3.1 Themes 19
4.3.2 Extensions 20
4.3.3 Apps 21
4.3.4 Native Client Apps 21

 Distribution models 21

4.4.1 Mozilla Firefox 21
4.4.2 Google Chrome 22
4.4.3 Other Browsers 23

 Summary 23

5. Possible Solutions 24

 Native Messaging 24

QWACs Plugin
 December 2017

04

5.1.1 Architecture 24
5.1.2 The Native Messaging Host 24
5.1.3 The Native Messaging Application (Extension) 24

 Providing online validation 24

5.2.1 Architecture 24

6. Discussion 25

 Advantages and disadvantages of the proposed solutions 25

 Facilitating user recognition of QWACs 26

 Important industry trends 26

7. Roadmap 28

 Steps for Chrome Browser 28

7.1.1 Create the native host application 28
7.1.2 Create the native client extension 28
7.1.3 Create installation machinery 28

8. Proof-of-concept browser plugin 29

9. References 30

QWACs Plugin
 December 2017

05

Executive Summary

Regulation (EU) N°910/2014 on electronic identification and trust services for electronic transactions in the
internal market (hereinafter eIDAS Regulation), which was adopted on 23 July 2014, introduced in the EU
legal framework provisions on qualified certificates for website authentication (QWAC). This report
considers the ecosystem for these qualified website authentication certificates, but is more explicitly
focused on the interaction between browsers and QWACs, and on the user experience which browsers
provide users regarding the security of the websites they are visiting. An important objective of the system
of qualified trust services is to increase transparency, reduce fraudulent activity and protect personal
information and other sensitive data being transferred over the Internet, thereby reducing the risk to all
end users, whether they be governments and public agencies, private enterprise or average citizens.
Importantly, the system also seeks to streamline administrative undertakings such as the development of
easily adopted and enforced rules regarding certificate maintenance, educating users about the graphical
indicators of security, and to reduce the long term costs of system maintenance and the mitigation of
potentially illegal activities.

Due to its inherent complexity and importance to the emerging world of qualified trust services, the
argument for the development of QWACs stands upon three pillars. First, there is a technical argument
which involves the differences in how certificates are created, deployed and used to develop chains of
trustworthy authenticity. Secondly, there is an administrative argument, given that there are a handful of
prominent browsers, the leaders of which wield significant market power and, therefore, influence how
protocols are adopted and which rules will be structured, even in the presence of a governmental
regulatory environment. The third argument leans on aesthetics and approaches the topic of functionality
at a more basic level: that is to say, how basic end-users interact with the software, given the knowledge
that they may or may not be bringing to their daily web-surfing experience. Of course, these discussions do
not exist in a vacuum, and must be considered as overlapping areas of the same industry dialogue about
how to make the Internet a more democratic, transparent and secure place.

Structure of the report

 Chapter 1 introduces the conceptual background of the study, defining key parameters and the
need for QWACs in the context of a developing market for qualified website authentication
certificates.

 Chapter 2 describes the four primary requirements for the creation of any potential browser
plugins.

 Chapter 3 explains key features and differences between the market leading browsers and
provides a brief, yet comprehensive look at how browsers function and sets up the conditions in
which the proposed software tool will operate.

 Chapter 4 presents a discussion of extension architectures specifically for the browsers Mozilla
Firefox and Google Chrome, in addition to a survey of the different available distribution models
for each of these browsers.

 Chapter 5 proposes the two most viable solutions to the plugin debate, and describes in detail the
architecture of each solution alone and in in the context of inter-browser operability.

 Chapter 6 discusses the advantages and disadvantages of the two proposed solutions, and
provides and analysis of important emerging industry trends which may impact the direction of
further supporting actions for the EU QWACs market.

QWACs Plugin
 December 2017

06

 Chapter 7 makes a recommendation for the most appropriate and viable proposed solution, and
provides a roadmap of technical steps to developing prototypes and, eventually, launching
commercial versions of the validation plugin. This chapter also delivers projections for the time
commitment we estimate necessary for the development, deployment, maintenance of the
proposed solution.

 Chapter 8 provides information about the proof of concept software component developed for
ENISA

QWACs Plugin
 December 2017

07

1. Introduction

 Conceptual background of the project
ENISA has produced several detailed and informative reports in the previous three years since the roll-out
of the eIDAS Regulation, which will help the reader understand the most important aspects of functionality
and legal purview of “qualified” trust services as defined within the Regulation1. “Qualified Website
Authentication Certificates – Promoting consumer trust in the website authentication market” (December
2015) and “Guidelines on initiation of qualified trust services – Guidance for supervisory bodies and for
TSPs” (September 2016) are especially useful in understanding the technical and regulatory environment
which surround QWACs. These reports are of course supported by the guidelines produced by industry
groups like ETSI, such as ETSI EN 319 411-2: “Electronic Signatures and Infrastructures (ESI); Policy and
security requirements for Trust Service Providers issuing certificates; Part 2: Requirements for trust service
providers issuing EU qualified certificates” (June 2015). ETSI TS 102 853, “Electronic Signatures and
Infrastructures (ESI); Signature validation procedures and policies” (December 2014) provides a more
detailed look at signature validation. The following section is a brief, yet necessary, overview of QWACs to
put this report into the appropriate perspective in consideration of developing the certificate validation
software to support the emerging market for qualified website authentication.

 The trajectory towards “qualified”: A developing market for website authentication
Between 1995 and 2001, organization validated (OV) certificates were the widely available method for
encrypting web communication and data transfer (although some commercial vendors that validated
business data before issuing SSL certificates already existed). While OV certificates do offer identity
confirmation through a simple vetting process performed by the issuing certificate authority, the browser
user interface usually only provides a binary indication of whether a site was secured by one of these
certificates or not, and does not provide much more indication about the extent of “added” security.
When domain validated (DV) certificates were introduced to the market in 2001, the price of encryption
began decreasing as the accessibility of SSL protection across the web increased. However, because DV
certificates do not provide identity verification information—although they are by now mostly free—the
market has become saturated with this less transparent and, arguably, less apparently secure version of
SSL protection. Incidentally, the User Interface (UI) provided by browsers offers only two indicators, as
with OV certificates. In fact, the two certificate types are not differentiated by this UI in most browsers,

1 https://www.enisa.europa.eu/topics/trust-services

The proposal in this report is to develop a software component (plugin) that will support and facilitate
the validation of qualified certificates for website authentication through the national trusted lists
(TLs) via the EU "List of the Lists”.

It should be noted that this report uses the term “validate”, “validation” and “validator” from the
perspective of the proposed software tool. It is meant to signify the process by which the developed
software component reads and confirms a certificate’s presence on an EU member state’s Trusted List or
via the EU “List of the Lists” in order to present users with a visual indicator assuring the trustworthiness
of the website visited.

https://www.enisa.europa.eu/topics/trust-services

QWACs Plugin
 December 2017

08

giving users the impression that there are no functional differences in security. To address the problems
arising from the DV-OV binary problem, around 2007 extended validation certificates were brought to the
market, rich with identity information, often undergoing a rigorous vetting process by issuing certificate
authorities, but often at a steep price. Instead of acquiring a free certificate to protect a website, site
owners can now opt to purchase a considerably more expensive product that was itself more apparently
secure and are commonly sold bundled with the promise of enterprise level support and other
nonessential perks.

Over half of all internet traffic is now encrypted, with current browsers offering incentives such as higher
SEO rankings for SSL protected sites, and deterrents like negative UI markers for conventional unsecured
HTTP pages. In the past year alone, the market has jumped around ten percent higher in the proportion of
websites that are using some sort of SSL protection. The low cost (or no cost) of DV certificates encourages
new site owners to acquire and deploy SSL, and the issuance and installation of this type of certificate is
often automated and easy to use.

However, DV certificates, while certainly contributing to the overall increase in encryption, make up a bulk
of this expanding market. Since they are the least apparently secure (from what they provide and also
from a system wide perspective2) and do not require appended identification information, they allow
malware and fraudulent websites to ‘hide’ more easily from currently available common security tools.
Problematically, according to a report from Infosecurity Magazine, the protection offered by SSL hides not
only the data with good intentions but also the bad3. In fact, nearly 50 percent of cyber attacks in the past
year reportedly arose from sites and services protected by SSL. These attacks also arise from mixed
content portions of some websites, in which protected and non protected portions of their content are
included on the same page.

Another related critical system flaw is the presence of free public certificate authorities, who despite
fulfilling an important need in the market for certificates, are unequipped and unable to provide the
essential service of making sure the entities to whom they provide certificates are trustworthy and
authentic. Whereas they may be able to vet simple tasks such as the fact that an email address works, they
cannot possibly provide the checks necessary to confirm the identity of all holders of their signed
certificates, creating a sizeable hole in the fabric of the whole trust services ecosystem.

It is important to understand that the security of a website means, from a technical point of view, that a
certificate encrypts the data traveling between web server and browser client, and makes no judgment
about how legitimately “secure” the website’s content is. All certificates perform a similar cryptographic
function – the largest distinctions lie in the identifying information used by CAs to vet the identity of the
certificate holder and the assurance to end users that they have been thoroughly vetted. The differences
between “security” and “perception of security” are not just a question of semantic nuance, but a real
condition that is inherent to the HTTPS ecosystem. This report uses terms like “security” and “secured” to
reflect the continuum of the perception of security that comes from these certificates; certificates which
offer higher security, therefore, include more identifying information and build a stronger case for trust
than those that do not.

2 See: Qualified Website Authentication Certificates – Promoting consumer trust in the website authentication
market, published 16 May 2016 by ENISA

3 https://www.infosecurity-magazine.com/news/malicious-ssl-traffic-doubles-in/

https://www.infosecurity-magazine.com/news/malicious-ssl-traffic-doubles-in/

QWACs Plugin
 December 2017

09

The discussion about the technical abilities of deployment, functionality and revocation of certificates
leads inevitably to the role of humans in the system design. Administratively, vetting identities, for
instance, is necessarily done by people, but is also becoming less commonplace as industry players grapple
for taking on the responsibility (and costs) of such activities. Ultimately, this is a question which, to date,
important industry stakeholders like browsers and certificate authorities are struggling to answer, but for
which the eIDAS Regulation for qualified trust services and providers has more or less explicitly laid out for
the providers of trust services in all 28 European member states. The transparency and hierarchy put into
place by the eIDAS Regulation and supported by industry working groups builds transparency into the
process of certificate creation through deployment and revocation. Simply put, QWACs are the best
current answer to the holes created by a system characterized by critical design flaws, flooded with
substandard products and amidst industry stakeholders unclear about their role in the upkeep of vital
security measures.

It is important to remember that, from a technical point of view, DV, OV, EV and QWAC certificates all
support the same or similar cryptographic tools allowing for secure transmission of data between client
and web server. The salient difference is in the business services provided – which usually go hand in hand
with cost – and the resources that certificate authorities employ (or not) to verify identity and therefore
the trustworthiness of certificate holders, and to remediate situations in which certificates are mis-issued
or used for fraudulent or illegal purposes. Another clear benefit of QWACs is the defined level of legal
liability and responsibility that qualified TSPs share in the provision of security which other (non-qualified)
TSPs may not have.

QWACs effectively represent a more rigorously controlled environment for trusting identity in a way that
even EV certificates cannot yet provide.

QWACs Plugin
 December 2017

10

2. Requirements

In the sections that follow, we describe the requirements (R1-4) for a secure browser add-on resp.
extension that will be able to

 validate QWACs, and to

 indicate that a web site is using a QWAC

 Validation of QWACs (R1)
The software component will read and confirm a certificate’s presence on an EU member state’s Trusted
List or via the EU “List of the Lists” in order to verify that it has been created and issued with transparency
and according to the definition of qualified trust service as laid out in the eIDAS Regulation.

 Facilitate user recognition of QWACs (R2)
Visual acknowledgement by browsers that a QWAC has secured a website is a critical element for qualified
trust service providers. Without this feature, users may be prompted with a warning from their browsers,
which by itself, can trigger trust concerns for users.

While most common browsers have introduced indicators (e.g. the green bar tab) for websites that use EV
certificates, in order for web browser users to easily recognise QWACs, it is important to introduce a
different scheme. The differentiator should ideally be clearly visible to any user without any action (or with
as little effort as possible) on their part.

 Easy installation (R3)
The installation of the browser add-on or extension software must require low user effort and must be
achievable without the need for administrative rights. The more difficult the installation of the extension,
the less likely users will install the software. For this reason, the extension should be installed with as few
clicks or as close to automatically as possible.

As extensions for Firefox and Chrome can easily be installed over the Internet with only a few clicks, this
requirement is unproblematic, if only the extension needs to be installed. However, if additional software
(such as an application able to validate QWACs) needs to be installed on the user's PC, further
complications may arise. Although the installation of such a program may be relatively simple, this step
may be too difficult for users who are less technically savvy. Furthermore, the installation of some
programs may require administration rights.

 Universal applicability (R4)
In order to fulfil R1-3, the most popular browsers (according to user usage) must be supported. Because
two of the most used browsers are Google Chrome and Mozilla Firefox, any possible web extension must
support at the very least these two browsers, though a longer term approach would be to support
additional browsers such as Microsoft Edge and Apple Safari in addition to the mobile versions of these
browsers.

Furthermore, the browser extension should be independent of the operating system. This requirement
appears to be a matter of course, as Chrome and Firefox can be used on all common desktop operating
systems and their extensions are essentially platform independent. However, extensions may require that
additional software is installed on the user's PC. In this case, a universal applicability assumes that this
software can also run on common desktop operating systems (notably Windows, macOS and Linux).

QWACs Plugin
 December 2017

11

Moreover, universal applicability means that the extension would work on all web pages.

QWACs Plugin
 December 2017

12

3. Browsers

Web browsers allow users to request and view websites on the World Wide Web. However, as the web
attracts many businesses and websites get access to increasingly powerful APIs (application programming
interfaces), browsers have evolved to become feature rich software platforms. Today, most user needs can
be solved by web applications, making the browser one of the most essential pieces of software installed
on an operating system. Abstractly, a browser functions as follows: After the networking component
transparently handles all communication necessary to obtain a website’s code, the rendering engine at the
client side parses and renders it. If a script is encountered during parsing, the interpreter is given its code.
Both scripts and mark-up can trigger new requests to the website to fetch additional resources. Thus, all
components of a browser are constantly interacting with each other to display the structure and contents
of a website. Of course, a browser consists of more than only those three parts: the user interface (UI) and
data persistence layers are just two additional examples in a range of components which make up a
modern browser.

As browsers play an essential role in today’s lives, different needs arise around their UI and behaviour. In
order to satisfy those needs without needing to implement all functionality themselves, all large browser
vendors have introduced extensions. With the given extension mechanisms, developers can customize
large parts of a browser. This allows for different work flows and behaviour to be implemented
independently of the browser core itself.

Figure 1: Browser market share worldwide (courtesy of gs.statcounter.com)

QWACs Plugin
 December 2017

13

Figure 2: Browser market share worldwide (courtesy of netmarketshare.com)

The combined analysis of figures 1 and 2 lead to concluding that the top browsers include Google, Mozilla,
Microsoft, and Apple. Perhaps most importantly is the recognition that Chrome occupies a strong share of
the market, meaning that:

 any software that is developed will need to work on core components of Google’s software,

 Google’s protocols for authenticating certificates will need to be monitored in preparation for
developing projects, and

 it is likely that other browsers will be using same or similar software components in the machinery
of their own platforms, opening potential avenues for interoperability across different versions of
the developed extension.

 Mozilla Firefox
Firefox is a web browser released by the Mozilla Foundation and its subsidiaries. Firefox is available for
Windows (desktop and mobile versions), Apple macOS and iOS, and Linux operating systems, and is also
available for Android (formerly Firefox for mobile, it also ran on the discontinued Firefox OS). Its main
components are Gecko, a layout rendering engine (s. [MDN2]), and SpiderMonkey (s. [MDN3]), a JavaScript
parser and interpreter.

Note: Firefox for iOS was released in late 2015, but this version does not use Gecko due to Apple's
restrictions limiting third party web browsers to the WebKit based layout engine built into iOS (s. [WIKI]).

While the available statistics differ slightly in absolute values and significance, the Firefox desktop browser
market share can be estimated to around 15 percent globally (s. [STAT]).

Legacy Firefox extensions, sometimes referred to as add-ons, offer many ways of extending the browser’s
core functionality or changing its appearance. Modern add-on types are strictly limited to a few predefined
APIs and settings.

Firefox for Android supports add-ons using the same extension system used by the modern desktop
version of Firefox, e.g. WebExtensions (s. [FFANDR]). However, extensions that work with desktop Firefox
do not necessarily automatically work in Firefox for Android because the latter is implemented to use the
native Android UI.

QWACs Plugin
 December 2017

14

Apple iOS does not currently support Firefox extensions and add-ons as it is not able to use the Gecko
browser engine due to Apple’s restrictions (s. [FFIOS]).

 Google Chrome
With roughly 55 percent of the global market share (s. [STAT]), Google Chrome is the most popular and
widely used browser at the time of this writing. In contrast to Firefox, the implementation of the browser is
not fully available to the public as it contains proprietary components. Large parts of its code base are,
however, shared with an open source project called Chromium4. The internal Flash implementation, for
instance, is not open source whereas other components, like the JavaScript engine and the Blink rendering
engine, are.

For its first release in September 2008, Google Chrome employed the WebKit rendering engine which is most
prominently known from Apple’s Safari browser. This changed in 2013, when WebKit was forked into Blink
in order to speed up development and allow more architectural changes for performance experiments (s.
[CHR]). Multiple software projects rely on parts of Chrome’s architecture: recent versions of the Opera
browser, for example, leverage the Blink rendering engine in lieu of a former in-house developed engine
called Presto.

Chrome extensions have a strong focus on extending the browser’s functionality. Modifications of existing
behaviour are strictly limited to a few predefined APIs and settings. In contrast to Firefox, very few additional
technologies are introduced for the extension system.

Chrome extensions are currently not supported on Chrome for Android and Chrome for iOS, and there are
no current plans to announce at this time (s. [CHRANDR]).

 Microsoft Edge
Microsoft Edge (formerly “Spartan”) is a web browser developed by Microsoft with a 4 percent global market
share (s. [STAT]) and is included in Windows 10, Windows 10 Mobile and Xbox One, replacing Internet
Explorer as the default web browser on all device classes. Edge does not support legacy technologies such
as Internet Explorer’s ActiveX or Browser Helper Objects. Browser extension support was developed and
added in preview builds in March 2016, and released with the Windows 10 Anniversary Update in August
2016. Edge supports a new HTML, JavaScript and CSS based extension model and is Chrome compatible,
which means that existing Chrome extension developers will be able to migrate their extensions to Edge
with minimal changes (s. [EDG]).

 Other Browsers
Apart from Chrome and Firefox, there are multiple other browsers from which users can choose. While there
are too many options to discuss fully, few browsers are conceptually different from the two examined in this
study. In fact, a large portion of browsers use the Blink rendering engine and are hence similar to Chrome in
a number of relevant aspects. Most importantly, many Blink based browsers have adopted Chrome’s
extension system, allowing for easy adjustment of extension techniques. For example, Opera, a browser
with a global market share of roughly 2 percent, is based on Blink. Its extension system is almost identical to
Chrome’s, with the exception of a few different APIs (s. [OP]). However, the core security model remains
unchanged. A similar approach has also been taken by the Vivaldi browser, which, building on top of Chrome,
mainly extends its GUI with a pre-installed App.

4 https://www.chromium.org/chromium-projects

https://www.chromium.org/chromium-projects

QWACs Plugin
 December 2017

15

The Chinese 360 Browser, which is the most used browser in China, is also based on the Chromium core
engine, but features more options for updating, for example, than Opera.

From the browsers which are uniquely distinct from Firefox and Chrome, Microsoft’s Internet Explorer is the
most popular with a current market share of about 9 percent. Starting in 1995, it has continuously evolved
through the current version 11 with its own rendering engine, script interpreter and extension system.
However, it has been recently discontinued to make room for Microsoft’s completely rewritten Edge.

Another prominent browser with its own extension system is Apple’s Safari. Even though the browser is
based on WebKit, which is Blink’s predecessor, the extension systems found in Chrome and Safari have few
similarities. Safari extensions can also be used on Apple’s mobile devices, i.e. on iPhone and iPad (s.[SAF]).

QWACs Plugin
 December 2017

16

4. Extension Architectures

 Extension types
This Chapter introduces the extension systems of Mozilla Firefox and Google Chrome. While not as
descriptive as the official documentation, the following sections focus on the most important aspects.
These two browsers in particular were chosen for their relative market influence and, importantly, the
open source nature of Firefox’s code. The Secure Information Technology Center of Austria has recently
produced a functional beta version of a similar idea plugin, albeit using technology which will be phased
out by Mozilla later this year. This initiative serves, however, as an interesting benchmark from which to
consider moving forward with a focus on Mozilla in light of other leading browsers such as Microsoft’s
Edge, whose closed code would make initial efforts more difficult, both technically and economically.

Most browsers feature more than one type of extension. Often, extension types are assigned with
different tasks:

 (Modern) Extensions modify the behaviour of existing features of the browser or add new
features. The feature could be something in the user interface or a functional feature that
manifests itself when a certain action is performed. Search engine definitions are examples of
functional extensions.

 Themes are meant to customize the visual appearance of the browser. They strictly modify certain
elements of the user interface. Their most prominently featured change is the background image
that they add to toolbars, menu bars and status bars of the main application window. They may
change the text and background colour as well.

 Localization packages add new languages and location specific display information to the UI.

 Plug-ins render web content that the browser cannot natively render. A plugin declares content
types it can handle. When the browser encounters a content type it cannot handle natively, it
loads the appropriate plugin, sets aside space within the browser context for the plugin to render
and then streams data to it. The plugin is responsible for rendering the data. The plugin runs in
place within the page, as opposed to older browsers that had to launch an external application to
handle unknown content types. An old framework that enables creation of plug-ins is called NPAPI
(Netscape Plugin Application Programming Interface). Due to the age of the API and security
issues, as well as the adoption of plugin free web technologies such as HTML5, major web browser
vendors began to phase out NPAPI support in 2013. Firefox ended support for NPAPI plugins,
except Adobe Flash, in version 52 which was released in March 2017 (s. [FFNAPI]). Oracle
Corporation has also announced plans to deprecate the web browser plugin Java Runtime
Environment, starting with JDK 9 (s. [ORA]).

 Compiled applications inside the browser use a sandboxing technology (also known as ‘native
client’) for running a subset of Intel x86, ARM, or MIPS native code in a sandbox. It allows safely
running native code from a web browser, independent of the user operating system, allowing web
based applications to run at near native speeds.

 Mozilla Firefox
In the Firefox ecosystem, extensions are commonly referred to as add-ons. Due to its age, the browser has
amassed multiple competing ways of writing add-ons, each with their own peculiarities. Broadly speaking,
these can be divided into extension types building on top of the legacy extension system and independent
ones.

QWACs Plugin
 December 2017

17

4.2.1 Legacy extension system
The group of extension types building on top of the legacy extension system is further separated by the
following types:

4.2.1.1 Extensions
Extensions can exercise the full power of the Firefox add-on system by leveraging privileged JavaScript
APIs. In order to avoid confusion between the general term extension and this type, add-ons belonging to
this group will be called regular extensions in the remainder of this report. Writing a regular extension is
possible in three competing ways.

 Legacy extensions are the oldest, yet, still working type of add-on in Firefox. Generally,
functionality is implemented using Mozilla’s Cross Platform Component Object Model (XPCOM)
technology. It enables add-ons to invoke the same APIs Firefox uses internally. Furthermore, most
legacy extensions use a mechanism called XUL Overlay to customize the browser’s UI. Essentially,
overlays allow developers to modify elements and attributes in other XUL documents. As the
browser’s UI is written in XUL, almost all components can be customized or replaced. A major
disadvantage of this technique is that it requires a browser restart when a new add-on is installed
or uninstalled. Presumably due to optimization reasons, Firefox applies overlays only on browser
startup. Unlike a Chrome extension (p.12), legacy extensions based on XUL and XPCOM are not
executed in a sandbox. As a result, they have the same rights as a locally executed application.
They thus not only have access to the memory of each website, but also from any other extension.
The user’s hard disk can also be read as far as the software Firefox could. These security concerns
may have been one reason why Mozilla has decided to disable XUL and XPCOM for future
extensions.

 Restartless extensions (also called bootstrapped extensions) solve the browser restart issue by
disallowing XUL Overlays altogether. Instead, a dedicated JavaScript file (bootstrap.js) provides
functions for common events like startup, shutdown or installation. Add-ons are expected to
modify the GUI programmatically and undo these changes when being uninstalled. In spite of this
modernization, restartless extensions still rely on XPCOM functions and interfaces to provide
functionality.

 Add-on SDK extensions (formerly called Jetpack add-ons) offer an alternative to the use of XPCOM.
Various high and low level APIs are meant to make extension development easier and more
accessible. Instead of requiring deep knowledge of Firefox specific technologies, the Software
Development Kit (SDK) focuses on providing functionality through standardized web technologies.
In contrast to restartless or legacy extensions, no knowledge about XUL, XBL and XPCOM is
required. Moreover, the SDK is the first add-on type to introduce isolation between core extension
and DOM interaction code through content scripts.

4.2.1.2 Themes
Themes, or complete themes, use CSS to customize the visual appearance of the browser UI. As the UI of
Firefox is based on mark-up languages, almost every aspect of the browser can be styled. However,
although themes can use all language features of CSS, they are prevented from employing XUL, XBL and
privileged JavaScript APIs.

4.2.1.3 Locale packs
Locale packs (or localization packages) contain translations and localization settings for the browser GUI.
Mostly consisting of DTD and property files, they have no direct access to privileged JavaScript APIs.

QWACs Plugin
 December 2017

18

4.2.1.4 Multiple item packages
Multiple item packages bundle multiple add-ons in one package. In contrast to other extension types,
multiple item packages implement no functionality on their own. Bundled add-ons, on the other hand,
have the privileges they would normally have. This extension type allows distribution of a theme alongside
an add-on or similar combinations.

4.2.1.5 Spell check dictionaries
Spell check dictionaries add languages to the browser’s spell checking engine. Based on the Hunspell
project, Firefox parses one dictionary (.dic) and one affix file (.aff) from each extension of this type. Other
than that, the add-on is not able to perform any further actions.

4.2.1.6 Telemetry experiment
Telemetry experiments are described as “specially designed restartless add-ons” and are used to run tests
on a wide range of Firefox installations. In terms of technology, they have the exact same advantages and
disadvantages as restartless extensions and, thus, belong to the group of regular extensions. However, due
to their special purpose and Mozilla’s signing process, normal extension authors do not support telemetry
experiments.

4.2.2 Modern add-on types
Modern add-on types do not follow the distinction of the legacy extension system. Currently, two add-on
types belong to this group:

4.2.2.1 WebExtensions
WebExtensions mimic Google Chrome’s extension architecture (p.12) and are still in development at the
time of writing. Until the end of 2017, legacy and restartless add-ons will be deprecated in favour of this
new type of extension (s. [MDN4]). In addition to establishing cross-browser compatibility, Mozilla’s
implementation of WebExtensions allows for compatibility with a multi-process variant of Firefox. Similar
to the Add-on SDK, only standardized web technologies are utilized. Furthermore, WebExtensions use a
revised security model, also borrowed from Chrome.

At the time of writing no APIs in Mozilla’s (and Chrome’s) WebExtensions architecture exist that allow for
direct access to SSL/TLS data (s. [SSL]).

Moreover, Mozilla is also beginning to support ‘native messaging’ (p.14), which enables a WebExtension to
exchange messages with a native application installed on the user's computer. This allows native
applications to provide a service to add-ons without needing to be reachable over the web. One common
example is password managers: the native application manages storage and encryption of passwords, and
communicates with the add-on to populate web forms. Native messaging also enables add-ons to access
resources that are not accessible through WebExtension APIs, such as some particular piece of hardware.

The native application is not installed or managed by the browser: it is installed using the installation
machinery from the computer’s underlying operating system. Along with the native application itself, a
JSON file called the "host manifest" or "app manifest" will need to be provided and installed in a defined
location on the user's computer. This app manifest file describes how the browser can connect to the
native application.

The WebExtension must request the "nativeMessaging" permission in its manifest.json file. Conversely, the
native application must grant permission for the WebExtension by including its ID in the
"allowed_extensions" field of the app manifest. The WebExtension can then exchange JSON messages with

QWACs Plugin
 December 2017

19

the native application using a set of functions in the runtime API. On the native application side, messages
are received using standard input (stdin) and sent using standard output (stdout).

Support for native messaging in WebExtensions is mostly compatible with Chrome, with two main
differences:

 The app manifest lists "allowed_extensions" as an array of app IDs, while Chrome lists
"allowed_origins" as an array of "chrome extension" URLs.

 Firefox and Chrome store their app manifests in different locations.

Figure 3: Mozilla native messaging

Unfortunately, native messaging is not currently supported by Firefox for Android.

4.2.2.2 Lightweight themes
Lightweight themes merely consist of two images. Separated into header and footer, the pictures are set
as the background of the browser’s top and bottom part of the window respectively. In Firefox 3.6, the
first implementation of lightweight themes appeared under the name Personas (s. [MDN5]).

 Google Chrome
Chrome features the following types of extensions: themes, extensions, apps, native client apps:

4.3.1 Themes
Themes can modify the appearance of the browser user interface. However, instead of having full control
over the visual styling, they can only change predefined elements. For example, while the colour of the
browser’s toolbar can be altered, its general appearance (e.g. height) is fixed. All modifications are listed
declaratively in a manifest file, rendering the use of CSS syntax unnecessary.

QWACs Plugin
 December 2017

20

4.3.2 Extensions
Extensions can request access to a range of APIs, which allow them to perform high-privilege actions. In
contrast to Firefox add-ons, however, Chrome extensions do not have the power to execute system
commands. Instead, the available APIs are highly specialized and offer a limited amount of control over the
browser. Extensions are written using web technologies like JavaScript, CSS and HTML.

Extensions are executed by Chrome in a sandbox, which grant only certain rights. For example, it is not
possible for a Chrome Extension to open a pop-up without the user pressing a button. The sandbox
borders a Chrome Extension to each website and other extensions. As a result, a Chrome Extension can
only interfere with a webpage or other extensions after a certain query has been made. It is also not
possible to read the memory (e.g. the local storage) of another web page or extension. This concept is
referred to as the ‘same origin policy’, which is also responsible for the fact that a web page cannot access
the memory of another web page, i.e. each extension has its own origin.

When programming a Chrome extension, a central file can be used to define the extension’s privilege to
leave the sandbox in order to access, for example, the active tab of the browser. Thus, Chrome is able to
recognize extensions that need such a right. The user is referred to the permissions required by these
extensions, as is the case, for example, for smartphone apps. Only extensions for which the user has
granted permissions are able to access web pages.

A Chrome extension consists of different components, which offer different possibilities. For example,
content scripts are responsible for interacting with the content of a web page. They have limited access to
the main component of the Chrome extensions, the so called ‘Background Page’.

Figure 4: Google Chrome extension architecture

Chrome provides various APIs for the extensions, which include both predefined functions as well as ways
to communicate with the operating system.

At the time of writing, no APIs in Chrome’s (or Mozilla’s) WebExtensions architecture exist that allow for
direct access to SSL/TLS data. The Chrome dev team even announced that they will not be adding any new
APIs to support accessing SSL/TLS information (s. [SSL-C]).

QWACs Plugin
 December 2017

21

Because a Chrome extension runs in a sandbox, it essentially has no way to start an application on the local
computer. The exception to this is ‘Native Messaging’, in which Chrome receives permission to launch a
locally installed application. The browser and the application can then communicate with each other using
a defined protocol. The local application must, however, be installed independently of the Chrome
extension; there is no way to install local applications from the Chrome Web Store.

4.3.3 Apps
Apps attempt to mimic native applications by having access to even more APIs than extensions. In contrast
to extensions, they are not meant to modify the browsing behaviour but represent a completely isolated
application. Still, apps are not able to execute arbitrary commands on an operating system level. Like
extensions, apps can be created with technologies like HTML, CSS and JavaScript. However, Chrome will be
removing support for Chrome apps on Windows, Mac, and Linux (s. [CHRAPP]).

4.3.4 Native Client Apps
Native Client is a sandboxing technology for running compiled applications within Chrome. Here, programs
can be developed in C, C++ or another programming language. The program is translated by a special
compiler, which verifies that the program does not execute any prohibited actions. Within Chrome, the
program is started in a sandbox, which means that the extension has the same restrictions as a Chrome
extension. This technology should allow existing programs to be executed as a secure extension within the
browser, with minimal modification effort. By running the programs within a sandbox, they cannot access
the local file system and cannot use interfaces of the operating system.

Furthermore, Native Client is not supported by Firefox, so it is not a browser spanning solution. Moreover,
it appears that on October 12, 2016, a comment on the Chromium issue tracker indicated that Google's
Native Client teams had been de-staffed (s. [DES]).

 Distribution models
The distribution of software can be a major hindrance in achieving the goal of easy installation (R3). In all
cases, the process is tremendously important to the security of the overall system.

4.4.1 Mozilla Firefox
Mozilla requires all extensions to be signed by Mozilla in order for them to be installable in Release and
Beta versions of Firefox (s. [ADDSIG]). Signing is done through addons.mozilla.org (AMO) and is mandatory
for all extensions, regardless of where they are hosted. Only Mozilla can sign the extension so that Firefox
will install it by default. To do so, extensions must pass either an automated or manual code review in
order to eliminate disguised malware or potential vulnerabilities.

Listing or distributing extensions through AMO is not required; however, with self-distribution of add-ons,
that option may be chosen, and AMO will serve as the way to get the package signed.

Firefox extensions are mainly distributed through the following three channels:

 Whitelisted domains have permission to install extensions by calling the proprietary InstallTrigger
API. Remarkably, this list can be modified in the user preferences. However, despite the whitelist,
consent is always required for a successful installation. Clean Firefox profiles contain two
whitelisted domains, namely the Firefox Marketplace and AMO. The latter is embedded by the
Firefox user interface on an internal extension management site (about:addons).

 Third party domains can also access the InstallTrigger API. In contrast to whitelisted domains, they
require additional approval of the user. During this process, the browser GUI clearly indicates
danger to the user, as the domain is untrusted.

QWACs Plugin
 December 2017

22

 Local installers may deploy extensions as part of their software bundle. There are two ways to
achieve this: Either the high privileges obtained during the installation process are exploited to
modify the Firefox root directory or the extension is placed using one of the intentional
mechanisms built for this purpose. For instance, on Windows systems, registry keys can be used to
enable add-ons for all or only specified users. Furthermore, installers may place a file with the path
to the add-on in a profile’s extensions directory. This will prompt Firefox to ask the user for
consent on the next start.

Both third party domains and local installers cannot distribute arbitrary extensions without Mozilla’s
signature. Rogue installers, however, are still able to override the imposed security checks by modifying
the user’s preferences or the Firefox binary itself. (Also, unsigned add-ons can still be installed in
Developer Edition, Nightly, and ESR versions of Firefox, after toggling the xpinstall.signatures.required
preference in about:config.)

While installation of extensions via AMO is intuitive and simple, there may be situation in which further
software is needed (e.g. in case of native messaging). The installation of such a program may be relatively
complex, even under Windows, macOS or Linux.

4.4.2 Google Chrome
Chrome has a complex distribution model, offering different options based on the user’s operating system.
In general, there are three ways to distribute Chrome extensions:

 The Chrome Web Store is the single authoritative source of extensions for both Windows and
macOS operating systems. It requires an upfront fee of five dollars and mandatory reviews to list
an extension. While the review guidelines are not public, they most likely attempt to prevent
malicious software from being distributed through the store. The Chrome Web Store gives
developers the option to carefully distribute extensions only to a selected number of users or in a
controlled manner.

 Third party sites have a less important role in the Chrome extension ecosystem. Extensions hosted
on a website may only be installed by Linux users. In order to ask the user for an installation, the
developer first has to package the extension and then serve it with the correct MIME type
(application/x-chrome-extension). Otherwise, if setting the MIME type is not possible, the correct
suffix, a regular MIME type and a missing content sniffing prevention header is sufficient, too.
While this is not an option for Windows and macOS operating systems, third party sites can trigger
an installation from the Chrome Web Store. Using the chrome.webstore API, a user can be
prompted to install an extension in this manner.

 Local installers also have different options based on the underlying operating system. On Windows
systems, a registry entry can be set. However, it must point at the Chrome Web Store. Similarly,
such a link can be placed in a JSON file at a predefined path on macOS systems. On Linux, this file is
not required to point at the store, but can also reference other locations.

Chrome employs its own packaging format with the .crx file extension. It uses a custom header which is
followed by a standard ZIP file. The header contains information like the packaging format version, a public
key and a signature. A public-private key pair is created when first packing an extension locally, or assigned
by the Chrome Web Store. Subsequent updates must all bear a valid signature. Inside the ZIP file, all
extensions feature a manifest file which describes their type and purpose.

QWACs Plugin
 December 2017

23

While installation of extensions via AMO is intuitive and simple, there may be situation in which further
software is needed (e.g. in case of native messaging). The installation of such a program may be relatively
complex, even under Windows, macOS or Linux.

4.4.3 Other Browsers
Most other current browsers support similar web stores like AMO or Chrome Web store for distributing
extensions.

 Summary
The modern extension frameworks of Firefox and Chrome (and therefore also Opera, Edge, Vivaldi, 360
etc.), which mimic Google Chrome’s extension architecture, have almost established cross browser
compatibility for browser extensions on desktops (i.e. extensions developed for one browser can easily be
adapted to another browser). The use of legacy frameworks will be deprecated by end of 2017. Hence, to
fulfil requirement R4, any extension that will be able to

 validate QWACs, and to

 indicate that a web site is using a QWAC

should be based on these modern extension frameworks.

While this holds for desktop systems and browsers, for mobile devices the situation is somewhat more
restricted; both Chrome for mobile devices (Android and iOS) and Firefox for iOS do not currently support
extensions. Only Firefox for Android supports a modern extension framework, namely the same modern
extension system used by Firefox for desktops with some minor changes to support the Android UI.

For Apple’s mobile iOS devices, the only current possibility to develop extensions would be to develop
Safari extensions based on Apple’s proprietary extension framework.

In any case, both on desktops and mobile devices, there is currently no way to directly provide information
about a given SSL/TLS connection to extensions based solely on these modern extension frameworks (at
least at the time of this writing). This would suggest that the evaluation of the corresponding certificates
and the validation of QWACs must be implemented outside such an extension.

According to the descriptions within Chapter 3, there are only two possible ways to combine modern
extensions with a solution outside the extension, namely:

 native messaging with a native application on the OS of the user’s PC, where the native application
plays the role of a QWAC validator, or

 providing an additional online service that plays the role of a QWAC validator and that is reached
by the extension.

In the following chapter, we will describe these two possibilities in more detail.

QWACs Plugin
 December 2017

24

5. Possible Solutions

 Native Messaging

5.1.1 Architecture
The proposed solution consists of two major components, the Native Messaging Host and the Native
Messaging Application. The Native Messaging Host is the OS native program that implements a QWAC
validator. On the other hand, the Native Messaging Application runs in the web browser and has the form
of a modern extension. It initiates the validation process by passing the URL of the web site to the Native
Messaging Host and retrieves the results of the QWAC validator, which uses the URL to analyse the
SSL/TLS-certificate.

5.1.2 The Native Messaging Host
The Native Messaging Host is launched by the browser extension and receives a JSON formatted message
at its standard input. The message consists of a payload (i.e. information about the SSL/TLS-connection and
the visited web site) which is used by the Native Messaging Host to connect to the corresponding web site
and validate the corresponding certificate (QWAC). With multiplatform support being a prerequisite, the
program should be written in a portable (scripting) language, e.g. Python 3.

5.1.3 The Native Messaging Application (Extension)
The Native Messaging Application initiates the validation procedure when the user opens a new web site.
The extension then crafts a JSON message containing the URL of the web site and forwards it to the Native
Messaging Host. The extension also registers a callback function, triggered when the Native Messaging
Host responds with the validation result of the certificate used in the SSL/TLS-connection to indicate the
validation result in the UI of the browser, e.g. by a red or green icon, or by showing an icon with the
European flag.

In the case of Google Chrome, the extension could be provided for installation through the Google Chrome
Web store, and for Firefox through AMO or others. Users could be guided to preinstall the extension and
then the native application on the OS. The latter option makes the procedure more difficult for technically
less savvy users.

 Providing online validation

5.2.1 Architecture
The proposed solution consists of a modern extension and an additional online service provided by a
trusted third party that plays the role of a qualified online QWAC validator. The extension is built to send
the URL of the current SSL/TLS connection to the dedicated online QWAC validator. The online validator
checks the certificate and sends information back to the extension. The extension indicates something
using a green or red icon, or an icon with the European flag, on the right-hand side of the address panel.

In the case of Google Chrome, the extension could be provided for installation through the Google Chrome
Web store, and for Firefox through AMO or others. While, in this case, no additional software must be
installed by the users, the challenge to provide a qualified online QWAC validator needs to be handled.

QWACs Plugin
 December 2017

25

6. Discussion

 Advantages and disadvantages of the proposed solutions
We have proposed two different ways to implement a modern browser extension that will be able to

 validate QWACs, and to

 indicate that a web site is using a QWAC,

based on native messaging or requiring the availability of a trusted qualified online validation service for
QWACS. Both solutions fulfil the requirement R1.

While the first requires the user to install additional software on his or her PC, and thus does not fully fulfil
the requirement R3, the second assumes that some trusted third party actually does provide a trusted
qualified online validation service for QWACs. However, the establishing and operation of a trusted
qualified online validation service for QWACs alone is a challenging task and depends on business cases for
the provider. Of course, it is possible but not expected that there will be cost-free online validation
services in each member state despite some MS (e.g. Austria) which have enacted laws obliging
supervision authorities to offer free validation services. It must also be considered that an online validation
service would be an additional link in the validation chain which is more sensitive to attacks, especially to
denial-of-service and man-in-the-middle.

The table above is meant as a visual reference to help simplify the complexity of the decision to more
rigorously pursue the development of the native messaging option. Each line item carries with it its own
weight of importance, so they are not meant to be read as relative values in comparison with one another,
but rather stand alone, indicating where the option lies on the scale from optimal to less than optimal. A

EXTENSION REQUIREMENTS
NATIVE
MESSAGING

ONLINE
VALIDATION

[R1] Validation of QWACs + +

[R2] Facilitate user recognition of QWACs + +

[R3] Easy installation +/- +

[R4] Universal applicability +/- +

Development considerations

Ease/cost of development + +

Requires cooperation of browser vendors +/- +

Access to browser SSL/TLS information - -

Expected maintenance + +/-

Sensitivity to cyber attacks + -

QWACs Plugin
 December 2017

26

“+” represents a positive outcome with regard to its respective line item. A “-“ represents a less optimal
outcome and a “+/-“ represents a more complex outcome with both positive and less optimal elements.

 Facilitating user recognition of QWACs
Regardless of which solution is chosen, the extensions described need to indicate on the browser UI
whether a web site is secured specifically by a QWAC or not. The modern extension frameworks allow
displaying buttons and/or icons on the browser UI, e.g. a green or red button on the right hand side of the
address panel, or even to open a new small browser window that displays some explanatory information.
However, the extensions will not be able to assume control of the normal behaviour of the web browser,
defined by the browser maker. For example, if the browser (like Chrome) indicates that a user should not
trust a SSL/TLS connection because the corresponding SSL/TLS certificate cannot be found in so called
“qualified” certificate logs for SSL/TLS end entity certificates, e.g. by a grey or red address bar, this cannot
be changed by modern extensions. In the case of a QWAC that cannot be found in the certificate logs, this
would trigger trust concerns for users, even if the extension shows that the web site uses a QWAC.

Moreover, if the browser should refuse to render web sites where the corresponding SSL/TLS certificate
cannot be found in so called “qualified” certificate logs for SSL/TLS end entity certificates, then the
proposed extensions will either be useless or need to open a second window, which would then render the
previously refused web site. Unfortunately, we cannot imagine that any customer would put much trust in
such a solution.

Hence, in both cases it is difficult or even impossible to guarantee the fulfilment of requirement R2.

 Important industry trends
Today, the differences between certificate validation systems can be broadly viewed as fundamental
ideological concerns about the responsibility to maintain system wide security by either corporate entities
or governmental bodies or, more increasingly, by a transparent open-source community.

In the current model of hierarchical PKI structures, the certificate chain based root concept allows for trust
to follow a linear path from a website to a signing certificate’s issuing entity; trust is ensured in the
integrity of root CAs, leaving significant and well known gaps in security, based on the rules for who can
become a CA. Given that the number of certificates is on the rise and nowhere yet near market saturation,
revocation lists must be built and maintained to reflect an increasingly larger ecosystem of SSL/TLS
certificates. Although certainly market leading CAs have taken steps to address many common security
concerns, validating trust chains in real time can be a cumbersome if not impossible task, and certificate
revocation lists are also updated and audited too slowly in an environment of increasingly mis-issued
certificates.

There are, of course, responses to these complex security issues. For example, OCSP offers an answer to
CRLs and can check the revocation status of a certificate more quickly and without requiring the client and
network resources needed to check CRLs. Firefox is moving entirely away from checking CRLs and toward a
revocation list push mechanism that frequently updates the browser.

Importantly for this report, the European Trusted Lists system seeks to answer these security flaws with a
more centralized review responsible for vetting and monitoring issuing entities and their certificates. The
proposed QWACs browser plugin would allow the best features of both systems to work together, vetting
certificate specific revocation and other important identifying information, and only from signing
certificates which originate from strictly vetted issuing entities contained within the member states’ lists or
in the “List of the Lists”. This concept favours organizational trustworthiness in lieu of the certificate and

QWACs Plugin
 December 2017

27

CA chained hierarchy developed in the root PKI system; trust service providers and the services they
provide are granted “qualified” status once they have met the requirements set forth in the eIDAS
Regulation, and member states are required to maintain and publish these Trusted Lists.

Amidst the varied methodologies inherent to the trust landscape, however, a new brand of security
protocol is emerging with some force. Later this year (by October 2017), Google will be transitioning to a
mandatory policy of “certificate transparency”, opening the way for an online community of open
certificate logs, monitors and auditors to provide near real time validation of certificates. This push away
from the certificate authority based infrastructure relies on so called “qualified” certificate logs for SSL/TLS
end entity certificates. If a CA does not include a certificate in the CT log server, it will not be treated as
qualified or trustworthy, raising important questions about users receiving conflicting signals of
trustworthiness (i.e. a “green light” from the EU side and a red flag from Chrome). How the European
efforts led by the eIDAS Regulation respond to CT going forward will determine the direction of qualified
trust services provided under it. Certainly, the (lasting) strength of any software tool developed in support
of authenticating (in addition, displaying to users) QWACs will need to correspond, at least in part, with the
security protocols of current market leading browsers.

It should also be noted that this study reveals that the only possible solutions for the implementation of a
modern browser extension able to validate QWACs with currently available techniques are based on
surpassing the browser functionality. Unfortunately, extensions do not give access to the browser’s
SSL/TLS information. A much more secure route would be an interface in the browsers extension
framework by which extensions could gain access to the browser validated certificate. Irrespective of
whether online validation or native messaging is ultimately used (the latter can have the same issue, even
if it appears less vulnerable), discussions with the browser vendors should start in getting a documented
interface so QWAC validation can be developed appropriately.

This study concludes that the most effective use of resources lies in the development of a native
messaging application, while retaining consideration for additional support from an online validation
service. Through continued dialogue with relevant stakeholders, the most optimal outcome is possible
with direct support from the browser and OS vendors.

QWACs Plugin
 December 2017

28

7. Roadmap

The native application is not installed or managed by the browser: it is installed using the underlying
operating system's installation machinery. Along with the native application itself, a JSON file called the
"host manifest" or "app manifest" will need to be provided and installed in a defined location on the user's
computer. The app manifest file describes how the browser can connect to the native application.

The WebExtension must request the "nativeMessaging" permission in its manifest.json file. Conversely, the
native application must grant permission for the WebExtension by including its ID in the
"allowed_extensions" field of the app manifest.

After that the WebExtension can exchange JSON messages with the native application using a set of
functions in an appropriate API. On the native app side, messages are received using standard input (stdin)
and sent using standard output (stdout).

 Steps for Chrome Browser

7.1.1 Create the native host application
This is the application in the OS to create which will be started when a Chrome port is instantiated. This
application is responsible for validation the QWAC of a given URL for an SSL/TLS connection. To be
connected with the browser, both the standard input and output streams are required to be managed, so
anything which allows for this ability can be used e.g. C# or Python.

Messages passed between the extension and the application need to be formatted and encoded and
respectively decoded using UTF8. Of course, the integrity of the messages also needs to be secured.

7.1.2 Create the native client extension
The extension will implement the user interface and indicate the validation result of the certificate based
on the messages of the native application.

7.1.3 Create installation machinery
This step is for the native application and for extension to ensure an appropriate distribution model.

QWACs Plugin
 December 2017

29

8. Proof-of-concept browser plugin

A proof-of-concept software tool, which has the potential to recognize and signal to users the deployment

of EU qualified website authentication certificates (QWACs), has been developed.

At present, live testing is not a functional possibility due to the nature of full eIDAS compliant QWACs,

namely that no QWACs are currently commercially available and issuing qualified “test certificates” is not

possible due to binding policy requirements. More plainly, the software has been developed to specification,

but the lack of available certificates for beta testing means the software cannot be functionally tested until

further notice.

While 10 companies have been identified via the EU “List of the Lists”, which are currently approved as

qualified providers of website authentication certificates, none of these TSPs actually provide this particular

product in their current product portfolios. The table below provides a list of these TSPs, their national origin

and a link to their website. Updates to products and services will be monitored until they become

commercially available from these or other (Q)TSPs.

 PROVIDER NAME COUNTRY WEBSITE

1 PostSignum CZ http://www.postsignum.cz/

2 Netlock Sign HU https://netlock.hu/

3 InfoCert IT https://www.firma.infocert.it/

4 QuoVadis NL https://www.quovadisglobal.nl/

5 KIR PL https://www.kir.pl/

6
TS Authority of

Slovenia
SI http://www.si-trust.gov.si/

7 halcom SI http://www.halcom.si/

8 POŠTA CA SI https://postarca.posta.si/

9 D-TRUST DE https://www.bundesdruckerei.de/

10 disig SK http://www.disig.eu/

QWACs Plugin
 December 2017

30

9. References

 [ADDSIG] Add-ons/Extension Signing. https://wiki.mozilla.org/Addons/Extension_Signing.
Retrieved 2017-03-13

 [CHR] The Chromium Projects. Developer FAQ. 2013. https://www.chromium.org/blink/developer-
faq. Retrieved 2017-03-13

 [CHRANDR] Chrome for Android. FAQ. https://developer.chrome.com/multidevice/faq. Retrieved
2017-04-27

 [CHRAPP] From Chrome Apps to the Web. https://blog.chromium.org/2016/08/from-chrome-
apps-to-web.html. Retrieved 2017-03-13

 [DES] https://bugs.chromium.org/p/chromium/issues/detail?id=239656#c160. Retrieved 2017-03-
13

 [EDG] Microsoft Edge extensions. https://docs.microsoft.com/en-us/microsoft-edge/extensions.
Retrieved 2017-03-13

 [FFANDR] Extensions for Firefox for Android. https://developer.mozilla.org/en-US/Add-
ons/Firefox_for_Android. Retrieved 2017-04-27

 [FFIOS] Add-ons in Firefox for iOS. https://support.mozilla.org/en-US/kb/add-ons-firefox-ios.
Retrieved 2017-04-27

 [FFNAPI] Firefox dropping NPAPI plugins by the end of 2016—except for Flash". Firefox Site
Compatibility. https://www.fxsitecompat.com/en-CA/docs/2016/plug-in-support-has-been-
dropped-other-than-flash/. Retrieved 2017-03-13

 [MDN1] Add-ons. Mozilla Developer Network. https://developer.mozilla.org/en-US/Add-ons.
Retrieved 2017-03-13

 [MDN2] Gecko. Oct. 2015. https://developer.mozilla.org/en-US/docs/Mozilla/Gecko. Retrieved
2017-03-13

 [MDN3] SpiderMonkey. Sept. 2015. URL: https://developer.mozilla.org/en-
US/docs/Mozilla/Projects/ SpiderMonkey. Retrieved 2017-03-13

 [MDN4] Legacy extensions. https://developer.mozilla.org/en-US/Add-ons/Overlay_Extensions.
Retrieved 2017-03-13

 [MDN5] Lightweight themes. URL: https://developer.mozilla.org/en-US/Add-
ons/Themes/Lightweight_themes. Retrieved 2017-03-13

 [OP] Dev.Opera. Extension APIs Supported in Opera. URL: https://dev.opera.com/extensions/apis/.
Retrieved 2017-03-13

 [ORA] "Oracle deprecates the Java browser plugin, prepares for its demise". Ars Technica.
https://arstechnica.com/information-technology/2016/01/oracle-deprecates-the-java-browser-
plugin-prepares-for-its-demise/. Retrieved 2017-03-13

 [SAF] Safari Extensions. https://developer.apple.com/safari/extensions/. Retrieved 2017-04-27

 [SSL] Web extensions: SSL (TLS) status API request.
https://bug623317.bugzilla.mozilla.org/show_bug.cgi?id=1322748. Retrieved 2017-03-13

 [SSL-C] Provide information about the TLS connections to extensions.
https://bugs.chromium.org/p/chromium/issues/detail?id=107793. Retrieved 2017-03-13

 [STAT] StatCounter. http://gs.statcounter.com/browser-market-share/desktop-tablet-
console/worldwide/#monthly-201601-201703. Retrieved 2017-03-13

https://wiki.mozilla.org/Addons/Extension_Signing
https://www.chromium.org/blink/developer-faq.%20Retrieved%202017-03-13
https://www.chromium.org/blink/developer-faq.%20Retrieved%202017-03-13
https://developer.chrome.com/multidevice/faq
https://blog.chromium.org/2016/08/from-chrome-apps-to-web.html
https://blog.chromium.org/2016/08/from-chrome-apps-to-web.html
https://bugs.chromium.org/p/chromium/issues/detail?id=239656#c160
https://docs.microsoft.com/en-us/microsoft-edge/extensions
https://developer.mozilla.org/en-US/Add-ons
https://developer.mozilla.org/en-US/Add-ons
https://developer.mozilla.org/en-US/docs/Mozilla/Gecko
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey
https://developer.mozilla.org/en-US/Add-ons/Overlay_Extensions
https://developer.mozilla.org/en-US/Add-ons/Themes/Lightweight_themes
https://developer.mozilla.org/en-US/Add-ons/Themes/Lightweight_themes
https://developer.mozilla.org/en-US/Add-ons/Themes/Lightweight_themes
https://dev.opera.com/extensions/apis/
https://arstechnica.com/information-technology/2016/01/oracle-deprecates-the-java-browser-plugin-prepares-for-its-demise/
https://arstechnica.com/information-technology/2016/01/oracle-deprecates-the-java-browser-plugin-prepares-for-its-demise/
https://bug623317.bugzilla.mozilla.org/show_bug.cgi?id=1322748
http://gs.statcounter.com/browser-market-share/desktop-tablet-console/worldwide/#monthly-201601-201703
http://gs.statcounter.com/browser-market-share/desktop-tablet-console/worldwide/#monthly-201601-201703

ENISA
European Union Agency for Network
and Information Security
Science and Technology Park of Crete (ITE)
Vassilika Vouton, 700 13, Heraklion, Greece

Athens Office
1 Vasilissis Sofias
Marousi 151 24, Attiki, Greece

PO Box 1309, 710 01 Heraklion, Greece
Tel: +30 28 14 40 9710
info@enisa.europa.eu
www.enisa.europa.eu

