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Chapter 1

Executive Summary

During 2013, ENISA prepared and published its first reports with cryptographic guidelines support-
ing the security measures required to protect personal data in online systems. Recently published
EC Regulations on the measures applicable to the notification of personal data breaches [118] make
reference to ENISA, as a consultative body, in the process of establishing a list of appropriate
cryptographic protective measures.

This report is providing an update of the 2013 report [113] produced by ENISA. As was the
case with the report of 2013, the cryptographic guidelines of ENISA should serve as a reference
document, and cannot fill in for the existing lack of cryptographic recommendations at EU level. As
such we provide rather conservative guiding principles, based on current state-of-the-art research,
addressing construction of new systems with a long life cycle. This report is aimed to be a reference
in the area, focusing on commercial online services that collect, store and process the personal data
of EU citizens.

In the report of 2013 there was a section on protocols; for this year we decided to extend the part
on implementation by adding to this report a section on side-channels, random number generation,
and key life cycle management. The summary of protocols is now covered in a sister report [114].

It should be noted that this is a technical document addressed to decision makers, in particular
specialists designing and implementing cryptographic solutions, within commercial organisations.
In this document we focus on just two decisions which we feel are more crucial to users of cryptog-
raphy.

Firstly, whether a given primitive or scheme can be considered for use today if it is already
deployed. We refer to such use as legacy use within our document. Our first guiding principle is
that if a scheme is not considered suitable for legacy use, or is only considered for such use with
certain caveats, then this should be taken as a strong advise that the primitive or scheme should
be replaced as a matter of urgency.

Secondly, we consider the issue of whether a primitive or scheme is suitable for deployment in
new or future systems. In some sense mechanisms which we consider usable for new and future
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systems meet cryptographic requirements described in this document; they generally will have
proofs of security, will have key sizes equivalent to 128-bit symmetric security or more1, will have
no structural weaknesses, will have been well studied, will have been been standardized, and will
have a reasonably-sized existing user base. Thus the second guiding principle is that decision
makers now make plans and preparations for the phasing out of what we term legacy mechanisms
over a period of say 5-10 years, and replacing them with systems we deem secure for future use.

This document does not consider any mechanisms which are currently only of academic interest.
In particular all the mechanisms we discuss have been standardized to some extent, and have either
been deployed, or are slated to be deployed, in real systems. This selection is a means of focusing the
document on mechanisms which will be of interest to decision makers in industry and government.

Further limitations of scope are mentioned in the introductory chapter which follows. Further
restrictions are mentioned in Chapter 2 “How to Read this Document”. Such topics, which are not
explored by this document, could however be covered in the future.

1See Section 3.6 for the equivalence mapping between symmetric key sizes and public key sizes
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Chapter 2

How to Read this Document

This document collates a series of proposals for algorithm and keysizes The 2013 version of this
report [113] also contained a section on protocol proposals; as remarked in the executive summary
this has now been separated into a separate report [114]. In some sense the current document su-
persedes the ECRYPT and ECRYPT2 “Yearly Report on Algorithms and Key Lengths” published
between 2004 and 2012 [104–111]. However, it should be considered as completely distinct. The
current document tries to provide a focused set of proposals in an easy to use form. The prior
ECRYPT documents provided more general background information and discussions on general
concepts with respect to key size choice, and tried to predict the future ability of cryptanalytic
attacks via hardware and software.

In this document we focus on just two decisions which we feel are more crucial to users of
cryptography. Firstly, whether a given primitive, scheme, or keysize can be considered for use
today if it is already deployed. We refer to such use as legacy use within our document. If a scheme
is not considered suitable for legacy use, or is only considered for such use with certain caveats,
then this should be taken as strong advice that the primitive or scheme be possibly replaced as a
matter of urgency (or even that an attack exists). A system which we deem not secure for legacy
use may still actually be secure if used within a specific environment, e.g. limited key life times,
mitigating controls, or (in the case of hash functions) relying on non-collision resistance properties.
However, in such instances we advise the user consults expert advise to see whether such specific
details are indeed relevant.

In particular, we stress, that schemes deemed to be legacy are considered to be secure currently.
But, that for future systems there are better choices available which means that retaining schemes
which we deem to be legacy in future systems is not best practice. We summarize this distinction
in Table 2.1.

Secondly, we consider the issue of whether a primitive, scheme, or key size is suitable for
deployment in new or future systems. In some sense mechanisms which we consider usable for
new and future systems meet a gold standard of cryptographic strength; they generally will have
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Classification Meaning

Legacy 7 Attack exists or security considered not sufficient.
Mechanism should be replaced in fielded products as a matter of urgency.

Legacy X No known weaknesses at present.
Better alternatives exist.
Lack of security proof or limited key size.

Future X Mechanism is well studied (often with security proof).
Expected to remain secure in 10-50 year lifetime.

Table 2.1: Summary of distinction between legacy and future use

proofs of security, will have key sizes equivalent to 128-bits symmetric security or more, will have
no structural weaknesses, will have been well studied and standardized.

As a general rule of thumb we consider symmetric 80-bit security levels to be sufficient for
legacy applications for the coming years1, but consider 128-bit security levels to be the minimum
requirement for new systems being deployed. Thus the key take home message is that decision
makers now make plans and preparations for the phasing out of what we term legacy mechanisms
over a period of say 5-10 years. In selecting key sizes for future applications we consider 128-bit
to be sufficient for all but the most sensitive applications. Thus we make no distinction between
high-grade security and low-grade security, since 128-bit encryption is probably secure enough in
the near term.

However, one needs to also take into account the length of time data needs to be kept secure
for. For example it may well be appropriate to use 80-bit encryption into the near future for
transactional data, i.e. data which only needs to be kept secret for a very short space of time;
but to insist on 128-bit encryption for long lived data. All proposals in this document need to be
read with this in mind. We concentrate on proposals which imply a minimal security level across
all applications; i.e. the most conservative approach. Thus this does not imply that a specific
application cannot use security levels lower than considered here.

The document does not consider any mechanisms which are currently only of academic interest.
In particular all the mechanisms we discuss have been standardized to some extent, and have either
been deployed or are due to be deployed in real world systems. This is not a critique of academic
research, but purely a means of focusing the document on mechanisms which will be of interest to
decision makers in industry and government.

Unlike the previous report [113] we consider implementation issues such as side channels result-
ing from timing, power, cache analysis etc, insufficient randomness generation and key life-cycle
management; as well as implementation issues related to the mathematical instantiation of the

1An exception is made for SHA-1: although it (probably) does not offer 80-bit security, it is still included for
legacy use in this year’s document. However, we propose removing SHA-1 from applications as soon as possible .
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scheme, such as padding oracle attacks etc.
As a restriction of scope, which we alluded to above, we do not make a comprehensive discussion

on how key size equivalents are decided upon (e.g. what RSA key size corresponds to what AES
key size). We refer to other comparisons in the literature in Section 3.1, but we feel repeating much
of this analysis would detract from the focus of this document.

2.1 Understanding Terminology and Structure

The document divides cryptographic mechanisms into primitives (such as block ciphers, public key
primitive and hash functions) and schemes (such as symmetric and public key encryption schemes,
signature schemes etc).

Protocols (such as key agreement, TLS, IPsec etc), discussed in [114], are themselves built out of
schemes, and schemes are themselves built out of primitives. At each stage of this process security
needs to be defined, and the protocol or scheme needs to be proven to meet this definition, given
the components it uses. So for example, just because a scheme makes use of a secure primitive
does not imply the scheme is secure; this needs to be demonstrated by a proof. Luckily for most
schemes in this report such proofs do exist.

Primitive - Scheme - Protocol

Cryptographic primitives are considered the basic building blocks upon which one needs to
make some assumption. This assumption is the level of difficulty of breaking this precise building
block; this assumption is always the cryptographic community’s current “best guess”. We discuss
primitives in detail in Chapter 3.

In Chapter 4 we then go onto discuss basic cryptographic schemes, and in Chapter 5 we discuss
more advanced or esoteric schemes. By a scheme we mean some method for taking a primitive, or
set of primitives, and constructing a cryptographic service out of the primitive. Hence, a scheme
could refer to a digital signature scheme or a mode of operation of a block cipher. It is considered
good cryptographic practice to only use schemes for which there is a well defined security proof
which reduces the security of the scheme to that of the primitive. So for example an attack against
CBC mode using AES should result in an attack against the AES primitive itself. Cryptographic
protocols are dealt with in the companion report [114].

In this 2014 report we add in a new chapter, Chapter 6, on a number of general issues related
to the deployment of cryptographic primitives and schemes. In this edition of the report we restrict
ourselves to hardware and software side-channels, to random number generation and to key life-cycle
management.
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2.2 Making a Decision

Making the distinction between schemes and primitives means we can present schemes as general
as possible and then allow users to instantiate them with secure primitives. However, this leads
to the question of what generally should the key size be for a primitive given, if is to be used
within a scheme? This might seem a simple question, but it is one which divides the cryptographic
community. There are two approaches to this problem:

1. A security proof which reduces security of a scheme to the security of an underlying primitive
can introduce a security loss. The “loss” is the proportion of additional effort an attacker
who can break the scheme needs to expend so as to break the primitive. This loss leads some
cryptographers to state that the key size of the primitive should be chosen with respect to
this loss. With such a decision, unless proofs are tight2, the key sizes used in practice will be
larger than one would normally expect. The best one can hope for is that the key size for the
scheme matches that of the underlying primitive.

2. Another school of thought says that a proof is just a design validation, and the fact a tight
proof does not exist may not be for fundamental reasons but could be because our proof
techniques are not sufficiently advanced. They therefore suggest picking key sizes to just
ensure the underlying primitive is secure.

It is this second, pragmatic, approach which we adopt in this document. It is also the approach
commonly taken in industry.

The question then arises as to how to read this document? Whilst the order of the document
is one of going from the ground up, the actual order of making a decision should be from the top
down. We consider two hypothetical situations. One in which a user wishes to select a public key
signature algorithm and another in which he wishes to select a public key encryption algorithm
for use in a specific protocol. Let us not worry too much about which protocol is being used, but
assume that the protocol says that one can select either RSA-PSS or EC-Schnorr as the public key
signature algorithm, and either RSA-OAEP or ECIES as the public key encryption algorithm.

2.2.1 Public key signatures

We first examine the signature algorithm case. The reader should first turn to the section on
signature schemes in Section 4.8. The reader should examine the discussion of both RSA-PSS and
EC-Schnorr in Sections 4.8.2 and 4.8.7 respectively. One finds that both signature schemes are
considered suitable for legacy applications and future applications. However, for “systems” reasons
(probably the prevalence of RSA based digital certificates) the user decides to go for RSA-PSS.
The RSA-PSS scheme is actually made up of two primitives; firstly the RSA primitive (discussed in
Section 3.5.1) and secondly a hash function primitive (discussed in Section 3.3). Thus the user now

2i.e. there is no noticeable security loss in the proof.
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needs to consider “which” RSA primitive to use (i.e. the underlying RSA key size) and which hash
function to use. The scheme itself will impose some conditions on the relevant sizes so they match
up, but this need not concern a reader of this document in most cases. Returning to RSA-PSS
we see that the user should use 1024-bit RSA moduli only for legacy applications and SHA-1 as a
hash function only for legacy applications. If that is all the user requires then this document would
support the user’s decision. However, if the user is looking at creating a new system without any
legacy concerns then this document cannot be used as a justification for using RSA moduli of 1024
bits and SHA-1 as the hash function. The user would instead be forced to consider RSA moduli of
3072 bits (or more) and a hash function such as the 256-bit variant of SHA-2.

2.2.2 Public key encryption

We now turn to comparing the choice of RSA-OAEP and the ECIES hybrid cipher. By examining
Chapters 4 and 5 on schemes (in particular Section 4.6.2 for RSA-OAEP and Section 4.7 for
ECIES) the user sees that whilst both schemes have security proofs and so can be used for future
applications, ECIES is better suited to long messages. They therefore decide to proceed with
ECIES, which means certain choices need to be made with respect to the various components. The
ECIES public key encryption scheme, being a hybrid cipher, is made from the ECIES-KEM scheme
(see Section 4.7.3), which itself makes use of a key derivation method (see Section 4.4 for various
choices of key derivation methods) and a Data Encapsulation Method, or DEM. A DEM is a form
of one-time authenticated symmetric encryption, see Section 4.3 for various possible instantiations.
This creates a huge range of possible instantiations, for which we now outline a possible decision
process and which we illustrate graphically in Figure 2.1. From examining Section 4.7.3 on ECIES-
KEM and Section 4.3 on authenticated symmetric encryption the user sees that ECIES-KEM is
supported for legacy and future use, and that so is Encrypt-Then-MAC as a DEM. Given these
choices for the components the user then needs to instantiate Encrypt-Then-MAC, which requires
the choice of an IND-CPA symmetric encryption scheme (i.e. a block cipher mode of operation
from Section 4.1) and a MAC algorithm from Section 4.2. Looking at these sections the user then
selects CTR mode (for use with some block cipher), and CMAC (again for use with some block
cipher). The KEM also requires use of a key derivation function from Section 4.4, which will output
a key for the block cipher in CTR mode and a separate key for the CMAC algorithm. The user at
this point could select the key derivation function that we denote X9.63-KDF, which itself requires
the use of a hash function. Only at this point does the user of this document examine Chapter 3 on
primitives so as to instantiate the precise elliptic curve group, the precise hash function for use in
the key derivation function and the block ciphers to be used in the CTR mode encryption and the
CMAC function. At this point a valid choice (for future applications) could be a 256-bit elliptic
curve group, the SHA-2 key derivation function, and the AES block cipher at 128-bit key-length.

We stress that the above decision, on how to instantiate ECIES, is just one possible amongst
all the various methods which this document supports.
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2.3 Comparison to Other Documents

This document is one of many which presents details on cryptographic primitives, key sizes and
schemes. Each of these documents has a different audience and purpose; our goal has been to
present an analysis of algorithms commonly used in current practice as well as providing state-
of-the-art advice as to adoption of algorithms in future systems. Our choices are often rather
conservative since we aim to give proposals for the constructions of systems with a long life cycle.

As already remarked this is an update of the 2013 ENISA report [113], which was itself strongly
related to the ECRYPT and ECRYPT2 reports [104–111]. As mentioned earlier the current doc-
ument is focused on making explicit proposals as opposed to providing a general framework and
summary as the original ECRYPT documents did.

Various government organisations provide advice, see annex A of [112], or mandates, in relation
to key size and algorithm choice for their own internal purposes. In these documents, the choice of
algorithms and key sizes is often done with an eye to internal systems and processes. The current
document extends the scope to a wider area, e.g., internet communication and hence in addition
considers algorithms deployed in various internet protocols.

Among the EU member states, there are a number of such documents including [16] published by
France, and [63,64] published by Germany. The key size recommendations of these three documents
are in almost all cases consistent with our own proposals for symmetric key sizes, hash function
sizes and elliptic curve key sizes. The documents [63] and [16] also mention integer factorisation
based primitives; our proposals are more conservative than these two documents. Along with [16]
we place a strong emphasis on using schemes with modern security proofs.

Further afield the US government maintains a similar document called Suite B [243], which
presents recommended algorithms and key sizes for various governmental uses. Again our analysis
is broadly consistent in terms of key sizes with this document.

All of these documents [16,63,64,243] also detail a number of concrete cryptographic schemes.
In this aspect our coverage is much wider due to our wider audience. For example all documents
recommend the use of AES, SHA-2 and elliptic curve based primitives, and some integer factori-
sation based primitives. As well as these basic primitives we also mention a number of other
primitives which are used in various deployed protocols, for example Camellia (in TLS), SNOW
3G (in GSM/LTE), as well as primitives used in systems designed a long time ago but which are
still in use (e.g. MD5, SHA-1, DES etc).

In terms of cryptographic schemes our coverage is much wider than that of [63, 64, 243]; this is
only to be expected as per our different audiences. As an example of this we cover a significant
number of MAC functions, authenticated encryption modes, and key derivation functions compared
to the other documents. In one aspect we diverge from [63, 64, 243] in that we propose the DSA
algorithm, and many of its variants, for use in legacy systems only. This is because DSA only
has a security proof in a relatively weak computational model [61]. For discrete logarithm based
signatures we propose schemes such as Schnorr signatures [318], which have stronger provable
security properties than DSA [244,280].
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Another form of comparison can be made with the documents of various standards organisa-
tions. The ones which have been most referred to in this report are those of IETF, ISO and NIST.
Divergences from our analysis (if any) in these standards are again due to the distinct audiences.
The IETF standardises the protocols which keeps the internet running, their main concern is hence
interoperability. As we have seen in recent years, with attacks on TLS and IPSec, this often leads to
compromises in algorithm selection and choice. The ISO takes a very liberal approach to standard-
ising cryptographic algorithms, with far more algorithms standardized than a report like this could
reasonably cover. We have selected algorithms from ISO (and dubbed them suitable/unsuitable
for legacy and future use) due to our perception of their importance in other applications. Finally
the NIST documents are more focused, with only a small subset of schemes being standardized.
A major benefit in the NIST standardization is that when security proofs are available they are
alluded to, and so one can judge the scientific basis of the recommendations.

Finally, we compare with the recommendations of the European Payments Council (EPC). In
their document [119] the EPC also divide cryptographic systems into those for legacy and those
for future use. They classify SHA-1, RSA moduli with 1024 bits, ECC keys of 160 bits as suitable
for legacy use, and 3DES, AES-128, SHA-2 (256 and 512 bit variants), SHA-3, Whirlpool, RSA
moduli with 2048 bits, ECC keys of 224 bits or more as suitable for future use. These are broadly
in line with our analysis.

2.4 Open Issues and Areas Not Covered

Much of the analysis in this document is focused on long term data retention issues (e.g. encrypted
stored data, or long term signatures). Many cryptographic systems only need to protect transient
data (i.e. transactional data) which has no long term value. In such situations some of the proposals
with respect to key size etc may need to be changed.

Due to time constraints there are also a number of areas which we have not touched upon in
this document. In terms of cryptographic schemes these contain, but are not limited to:

• Currently practical Post-Quantum Systems: The reason for examining these now is that
systems currently being deployed may need to be resistant against the future development of
a quantum computer, or may need to be designed so that a switch to a post-quantum system
is simple.

• Short signatures and signatures with message recovery: Short signatures are used in multiple
scenarios, and signatures with message recovery are used in currently deployed systems such
as the chip-and-pin system EMV. The current document does not cover such cryptographic
schemes.

• Encryption schemes which enable de-duplication of ciphertexts: The use of such schemes, and
other deterministic encryption schemes such as format preserving encryption, are becoming
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more used in real systems. Encryption which enables de-duplication is important to enable
secure cloud backup.

It is hoped that if this document were to be revised in future years that the opportunity would be
taken to also include the afore mentioned mechanisms.
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Figure 2.1: Just some of the design space for instantiating the ECIES public key encryption algorithm.

Note, that not all standards documents will support all of these options. To read this diagram: A group

of arrows starting with a circle implies the implementer needs to choose one of the resulting paths. A set

of three arrows implies a part of the decision tree which we have removed due to space. In addition (again

for reasons of space) we do not list all possible choices, e.g. some hash functions can be block cipher based.

Even with these restrictions one can see the design space for a cipher as well studied and understood as

ECIES can be quite complex.
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Chapter 3

Primitives

This chapter is about basic cryptographic building blocks, the atoms out of which all other crypto-
graphic constructions are produced. In this section we include basic symmetric key building blocks,
such as block ciphers, hash functions and stream ciphers; as well as basic public key building blocks
such as factoring, discrete logarithms and pairings. With each of these building blocks there is some
mathematical hard problem underlying the primitive. For example the RSA primitive is based on
the difficulty of factoring, the AES primitive is (usually) based on it representing a keyed pseudo-
random permutation. That these problems are hard, or equivalently, the primitives are secure is
an assumption which needs to be made. This assumption is often based on the specific parameters,
or key lengths, used to instantiate the primitives.

Modern cryptography then takes these building blocks/primitives and produces cryptographic
schemes out of them. The defacto methodology, in modern work, is to then show that the result-
ing scheme, when attacked in a specific cryptographic model, is secure assuming the underlying
assumption on the primitive holds. So another way of looking at this chapter and the next, is that
this chapter presents the constructions for which we cannot prove anything rigorously, whereas
the next chapter presents the schemes which should have proofs relative to the primitives in this
chapter actually being secure.

In each section we use the term observation to point out something which may point to a longer
term weakness, or is purely of academic interest, but which is not a practical attack at the time of
writing. In each section we also give a table, and group the primitives within the table in order of
security strength (usually).

3.1 Comparison

In making a decision as to which cryptographic mechanism to employ, one first needs to choose the
mechanism and then decide on the key length to be used. In later sections and chapters we focus
on the mechanism choice, whereas in this section we focus just on the key size. In some schemes
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the effective key length is hardwired into the mechanism, in others it is a parameter to be chosen,
in some there are multiple parameters which affect the effective key length.

There is common understanding that what we mean by an effective key length is that an attack
should take 2k operations for an effective key length of k. Of course this understanding is itself not
well defined as we have not defined what an operation is; but as a rule of thumb it should be the
“basic” operation of the mechanism. This lack of definition of what is meant by an operation means
that it is hard to compare one mechanism against another. For example the best attack against a
block cipher of key length kb should be equivalent to 2kb block cipher invocations, whereas the best
known attack against an elliptic curve system with group order of ke bits should be 2ke/2 elliptic
curve group operations. This often leads one to conclude that one should take ke = 2 · kb, but this
assumes that a block cipher call is about the same cost as an elliptic curve group operation (which
may be true on one machine, but not true on another).

This has led authors and standards bodies to conduct a series of studies as to how key sizes
should be compared across various mechanisms. The “standard” method is to equate an effective
key size with a specific block cipher, (say 112 corresponds to two or three key Triple-DES, 128
corresponds to AES-128, 192 corresponds to AES-192, and 256 corresponds to AES-256), and then
try to establish an estimate for another mechanisms key size which equates to this specific quanta
of effective key size.

In comparing the different literature one meets a major problem in that not all studies compare
the same base symmetric key sizes; or even do an explicit comparison. The website http://

www.keylength.com takes the various proposed models from the the literature and presents a
mechanism to produce such a concrete comparison. In Table 3.1 we present either the concrete
recommendations to be found in the literature, or the inferred recommendations presented on the
web site http://www.keylength.com.

We focus on the symmetric key size k, the RSA modulus size `(N) (which is also the size
of a finite field for DLP systems) and the discrete logarithm subgroup size `(q); all of which are
measured in bits. Of course these are just crude approximations and hide many relationships
between parameters which we discuss in future sections below. As one can see from the table the
main divergence in estimates is in the selection of the size `(N) of the RSA modulus.

As one can see, as the symmetric key size increases the size of the associated RSA moduli needs
to become prohibitively large. Ignoring such large value RSA moduli we see that there is surprising
agreement in the associated size of the discrete logarithm subgroup q, which we assume to be an
elliptic curve group order.

Our implicit assumption is that the above key sizes are for (essentially) single use applications.
As a key is used over and over again its security degrades, due to various time-memory tradeoffs.
There are often protocol and scheme level procedures to address this issue; for example salting in
password hashing or the use of short lived session keys. The same holds true in other situations, for
example in [46], it is shown that AES-128 has only 85-bit security if 243 encryptions of an arbitrary
fixed text under different keys are available to the attacker.

Very little literature discusses the equivalent block length for block ciphers or the output length
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k `(N) `(q) k `(N) `(q) k `(N) `(q) k `(N) `(q) k `(N) `(q)

Lenstra–Verheul 2000 [217] ?
80 1184 142 112 3808 200 128 5888 230 192 20160 350 256 46752 474

Lenstra 2004 [214] ?
80 1329 160 112 3154 224 128 4440 256 192 12548 384 256 26268 512

IETF 2004 [268] ?
80 1233 148 112 2448 210 128 3253 242 192 7976 367 256 15489 494

SECG 2009 [319]
80 1024 160 112 2048 224 128 3072 256 192 7680 384 256 15360 512

NIST 2012 [262]
80 1024 160 112 2048 224 128 3072 256 192 7680 384 256 15360 512

ECRYPT2 2012 [107]
80 1248 160 112 2432 224 128 3248 256 192 7936 384 256 15424 512

Table 3.1: Key Size Comparisons in Literature. An entry marked with a ? indicates an inferred
comparison induced from the web site http://www.keylength.com. Where a range is given by the
source we present the minimum values. In the columns k is the symmetric key size, `(N) is the
RSA modulus size (or finite field size for finite field discrete logarithms) and `(q) is the subgroup
size for finite field and elliptic curve discrete logarithms.

of hash functions or MAC functions; since this is very much scheme/protocol specific. A good rule
of thumb for hash function outputs is that they should correspond in length to 2 ·k, since often hash
functions need to be collision resistant. However, if only preimage or second-preimage resistance is
needed then output sizes of k can be tolerated.

The standard [259] implicitly recommends that the MAC key and and MAC output size should
be equal to the underlying symmetric key size k. However, the work of Preneel and van Oorschot
[285, 286], implies attacks on MAC functions requiring 2n/2 operations, where n is the key size, or
the size of the MAC functions internal memory. These recommendations can be problematic with
some MAC function constructions based on block ciphers at high security levels, as no major block
cipher has block length of 256 bits. In addition one needs to distinguish between off-line attacks,
in which a large MAC output size is probably justified, and an on-line attack, where smaller MAC
output sizes can be tolerated. Thus choice of the MAC output size can be very much scheme,
protocol, or even system, dependent.

3.2 Block Ciphers

By a block cipher we mean (essentially) a keyed pseudo-random permutation on a block of data of
a given length. A block cipher is not an encryption scheme, it is a component (in our terminology
primitive) which goes into making such a scheme; often this is done via a mode of operation. In this
section we consider whether a given block cipher construction is secure, in the sense that it seems
to act like a pseudo-random permutation. Such a security consideration can never be proven, it
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is a mathematical assumption, akin to the statement that factoring 3072-bit moduli is hard. The
schemes we present in Chapter 4, that use block ciphers, are often built on the assumption that
the block cipher is secure in the above sense.

Some cryptanalysists include the resistance against related-key attacks in the security evaluation
of a block cipher. We include these results for completeness. Note however that the existence of a
related-key attack on a given block cipher does not contradict the assumption that the block cipher
acts as a pseudo-random permutation. Furthermore, the soundness of security models allowing for
related-key attacks is still under investigation.

Generally speaking we feel the minimum key size for a block cipher should be 128 bits; the
minimum for the block size depends on the precise application but in many applications (for example
construction of MAC functions) a 128-bit block size should now be considered the minimum. We
also consider that the maximum amount of data which should be encrypted under the same key
should be bounded by 2n/2 blocks, where n is the block size in bits. However, as indicated before
some short lived cryptograms may warrant smaller block and key sizes in their constructions; but
for general applications we advise a minimum of 128 bits.

Again, for each primitive we give a short description of state of the art with respect to known
attacks, we then give guidelines for minimum parameter sizes for future and legacy use. For
convenience these guidelines are summarised in Table 3.2.

Classification
Primitive Legacy Future

AES X X
Camellia X X
Three-Key-3DES X 7

Two-Key-3DES X 7

Kasumi X 7

Blowfish≥80-bit keys X 7

DES 7 7

Table 3.2: Block Cipher Summary

3.2.1 Future Use Block Ciphers

AES

The Advanced Encryption Standard, or AES, is the block cipher of choice for future applications
[89,120]. AES is called 128-EIA 2 in LTE. The AES has a block length of 128 bits and supports 3
key lengths: 128, 192 and 256 bits. The versions with longer key lengths use more rounds and are
hence slower (by 20, respectively 40%).
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Observation: The strong algebraic structure of the AES cipher has led some researchers to suggest
that it might be susceptible to algebraic attacks [87, 240]. However, such attacks have not been
shown to be effective [77,219].

For the 192- and 256-bit key versions there are related key attacks [44, 45]. For AES-256 this
attack, using four related keys, requires time 299.5 and data complexity 299.5. The attack works
due to the way the key schedule is implemented for the 192- and 256-bit keys (due to the mismatch
in block and key size), and does not affect the security of the 128-bit variant. Related key attacks
can clearly be avoided by always selecting cryptographic keys independently at random.

A bi-clique technique can be applied to the cipher to reduce the complexity of exhaustive
key search. For example in [51] it is shown that one can break AES-128 with 2126.2 encryption
operations and 288 chosen plaintexts. For AES-192 and AES-256 these numbers become 2189.7/240

and 2254.4/280 respectively.

Camellia

The Camellia block cipher is used as one of the possible cipher suites in TLS, and unlike AES is of
a Feistel cipher design. Camellia has a block length of 128 bits and supports 3 key lengths: 128,
192 and 256 bits [224]. The versions with a 192- or a 256-bit key are 33% slower than the versions
with a 128-bit key.

Observation: Just as for AES there is a relatively simple set of algebraic equations which define
the Camellia transform; this might leave it open to algebraic attacks. However, just like AES such
attacks have not been shown to be effective.

3.2.2 Legacy Block Ciphers

3DES

Comes in two variants; a two key version with a 112-bit key and a three key version with a 168-bit
key [263]. The effective key length of three key 3DES is 112 bits and not 168 bits as one would
expect. The small block length (64-bits) is a problem in some applications.

Observation: Due to meet-in-the-middle attacks the security is not as strong as the key length
would suggest. For the two key variant the security is 2120−t where 2t plaintext/ciphertext pairs
are obtained [339]. For the three key variant the security is reduced to 2112.

Observation: For both variants, related-key attacks with complexity 288 are published [275]. For
the three-key variant, a trivial related-key attack for the related keys k1‖k2‖k3 and k1‖k2‖k3, where
k is the bitwise complement of k, with complexity of 256 exists in the folk lore.

Kasumi

This cipher [117], used in 3GPP, has a 128-bit key and 64-bit block size is a variant of MISTY-1.
Kasumi is called UIA1 in UMTS and is called A5/3 in GSM
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Observation: Whilst some provable security against linear and differential cryptanalysis has been
established [188], the cipher suffers from a number of problems. A related key attack [41] requiring
276 operations and 254 plaintext/ciphertext pairs has been presented. In [100] a more efficient
related key attack is given which requires 232 time and 226 plaintext/ciphertext pairs. These
attacks do not affect the practical use of Kasumi in applications such as 3GPP, however given them
we do not advise to use Kasumi in further applications.

Blowfish

This cipher [317] has a 64-bit block size, which is too small for some applications and the reason we
only advise it for legacy use. It also has a key size ranging from 32- to 448-bits, which we clearly
only endorse using at 80-bits and above for legacy applications. The Blowfish block cipher and is
used in some IPsec configurations.

Observation: There have been a number of attacks on reduced round versions [189,292,341] but
no attacks on the full cipher.

3.2.3 Historical (non-endorsed) Block Ciphers

DES

DES has a 56-bit key and 64-bit block size and so is not considered secure by today’s standards.
It is susceptible to linear [42] and differential cryptanalysis [225].

3.3 Hash Functions

Hash function outputs should be, in our opinion, a minimum of 160 bits in length for legacy
applications and 256 bits in length for all new applications. Hash functions are probably the
area of cryptography which has had the most attention in the past decade. This is due to the
spectacular improvements in the cryptanalysis of hash functions, as well as the subsequent SHA-3
competition to design a replacement for our existing set of functions. Most existing hash functions
are in the Merkle–Damg̊ard family, and derive much of their design philosophy from the MD-4
hash function; such hash functions are said to be in the MD-X family. This family includes MD-4,
MD-5, RIPEMD-128, RIPEMD-160, SHA-1 and SHA-2. Hash functions built from block ciphers,
as considered in [159] are not considered in this report.

3.3.1 Future Use Hash Functions

SHA-2

SHA-2 is actually a family of four algorithms, SHA-224, SHA-256, SHA-384 and SHA-512. SHA-
224 (resp. SHA-384) is a variant itself of SHA-256 (resp. SHA-512), but just uses a different IV
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Output Classification
Primitive Length Legacy Future

SHA-2 256, 384, 512 X X
SHA3 256,384,512 X X
Whirlpool 512 X X
SHA3 224 X 7

SHA-2 224 X 7

RIPEMD-160 160 X 7

SHA-1 160 X1 7

MD-5 128 7 7

RIPEMD-128 128 7 7

Table 3.3: Hash Function Summary

and then truncates the output. Due to our decision of symmetric security lengths of less than 128
being only suitable for legacy applications we denote SHA-224 as in the legacy only division of our
analysis.

Observation: For SHA-224/SHA-256 (resp. SHA-384/SHA-512) reduced round collision attacks
31 out of 64 (resp. 24 out of 80) have been reported [156, 233, 310]. In addition reduced round
variants 43 (resp. 46) have also been attacked for preimage resistance [17,136].

SHA3

The competition organised by NIST to find an algorithm for SHA3 ended on October 2nd, 2012,
with the selection of Keccak [127]. In April 2014, a draft version of FIPS 202 describing SHA3 has
been released [121]. The draft standard contains 4 hash functions: SHA3-224, SHA3-256, SHA3-384
and SHA3-512.

Observation: Reduced round collision attacks (4 out of 24) have been reported [95]. For appli-
cations that use a secret key as part of the input of a hash function, cube attacks with practical
complexity have been shown for up to 6 rounds of Keccak [96].

Whirlpool

Whirlpool produces a 512-bit hash output and is not in the MD-X family; being built from AES
style methods, thus it is a good alternative to use to ensure algorithm diversity.

Observation: Preimage attacks on 5 (out of 10) rounds have been given [311], as well as collisions
on 5.5 rounds [210], with complexity 2120. In [314] this is extended to 6 rounds, with 2481 computa-
tion cost. Collision attacks are also given in [314] where eight rounds are attacked with complexity
2120.
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3.3.2 Legacy Hash Functions

RIPEMD-160

Collision attacks on 36 rounds (out of 80) have been found [232]. These were extended to 42 rounds
in [234].

SHA-1

SHA-1 is in widespread use and was designed to provide protection against collision finding of 280, it
was standardized in NIST-180-4 [248]. However, several authors claim that collisions can be found
with a computational effort that is significantly lower [236, 346, 347]. The current best analysis is
that of 261 operations, reported in [330]. On the other hand explicit collisions for the full SHA-1
have not yet been found, despite collisions for a reduced round variant (73 rounds out of 80) being
found [102].

Due to the importance we repeat the footnote from Page 12: We have decided to keep SHA-1
as a legacy use algorithm since SHA-3 has not yet been officially standardized. The expectation is
that as soon as SHA-3 is standardized then SHA-1 will be removed from the legacy use category.
Therefore it is recommended that parties take immediate steps to stop using SHA-1 in legacy
applications.

Observation: The literature also contains preimage attacks on a variant reduced to 45-48 rounds
[18,66].

3.3.3 Historical (non-endorsed) Hash Functions

MD-5

Despite being widely deployed the MD-5 hash function should not be considered secure. Collisions
can be found within seconds on a modern desktop computer. The literature on the collision weakness
of MD-5 and its impact in various scenarios is wide [218, 313, 331–333]. Preimage resistance can
also be broken in time 2124.4 [312].

RIPEMD-128

Given an output size of 128-bits, collisions can be found in RIPEMD-128 in time 264 using generic
attacks, thus RIPEMD-128 can no longer be considered secure in a modern environment irrespective
of any cryptanalysis which reduces the overall complexity. Practical collisions for a 3-round variant
were reported in 2006, [235]. In [211] further cryptanalytic results were presented which lead one
to conclude that RIPEMD-128 is not to be considered secure.
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3.4 Stream Ciphers

Generally speaking stream ciphers should be used with a distinct IV for each message, unless
the key is used in a one-time manner (as for example in a DEM construction). Again, for each
cipher we give a short description of state of the art with respect to known attacks, we then give
guidelines for minimum parameter sizes for future and legacy use. For convenience these guidelines
are summarised in Table 3.4. Where possible, it is probably better to use a block cipher in mode
such as CTR mode than a dedicated stream cipher. Dedicated stream ciphers offer performance
advantages over AES in CTR mode, but historically the science of stream cipher design lags that
of block cipher and mode of operation design.

Classification
Primitive Legacy Future

HC-128 X X
Salsa20/20 X X
ChaCha X X
SNOW 2.0 X X
SNOW 3G X X
SOSEMANUK X X
Grain X 7

Mickey 2.0 X 7

Trivium X 7

Rabbit X 7

A5/1 7 7

A5/2 7 7

E0 7 7

RC4 7 7

Table 3.4: Stream Cipher Summary

3.4.1 Future Use Stream Ciphers

HC-128

HC-128 was an entrant to the eSTREAM competition and included in the final eSTREAM portfolio
as promising for software implementations [353]. HC-128 uses a 128-bit key together with a 128-bit
initialisation vector.

HC-256 uses 256-bit keys and initialisation vectors, is older dan HC-128, but was not submitted
to the eSTREAM evaluation [352].
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Salsa20/20 and ChaCha

Salsa20/r was an entrant to the eSTREAM competition [37]. It supports key lengths of 128 and
256 bits. The parameter r refers to the number of rounds used. Salsa20/12 was included in the final
eSTREAM portfolio as promising for software implementations. The author of Salsa20 recommends
to use the full 20 rounds for real applications.

The ChaCha stream cipher is a variant on the Salsa20 family. It modifies the Salsa design to
obtain a better performance and increased diffusion. The ChaCha stream cipher forms the basis
of the finalist to the SHA-3 hash function competition. The ChaCha cipher is used within the web
browser Chrome.

Observation: Aumasson et al. report an attack on Salsa20/8 requiring 2251 encryptions and 231

chosen IVs [21]. This also applies to the ChaCha family but decreased performance.

SNOW 2.0

SNOW 2.0 comes in a 128 and 256-bit key variants. The cipher is included in ISO/IEC 18033-4 [165]

Observation: A distinguishing attack against SNOW 2.0 is theoretically possible [266], but it
requires 2174 bits of key-stream and work. A related-key attack exists on SNOW 2.0 with 256-bit
key [195].

SNOW 3G

SNOW 3G is an enhanced version of SNOW 2.0, the main change being the addition of a second
S-Box as a protection against future advances in algebraic cryptanalysis. It uses a 128-bit key and
a 128-bit IV. The cipher is the core of the algorithms UEA2 and UIA2 of the 3GPP UMTS system,
which are identical to the algorithms 128-EIA1 and 128-EEA1 in LTE.

SOSEMANUK

SOSEMANUK was an entrant to the eSTREAM competition and included in the final eSTREAM
portfolio as promising for software implementations [34]. SOSEMANUK supports key lengths from
128 to 256 bits together with a 128-bit initialisation vector. The designers of SOSEMANUK don’t
claim more than 128 bits of security for any key length.

The literature contains several attacks on SOSEMANUK, which don’t break the claim of 128-
bit security. An attack requiring only a few words of key stream and with time complexity 2176

was shown in [122]. An attack requiring 2138 words of key stream and with time complexity 2138

was shown in [76,213].

Page: 29



Algorithms, Key Size and Parameters Report

3.4.2 Legacy Stream Ciphers

Grain v1

Grain refers to a family of stream ciphers. The original version was an entrant to the eSTREAM
competition [149]. After cryptanalysis [35], it was revised to Grain v1 [148]. The Grain v1 version
supporting an 80-bit key and a 64-bit initialisation vector was included in the final eSTREAM
portfolio as promising for hardware implementations. Grain 128, which is the version of Grain v1
with 128-bit key and 80-bit initialisation vector, is not endorsed. Instead, Grain 128a has been
proposed recently [4]. At this time, it is too early to endorse the use of Grain 128a.

Mickey 2.0

Mickey 2.0 was evaluated by the eSTREAM competition and included in the final eSTREAM portfo-
lio as promising for hardware implementations [22]. It uses an 80-bit key and an 80-bit initialisation
vector. There exists also a scaled-up version Mickey-128 using 128-bit keys and initialisation values,
but this version has not been officially evaluated by eSTREAM [22].

Rabbit

Rabbit was an entrant to the eSTREAM competition and included in the final eSTREAM portfolio
as promising for software implementations. Rabbit uses a 128-bit key together with a 64-bit IV.
Rabbit is described in RFC 4503 and is included in ISO/IEC 18033-4 [165]. In [91] a distinguishing
attack on Rabbit is described. The effect of this in practice has yet to be quantified thus for 2014
we downgrade Rabbit from suitable for future use, to only suitable for legacy use.

Trivium

Trivium was an entrant to the eSTREAM competition and included in the final eSTREAM portfolio
as promising for hardware implementations. It has been included in ISO/IEC 29192-3 on lightweight
stream ciphers [168]. Trivium uses an 80-bit key together with an 80-bit IV.

Observation: There has been a number of papers on the cryptanalysis of Trivium and there
currently exists no attack against full Trivium. Aumasson et al. [20] present a distinguishing attack
with complexity 230 on a variant of Trivium with the initialisation phase reduced to 790 rounds
(out of 1152). Maximov and Biryukov [228] present a state recovery attack with time complexity
around 283.5. This attack shows that Trivium with keys longer than 80 bits provides no more
security than Trivium with an 80-bit key. It is an open problem to modify Trivium so as to obtain
128-bit security in the light of this attack.
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3.4.3 Historical (non-endorsed) Stream Ciphers

A5/1

A5/1 was originally designed for use in the GSM protocol. It is initialised using a 64-bit key and a
publicly known 22-bit frame number. The design of A5/1 was initially kept secret until 1994 when
the general design was leaked and has since been fully reverse engineered. The cipher has been
subject to a number of attacks. The best attack was shown to allow for real-time decryption of
GSM mobile phone conversations [26]. As result this cipher is not considered to be secure.

A5/2

A5/2 is a weakened version of A5/1 to allow for (historic) export restrictions to certain countries.
It is therefore not considered to be secure.

E0

The E0 stream cipher is used to encrypt data in Bluetooth systems. It uses a 128-bit key and no
IV. The best attack recovers the key using the first 24 bits of 224 frames and 238 computations [221].
This cipher is therefore not considered to be secure.

RC4

RC4 comes in various key sizes. Despite widespread deployment the RC4 cipher has for many years
been known to suffer from a number of weaknesses. There are various distinguishing attacks [222],
and state recovery attacks [229]. (An efficient technique to recover the secret key from an internal
state is described in [40].)

An important shortcoming of RC4 is that it was designed without an IV input. Some ap-
plications, notably WEP and WPA “fix” this by declaring some bytes of the key as IV, thereby
effectively enabling related-key attacks. This has led to key-recovery attacks on RC4 in WEP [344].
When initialised the first 512 output bytes of the cipher should be discarded due to statistical
biases. If this step is omitted, then key-recovery attacks can be accelerated, e.g. those on WEP
and WPA [322].

Despite statistical biases being known since 1995, SSL/TLS does not discard any of the output
bytes of RC4; this results in recent attacks by AlFardan et al. [6] and Isobe et al. [158].

3.5 Public Key Primitives

For each primitive we give a short description of state of the art with respect to known attacks, we
then give guidelines for minimum parameter sizes for future and legacy use. For convenience these
guidelines are summarised in Table 3.5. In the table we let `(·) to denote the logarithm to base
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two of a number; a ? denotes some conditions which also need to be tested which are explained in
the text.

Primitive Parameters Legacy System Minimum Future System Minimum

RSA Problem N, e, d `(n) ≥ 1024, `(n) ≥ 3072

e ≥ 3 or 65537, d ≥ N1/2 e ≥ 65537, d ≥ N1/2

Finite Field DLP p, q, n `(pn) ≥ 1024 `(pn) ≥ 3072
`(p), `(q) > 160 `(p), `(q) > 256

ECDLP p, q, n `(q) ≥ 160, ? `(q) > 256, ?

Pairing p, q, n, d, k `(pk·n) ≥ 1024 `(pk·n) ≥ 3072
`(p), `(q) > 160 `(p), `(q) > 256

Table 3.5: Public Key Summary

3.5.1 Factoring

Factoring is the underlying hard problem behind all schemes in the RSA family. In this section we
discuss what is known about the mathematical problem of factoring, we then specialise to the math-
ematical understanding of the RSA Problem. The RSA Problem is the underlying cryptographic
primitive, we are not considering the RSA encryption or signature algorithm at this point. In fact
vanilla RSA should never be used as an encryption or signature algorithm, the RSA primitive (i.e.
the RSA Problem) should only be used in combination with one of the well defined schemes from
Chapter 4.

Since the mid-1990s the state of the art in factoring numbers of general form has been determined
by the factorisation of the RSA-challenge numbers. In the last decade this has progressed at the
following rate RSA-576 (2003) [124], RSA-640 (2005) [125], RSA-768 (2009) [197]. These records
have all been set with the Number Field Sieve algorithm [216]. It would seem prudent that only
legacy applications should use 1024 bit RSA modulus going forward, and that future systems should
use RSA keys with a minimum size of 3072 bits.

Since composite moduli for cryptography are usually chosen to be the product of two large
primes N = p · q, to ensure they are hard to factor it is important that p and q are chosen of the
same bit-length, but not too close together. In particular

• If `(p)� `(q) then factoring can be made easier by using the small value of p (via the ECM
method [184]). Thus selecting p and q such that 0.1 < |`(p)− `(q)| ≤ 20, is a good choice.

• On the other hand if |p − q| is less than N1/4 then factoring can be accomplished by the
Coppersmith’s method [80].

Selecting p and q to be random primes of bit length `(N)/2 will, with overwhelming probably,
ensure that N is hard to factor with both these techniques.
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RSA Problem

Cryptosystems based on factoring are actually usually based not on the difficulty of factoring but
on the difficulty of solving the RSA problem. The RSA Problem is defined to be that of given an
RSA modulus N = p · q, an integer value e such that gcd(e, (p − 1) · (q − 1)) = 1, and a value
y ∈ Z/NZ find the value x ∈ Z/NZ such that xe = y (mod N).

If e is too small such a problem can be easily solved, assuming some side information, using
Coppersmith’s lattice based techniques [78, 79, 81]. Thus for RSA based encryption schemes it is
common to select e ≥ 65537. For RSA based signature schemes such low values of e do not seem
to be a problem, thus it is common to select e ≥ 3. For efficiency one often takes e to be as small
a prime as the above results would imply; thus it is very common to find choices of e = 65537
for encryption and e = 3 for signatures in use. In keeping with the conservative nature of the
suggestions in this report we suggest using e = 65537 for future systems using RSA signatures.

The RSA private key is given by d = 1/e (mod (p − 1) · (q − 1)). Some implementers may be
tempted to choose d “small” and then select e so as to optimise the private key operations. Clearly,
just from naive analysis d cannot be too small. However, lattice attacks can also be applied to
choices of d less than N0.292 [53, 350]. Lattice attacks in this area have also looked at situations
in which some of the secret key leaks in some way, see for example [115, 151]. We therefore advise
that d is chosen such that d > N1/2, this will happen with overwhelming probability if the user
selects e first and then finds d. Indeed, if standard practice is followed and e is selected first then
d will be of approximately the same size as N with overwhelming probability.

3.5.2 Discrete Logarithms

The discrete logarithm problem can be defined in any finite abelian group. The basic construction
is to take a finite abelian group of large prime order q generated by an element g. The discrete
logarithm problem is to recover x ∈ Z/qZ from the value h = gx. It is common for the group
and generator to be used by a set of users; in this case the tuple {〈g〉, q} is called a set of Domain
Parameters.

Whilst the DLP is the underlying number theoretic problem in schemes based on the discrete
logarithm problem, actual cryptographic schemes base their security on (usually) one of three
related problems; this is similar to how factoring based schemes are usually based on the RSA
problem and not factoring per se. The three related problems are:

• Computational Diffie–Hellman problem: Given gx and gy for hidden x and y compute gx·y.

• Decision Diffie–Hellman problem: Given gx, gy and gz for hidden x, y and z decide if z = x ·y.

• Gap Diffie–Hellman problem: Given gx and gy for hidden x and y compute gx·y, given an
oracle which allows solution of the Decision Diffie–Hellman problem.
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Clearly the ability to solve the DLP will also give one the ability to solve the above three problems,
but the converse is not known to hold in general (although it is in many systems widely believed
to be the case).

Finite Field DLP

The discrete logarithm problem in finite fields (which we shall refer to simply as DLP), and hence
the Diffie–Hellman problem, Decision Diffie–Hellman problem and gap Diffie–Hellman problem, is
parametrised by the finite field Fpn and the subgroup size q, which should be prime. In particular
this means that q divides pn− 1. To avoid “generic attacks” the value q should be at least 160 bits
in length for legacy applications and at least 256 bits in length for new deployments.

For the case of small prime characteristic, i.e. p = 2, 3 a new algorithm was presented early
2013 by Joux [181], which runs in time L(1/4 + o(1)), for when the extension degree n is composite
(which are of relevance to pairing based cryptography). This algorithm was quickly supplanted
by an algorithm which runs in quasi-polynomial time by Barbulescu and others [24]. Also in 2013
a series of record breaking calculations were performed by a French team and an Irish team for
characteristic two fields, resulting in the records of F26120 [135] and F26168 [179]. For characteristic
three the record is F3582 [338]. For prime values of n the best result is a discrete logarithm calculation
in the field F2809 [57]. All of these results make use of special modification to the function field sieve
algorithm [3]. In light of these results no system should be deployed relying on the hardness of the
DLP in small characteristic fields. It is for this reason that we impose the condition `(p) > 256
(resp. `(p) > 160 for legacy systems) in Table 3.5.

For large prime fields, i.e. n = 1, the algorithm of choice is a variant of the Number Field
Sieve [132]. The record here is for a finite field Fp with p a 530 bit prime [196] set in 2007. In light
of the “equivalence” between the number field sieve for factoring and that for discrete logarithms
our advise is in this case that legacy applications should use 1024 bit p, and new systems should
use a minimum p of 3072 bits.

There has been some work on the case of so called medium prime fields; fields with p larger than
100 and 1 < n < 100, see for example [180,182]. Currently these algorithms have no cryptographic
impact; although this might change if the fields being considered have impact on pairing based
cryptography (see Section 3.5.3). This is because all pairing based applications according to our
advise below have log2(p) ≥ 160.

ECDLP

Standard elliptic curve cryptography (i.e. ECC not using pairings) comes in two flavours in practice,
either systems are based on elliptic curves over a large prime field E(Fp), or they are based on elliptic
curves over a field of characteristic two E(F2n). We denote the field size by pn in what follows, so
when writing pn we implicitly assume either p = 2 or n = 1. We let q denote the largest prime
factor of the group order and let h denote the “cofactor”, so h · q = #E(Fpn). To avoid known
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attacks one selects these parameters so that

• The smallest t such that q divides pt·n − 1 is such that extracting discrete logarithms in the
finite field of size pt·n is hard. This is the so called MOV condition [237].

• If n = 1 then we should not have p = q. These are the so-called anomalous curves for which
there is a polynomial time attack [315,321,329].

• If p = 2 then n should be prime. This is to avoid so-called Weil descent attacks [129].

The above three conditions are denoted by ? in Table 3.5. It is common, to avoid small subgroup
attacks, for the curve to be chosen such that h = 1 in the case of n = 1 and h = 2 or 4 in the
case of p = 2. To avoid implementation mistakes in protocols we strongly advise that curves are
selected with h = 1. Some fast implementations can be obtained when h = 4, but when using these
protection against small subgroup attacks need to be also implemented.

There are a subclass of curves called Koblitz curves in the case of p = 2 which offer some
performance advantages, but we do not consider the benefit to outweigh the cost for modern
processors thus our discussion focuses on general curves only. Some standards, e.g. [116] stipulate
that the class number of the associated endomorphism ring must be larger than some constant (e.g.
200). We see no cryptographic reason for making this recommendation, since no weakness is known
for such curves. If curves are selected at random it is over whelmingly likely that the curve has a
large endomorphism ring in any case.

The largest ECDLP records have been set for the case of n = 1 with a p of size 109-bits [56],
and for p = 2 with n = 109 [70]. These record setting achievements are all performed with the
method of distinguished points [340], which is itself based on Pollard’s rho method [282]. To avoid
such “generic attacks” the value q should be at least 160 bits in length for legacy applications and
at least 256 bits in length for new deployments.

Various standards, e.g. [13, 14, 320] specify a set of recommended curves; many of which also
occur in other standards and specifications, e.g. in TLS [48]. Due to issues of interoperability the
authors feel that using a curve specified in a standard is best practice. Thus the main choice for
an implementer is between curves in characteristic two and large prime characteristic.

3.5.3 Pairings

Pairing based systems take two elliptic curves E(Fpn) and Ê(Fpn·d), each containing a subgroup of
order q. We denote the subgroup of order q in each of these elliptic curves by G1 and G2. Pairing
based systems also utilise a finite field Fpk·n , where q divides pk·n − 1. These three structures are

linked via a bilinear mapping t̂ : G1×G2 −→ GT , where GT is the multiplicative subgroup of Fpk·n
of order q. The value k is called the embedding degree, and we always have 1 ≤ d ≤ k. Whilst there
are many hard problems on which pairing based cryptography is based, the most efficient attack is
almost always the extraction of discrete logarithms in either one of the elliptic curves or the finite
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field (although care needs to be taken with some schemes due to the additional information the
scheme makes available).

Given our previous discussion on the finite field DLP and the ECDLP the parameter choices
for legacy and new systems are immediate. In addition, note that the conditions in Table 3.5 for
pairings immediately imply all the special conditions for elliptic curve based systems indicated by
a ? in the ECDLP row. This explains the lack of a ? in the pairing row of Table 3.5.

3.6 Key Size Analysis

Providing key sizes for long term use is somewhat of a hit-and-miss affair, for a start it assumes that
the algorithm you are selecting a key size for is not broken in the mean time. So in providing key
sizes for specific application domains we make an implicit assumption that the primitive, scheme
or protocol which utilises this key size is not broken in the near future. All primitives and schemes
marked as suitable for future use in this document we have confidence will remain secure for a
significant period of time.

Making this assumption still implies a degree of choice as to key size however. The AES block
cipher may remain secure for the next fifty years, but one is likely to want to use a larger key size
for data which one wishes to secure for fifty years as opposed to, say, five years. Thus in providing
key size guidelines we make two distinct cases for schemes relevant for future use. The first cases is
for security which you want to ensure for at least ten years (which we call near term), and secondly
for security for thirty to fifty years (which we call long term). Again we reiterate these are purely
key size guidelines and they do not guarantee security, nor do they guarantee against attacks on
the underlying mathematical primitives.

In Table 3.6 we present our explicit key size guidelines. The reader will see that we have
essentially followed the NIST equivalence [262] between the different key sizes. However, these key
sizes equivalences need to be understood to apply only to the “best in class” algorithm for block
ciphers, hash function, RSA parameters, etc etc. It is clearly possible for a block cipher of 128-bits
security to not offer 128-bit security due to cryptanalytic attacks.

We have focused on 128 bit security in this document for future use guidelines; clearly this offers
a good long term security guarantee. It is plausible that similar advise could be made at (say) the
112 bit security level (which would correspond to roughly 2048 bit RSA keys). The line has to be
drawn somewhere and there is general agreement this should be above the 100-bit level; whether
one selects 112 bits or 128 bits as the correct level is a matter of taste. Due to the need to protect
long term data we have taken the conservative choice and settled on 128 bits; with a higher level
for very long term use.

Due to the problem of key sizes not being a good measure of security on their own, and also due
to considerations of underlying performance costs, at the time of writing the guidelines for future
use can be summarised in the following simple choices:

1. Block Ciphers: For near term use we advise AES-128 and for long term use AES-256.
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Future System Use
Parameter Legacy Near Term Long Term

Symmetric Key Size k 80 128 256

Hash Function Output Size m 160 256 512
MAC Output Size m 80 128 256?

RSA Problem `(n) ≥ 1024 3072 15360

Finite Field DLP `(pn) ≥ 1024 3072 15360
`(p), `(q) ≥ 160 256 512

ECDLP `(q) ≥ 160 256 512

Pairing `(pk·n) ≥ 1024 3072 15360
`(p), `(q) ≥ 160 256 512

Table 3.6: Key Size Analysis. A ? notes the value could be smaller due to specific protocol or
system reasons, the value given is for general purposes.

2. Hash Functions: For near term use we advise SHA-256 and for long term use SHA-512.

3. Public Key Primitive: For near term use we advise 256 bit elliptic curves, and for long term
use 512 bit elliptic curves.

Note, that all of our guidelines need to be read given the aspects described in Section 2.4 which
we do not cover in this report. Finally, we note that the guidelines above, and indeed all analysis
in this document, is on the basis that there is no breakthrough in the construction of quantum
computers. If the development of quantum computers became imminent, then all this documents
guidelines would need to be seriously reassessed. In particular all of the public key based primitives
in this document should be considered to be insecure.
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Chapter 4

Basic Cryptographic Schemes

As mentioned previously a cryptographic scheme usually comes with an associated security proof.
This is (most often) an algorithm which takes an adversary against the scheme in some well defined
model, and turns the adversary into one which breaks some property of the underlying primitive (or
primitives) out of which the scheme is constructed. If one then believes the primitive to be secure,
one then has a strong guarantee that the scheme is well designed. Of course other weaknesses may
exist, but the security proof validates the basic design of the scheme. In modern cryptography all
schemes should come with a security proof.

The above clean explanation however comes with some caveats. In theoretical cryptography a
big distinction is made between schemes which have proofs in the standard model of computation,
and those which have proofs in the random oracle model. The random oracle model is a model
in which hash functions are assumed to be idealised objects. A similar issue occurs with some
proofs using idealised groups (the so-called generic group model), or idealised ciphers (a.k.a the
ideal cipher model). In this document we take, as do most cryptographers working with real world
systems, the pragmatic view; that a scheme with a proof in the random oracle model is better than
one with no proof, and that the use of random oracles etc can be justified if they produce schemes
which have performance advantages over schemes which have proofs in the standard model.

It is sometimes tempting for an implementer to use the same key for different purposes. For
example to use a symmetric AES key as both the key to an application of AES in an encryption
scheme, and also for the use of AES within a MAC scheme, or within different modes of operation
[130]. As another example one can imagine using an RSA private key as both a decryption key
and as a key to generate RSA signatures; indeed this latter use-case is permitted in the EMV chip-
and-pin system [93]. Another example would be to use the same encryption key on a symmetric
channel between Alice and Bob for two way communication, i.e. using has one bidirectional key
as opposed to two unidirectional keys. Such usage can often lead to unexpected system behaviour,
thus it is good security practice to design into systems explicit key separation.

Key separation means we can isolate the systems dependence on each key and its usages; and
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indeed many security proofs implicitly assume that key separation is being deployed. However, in
some specific instances one can show, for specific pairs of cryptographic schemes, that key separation
is not necessary. We do not discuss this further in this document but refer the reader to [9,93,271],
and simply warn the reader to violate the key separation principle with extreme caution. In general
key separation is a good design principle in systems, which can help to avoid logical errors in other
system components. If key separation is violated then we advise this is only done following a
rigorous analysis, and associated security proofs.

In Tables 4.1, 4.2, 4.4 and 4.5 we present our summary of the various symmetric and asymmetric
schemes considered in this document. In each scheme we assume the parameters and building blocks
have been chosen so that the guidelines of Chapter 3 apply.

In 4.1 we give (some of) the security notions for symmetric encryption achieved by the the
various constructions presented in Sections 4.1 and 4.3. Whether it is suitable for future or legacy
use needs to be decided by consideration of the underlying block cipher and therefore by reference to
Table 3.2. For general encryption of data we strongly advise the use of an authenticated encryption
scheme, and CCM, EAX or GCM modes in particular. The columns IND-CPA, IND-CCA and
IND-CVA refer to indistinguishablity under chosen plaintext, chosen ciphertext and ciphertext
validity attacks. The latter class of attacks lie somewhere between IND-CPA and IND-CCA and
include padding oracle attacks. Of course some of the padding oracle attacks imply a specific choice
as to how padding is performed in such schemes. In our table a scheme which does not meet IND-
CVA does not meet IND-CVA for a specific padding method. A scheme for which it is probably
true that it is IND-CVA is marked with a bracketed tick. Similarly an authenticated encryption
scheme which does not meet IND-CCA is one which does not meet this goal for a specific choice of
underlying components.

4.1 Block Cipher Basic Modes of Operation

In this section we detail the main modes of operation for using a block cipher as a symmetric en-
cryption scheme. Note, we leave a discussion of schemes which are secure against chosen-ciphertext
attacks until Section 4.3; thus this section is essentially about IND-CPA schemes only. As such
all schemes in this section need to be used with extreme care in an application. Further technical
discussion and comparison on the majority of modes stated here can be found in [299].

Many modes make use of either a nonce or an random IV. A nonce is a number used once, it is a
non-repeating value but not necessarily random. Thus a nonce could be a non-repeating sequence
number. On the other hand a random IV should be random, and unpredictable to the adversary.

4.1.1 ECB

Electronic Code Book (ECB) mode [254] should be used with care. It should only be used to
encrypt messages with length at most that of the underlying block size, and only for keys which
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Scheme IND-CPA IND-CVA IND-CCA Notes

Block Cipher Modes of Operation

OFB X (X) 7 No padding
CFB X (X) 7 No padding
CTR X (X) 7 No padding

CBC X 7 7

ECB 7 7 7 See text

XTS - - 7 See text
EME - - 7 See text

Authenticated Encryption

Encrypt-then-MAC X X X Assuming secure Encrypt/MAC used
OCB X X X
CCM X X X
EAX X X X An improved version of CCM
CWC X X X
GCM X X X
MAC-then-Encrypt X 7 7 See Encrypt-then-MAC text
Encrypt-and-MAC X 7 7 See Encrypt-then-MAC text

Table 4.1: Symmetric Key Encryption Summary Table

are used in a one-time manner. This is because without such guarantees ECB mode provides no
modern notion of security.

4.1.2 CBC

Cipher Block Chaining (CBC) mode [254] is the most widely used mode of operation. Unless used
with a one-time key, an independent and random IV must be used for each message; with such a
usage the mode can be shown to be IND-CPA secure [30], if the underlying block cipher is secure.
With a non-random or predictable IV, CBC mode is insecure. In particular using a nonce as the I
is insufficient to prove security.

The mode is not IND-CCA secure as ciphertext integrity is not ensured, for applications requir-
ing IND-CCA security an authenticated encryption mode is to be used (for example by applying a
message authentication code to the output of CBC encryption). For further details see Section 4.3.

Since CBC mode requires padding of the underlying message before encryption the mode suffers
from certain padding oracle attacks [272, 342, 354]. Again usage of CBC within an authenticated
encryption scheme (and utilising uniform error reporting in the case of Encrypt-then-MAC schemes)
can mitigate against such attacks.
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4.1.3 OFB

Output Feedback (OFB) mode [254] produces a stream cipher from a block cipher primitive, using
an IV as the initial input to the block cipher and then feeding the resulting output back into the
blockcipher to create a stream of blocks. To improve efficiency the stream can be precomputed.

The mode is IND-CPA secure when the IV is random (this follows from the security result for
CBC mode). If the IV is a nonce then IND-CPA security is not satisfied. The mode is not IND-
CCA secure as ciphertext integrity is not ensured, for applications requiring IND-CCA security an
authenticated encryption mode is to be used (cf. Section 4.3). OFB mode does not require padding
so does not suffer from padding oracle attacks.

4.1.4 CFB

Cipher Feedback (CFB) mode [254] produces a self-synchronising stream cipher from a block cipher.
Unless used with a one-time key the use of an independent and random IVmust be used for each
message; with such a usage the mode can be shown to be IND-CPA secure [8], if the underlying
block cipher is secure and the IV is random (i.e. not a nonce).

The mode is not IND-CCA secure as ciphertext integrity is not ensured. For applications
requiring IND-CCA security an authenticated encryption mode is to be used (cf. Section 4.3).
CFB mode does not require padding so does not suffer from padding oracle attacks.

4.1.5 CTR

Counter (CTR) mode [254] produces a stream cipher from a block cipher primitive, using a counter
as the input message to the block cipher and then taking the resulting output as the stream cipher
sequence. The counter (or IV) should be a nonce to achieve IND-CPA security [30]. The scheme is
rendered insecure if the counter is repeated.

The mode is not IND-CCA secure as ciphertext integrity is not ensured, for applications re-
quiring IND-CCA security an authenticated encryption mode is to be used (cf. Section 4.3). No
padding is necessary so the mode does not suffer from padding oracle attacks.

Unlike all previous modes mention, CTR mode is easily and fully parallelisable allowing for
much faster encryption and decryption.

4.1.6 XTS

XTS mode [257] is short for XEX Tweakable Block Cipher with Ciphertext Stealing and is based on
the XEX tweakable block cipher [297] (using two keys instead of one). The mode was specifically
designed for encrypted data storage using fixed-length data units, and was used in the TrueCrypt
system.

Due to the specific application of disc encryption the standard notion of IND-CPA security is
not appropriate for this setting. It is mentioned in [257] that the mode should provide slightly more
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protection against data manipulation than standard confidentiality-only modes. The exact notion
remains unclear and as a result XTS mode does not have a proof of security. Further technical
discussion on this matter can be found in [299, Chapter 6] and [220]. The underlying tweakable
block cipher XEX is proved secure as a strong pseudo-random permutation [297].

Due to its “narrow-block” design XTS mode offers significant efficiency benefits over “wide-
block” schemes.

4.1.7 EME

ECB-mask-ECB (EME) mode was designed by Halevi and Rogaway [141] and has been improved
further by Halevi [139]. EME mode is design for the encrypted data storage setting and is proved
secure as a strong tweakable pseudo-random permutation. Due to its wide block design it will be
half the speed of XTS mode but in return does offer greater security. EME is patented and its use
is therefore restricted.

4.2 Message Authentication Codes

Message Authentication Codes (MAC) are symmetric-key cryptosystems that aim to achieve mes-
sage integrity. Most commonly used designs fall in one of two categories: block-cipher based
schemes (detailed in Section 4.2.1), hash function based schemes (Section 4.2.2), and those based
on universal hash functions (Section 4.2.3). Before looking at specific constructions we note that a
MAC function with security 2s should have an output size of at least s bits; and for a well designed
MAC function the output size should be exactly s bits. If we truncate a MAC output by ε percent,
then the security drops to 2ε·s for a well designed MAC function.

Classification
Scheme Legacy Future Building Block

CMAC X X Any block cipher as a PRP
HMAC X X Any hash function as a PRF
UMAC X X An internal universal hash function

EMAC X 7 Any block cipher as a PRP
GMAC X 7 Finite field operations
AMAC X 7 Any block cipher

Table 4.2: Symmetric Key Based Authentication Summary Table. When instantiating the prim-
itives they should be selected according to our division into legacy and future use to provide the
MAC function with the same level of security.
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h!tb

ISO 9797-1 First Final Post
Number Iteration Iteration Processing a.k.a

1 H1 = EK(D1) Hq = EK(Dq ⊕Hq−1) G = Hq CBC-MAC
2 H1 = EK(D1) Hq = EK(Dq ⊕Hq−1) G = EK′(Hq) EMAC
3 H1 = EK(D1) Hq = EK(Dq ⊕Hq−1) G = EK(DK′(Hq)) AMAC
4 H1 = EK′′(EK(D1)) Hq = EK(Dq ⊕Hq−1) G = EK′(Hq) -
5 H1 = EK(D1) Hq = EK(Dq ⊕Hq−1 ⊕K ′) G = Hq CMAC
6 H1 = EK(D1) Hq = EK′(Dq ⊕Hq−1) G = Hq LMAC

Table 4.3:

4.2.1 Block Cipher Based MACs

Almost all block cipher based MACs are based on CBC-MAC. The essential differences in ap-
plication arise due to the padding method employed, how the final iteration is performed and the
post-processing method needed to produce the final output. The final iteration and post-processing
methods impact on the number of keys required by the MAC function. The ISO 9797-1 stan-
dard [170] defines four padding methods, three final iteration methods and three post-processing
methods, and from these it defines six CBC-MAC algorithms which can be utilised with any ci-
pher; one of which uses a non-standard processing of the first block. Table 4.3 summarises these
six algorithms, where Hq is the output of the final iteration, Hq−1 is the output of the penultimate
iteration, Di is the i padded message block, and K is the block cipher key used for iterations
1, . . . , q− 1. In schemes that use extra keys K ′,K ′′, all keys are derived from a single key in a way
specified by the standard. Usually there is no corresponding increase in security if these keys are
generated independently.

We treat here EMAC, AMAC and CMAC, being the most utilised variants. Note that vanilla
CBC-MAC is on its own not considered secure, except in very limited circumstances; for example
where the message length is pre-pended to the message before applying the MAC function. Of
course all MACs should be used with keysizes and output sizes which match our key size proposals.
In particular this means for high security levels, i.e. equivalent to 256-bits of AES security, that
these MAC functions cannot be used with AES as their output lengths are limited to the block
length of the underlying block cipher, unless the application allows shorter MAC values for some
reason. Shortened MAC outputs may be secure if the length that the MAC key is relatively short
lived. Thus the MAC can only be verified for a short length of time. Compare this with encryption,
where we want to ensure security for a long time, even if the key is short lived.
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EMAC

The Algorithm was introduced in [274] and is specified as Algorithm 2 in ISO-9797-1 [170]. There
are known attacks against the scheme that require 2n/2 MAC operations, where n is the block size.
The scheme should therefore not be used, unless frequent rekeying is employed. For a variant of the
scheme that uses two independent keys, provable security guarantees have been derived in [274,276].
Note however that the security of the scheme is bounded by 2k, where k is the length of a single
key. There are no known guarantees for the version where the two keys are derived from a single
key in the way specified by the standard. The function LMAC obtains the same security bounds
as EMAC but uses one fewer encryption operation.

AMAC

The algorithm was introduced in [11] and is also specified as Algorithm 3 in ISO 9797-1 [170]. The
algorithm is known as ANSI Retail MAC, or just AMAC for short, and is deployed in banking
applications with DES as the underlying block cipher. There are known attacks against the scheme
that require 2n/2 MAC operations, where n is the block size. The scheme should therefore not be
used, unless frequent rekeying is employed.

CMAC

The CMAC scheme was introduced in [172] and standardized as Algorithm 5 in [170]. It enjoys
provable security guarantees under the assumption that the underlying block-cipher is a PRP [242].
In particular this requires frequent rekeying; for example when instantiated with AES-128 existing
standards recommend that the scheme should be used for at most 248 messages. Furthermore, the
scheme should only be used in applications where no party learns the enciphering of the all-0 string
under the block-cipher underlying the MAC scheme. (This is a problem if Key Check Values as
defined in ANSI X9.24-1:2009 [12] are used.)

4.2.2 Hash Function Based MACs

HMAC

The HMAC scheme1 was introduced in [65] and standardized in [171,203,250]. The construction is
based on an underlying hash function which, itself, needs to have an iterative design of the Merkle–
Damg̊ard form [90, 238]. Provable security results for HMAC aim to establish that HMAC is a
PRF [28, 65]. Interestingly, this can be done only relying on the pseudo-randomness of the under-
lying compression-function and does not require collision-resistance [28]. In particular, this means
that instantiations of HMAC with compression-functions that are not collision-resistant may still

1The standard ISO 9797-2 specifies three closely related schemes that can be seen as instantiations of NMAC with
different parameters
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be reasonably secure, provided that the collision attacks do not yield distinguishing attacks against
the pseudo-randomness of the underlying compression-function. HMAC-MD4 should therefore not
be used while HMAC-SHA1, HMAC-MD5 are still choices for which forgeries cannot be made.
However, we do not propose usage with MD-5 even for legacy applications and use with SHA-1
is proposed with the usual caveats mentioned before. Conservative instantiations should consider
HMAC-SHA2 and HMAC-SHA3.

4.2.3 MACs Based on Universal Hash functions

A universal hash function is actually a family of hash functions [68]. The properties of a universal
hash function are defined over the distribution of all hash functions in the family. This means that
it becomes possible to define a property like collision probability in a mathematically meaningful
way: The probability that two inputs give a collision is defined fraction of functions in the family
for which two inputs result in the same output.

Universal hash functions can be used in MAC constructions with provable security properties. A
hash function from the family is fixed, and then on each invocation of the hash function a one-time
(or pseudo-random) pad is added to the output. This effectively means that on each invocation,
a new hash function is defined in a way that is unpredictable by the attacker. In cryptographic
applications, this is typically achieved by a combination of a secret key (defining the element of the
family) and a non-repeating value or nonce (defining the pad). For some constructions, re-use of
the same nonce leads to recovery of the secret key.

UMAC

UMAC was introduced in [47] and specified in [208]. The scheme has provable security guaran-
tees [47]. The scheme uses internally a universal hash function for which the computation can be
paralellized which in turn allows for efficient implementations with high throughput. The scheme
requires a nonce for each application. One should ensure that the input nonces do not repeat.
Rekeying should occur after 264 applications. Due to analysis by Handschuh and Preneel [143], the
32-bit output version results in a full key recovery after a few chosen texts and 240 verifications.
This implies one also needs to limit the number of verifications, irrespective of nonce reuse. In any
case MAC tags of 64-bits in length should be used in all cases.

GMAC

GMAC is the MAC function underlying the authenticated encryption mode GCM. It makes use of
polynomials over the finite field GF (2128), and evaluates a message-dependent function at a fixed
value. This can lead to some weaknesses, indeed in uses of SNOW 3G in LTE the fixed value is
altered at each invocation in a highly similar construction. Without this fix, there is a growing
body of work examining weaknesses of the construction, e.g. [143,287,307]. Due to these potential
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issues we leave the use of GMAC outside of GCM mode in the legacy only division. See the entry
on GCM mode below for further commentary.

4.3 Authenticated Encryption (with Associated Data)

An authenticated encryption (AE) scheme aims to provide a stronger form of confidentiality than
that achieved by the IND-CPA modes of operation considered earlier. In particular an AE scheme
provides both confidentiality (IND-CPA) and ciphertext integrity (INT-CTXT), both of which to-
gether imply security for Authenticated Encryption (a stronger notion than standard IND-CCA).
An authenticated encryption scheme which is for one-time use only is often called a Data Encap-
sulation Mechanism (DEM).

Authentication Encryption with Associated Data (AEAD) [296] is an extension of AE. In an
AEAD scheme there exists extra associated data, such as a header, which is authenticated but not
encrypted. As a result AEAD more closely captures how AE is used in practice. All of the modes
we describe in this section are AEAD schemes, with the exception of generic composition which
depends on the exact construction.

4.3.1 Generic Composition (Encrypt-then-MAC)

Encrypt-then-MAC is probably the simplest mechanism to construct an authenticated encryption
scheme. The security of the method was studied in [31], where the benefits over other techniques are
discussed. The main disadvantage when using Encrypt-then-MAC is that it is a two pass process.

Usage of Encrypt-then-MAC with CBC mode as the encryption scheme (with zero-IV) and
CBC-MAC as the message authentication code is a common DEM for use with public key KEMs to
produce public key encryption schemes. Use of zero-IV in non-DEM (i.e. non one-time applications)
is not to be used, due to the basic requirement of probabilistic encryption in most applications.

Despite the well known analysis of [31] of Encrypt-then-MAC being the best choice, sometimes
the result can be misinterpreted. The result of [31] says the Encrypt-then-MAC method is secure if
the encryption scheme is a probabilistic IND-CPA scheme and the MAC function is UF-CMA secure.
The ISO 19772 standard builds an Encrypt-then-MAC scheme from a nonce-based encryption
scheme (one which is not IND-CPA) and then appeals to [31] to claim security. The key difference
is that (say when using CBC or CTR mode) the IV is not authenticated, this was pointed out
in [241], and changes are being made to the ISO standard to correct this bug.

Other related constructions, such as Encrypt-and-MAC or MAC-then-Encrypt, in general should
not be used as various real world attacks have been implemented on systems which use these
insecure variants; for example SSL/TLS uses MAC-then-Encrypt and in such a configuration suffers
from an attack [7]. Methods such as MAC-then-Encrypt can be shown to be secure in specific
environments and with specific components (i.e. specific underlying IND-CPA encryption scheme
and specific underlying MAC), see [204]. However, the probability of an error being made in the
choice, implementation or application are too large to enable safe usage. Further details on how IV
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and nonce-based constructions of this type may be composed securely can be found in the paper
by Namprempre et al. [241].

4.3.2 OCB

Offset Codebook (OCB) mode [167] was proposed by Rogaway et al. [301]. The mode’s design is
based on Jutla’s authenticated encryption mode, IAPM. OCB mode is provably secure assuming
the underlying block cipher is secure. OCB mode is a one-pass mode of operation making it highly
efficient. Only one block cipher call is necessary for each plaintext block, (with an additional two
calls needed to complete the whole encryption process).

The adoption of OCB mode has been hindered due to two U.S. patents. As of January 2013,
the author has stated that OCB mode is free for software usage under an GNU General Public
License, and for other non-open-source software under a non-military license [300].

4.3.3 CCM

CCM mode [255] was proposed in [349] and essentially combines CTR mode with CBC-MAC, using
the same block cipher and key. The mode is defined only for 128-bit block ciphers and is used in
802.11i. A proof of security was given in [176], and a critique has been given in [303].

The main drawback of CCM mode comes from its inefficiency. Each plaintext block implies
two block cipher calls. Secondly, the mode is not “online”, as a result the whole plaintext must
be known before encryption can be performed. An online scheme allows encryption to be perform
on-the-fly as and when plaintext blocks are available. For this reason (amongst others) CCM mode
has in some sense been superseded by EAX mode.

4.3.4 EAX

EAX mode [167] was presented in [33], where an associated proof of security was also given. It is
very similar to CCM mode, also being a two-pass method based on CTR mode and CBC-MAC but
with the advantage that both encryption and decryption can be performed in an online manner.

4.3.5 CWC

Carter-Wegman + Counter (CWC) mode was designed by Kohno, Viega and Whiting [202]. As
the name suggests it combines a Carter-Wegman MAC, to achieve authenticity, with CTR mode
encryption, to achieve privacy. It is provably secure assuming the IV is a nonce and the underlying
block cipher is secure. Care should be taken to ensure that IVs are never repeated otherwise forgery
attacks may be possible. When considering whether to standardise CWC mode or GCM, NIST
ultimately chose GCM. As a result GCM is much more widely used and studied.
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4.3.6 GCM

Galois/Counter Mode (GCM) [256] was designed by McGrew and Viega [230, 231] as an improve-
ment to CWC mode. It again combines Counter mode with a Carter-Wegman MAC (i.e. GMAC),
whose underlying hash function is based on polynomials over the finite field GF (2128). GCM is
widely used and is recommended as an option in the IETF RFCs for IPsec, SSH and TLS. The
mode is online, is fully parallelisable and its design facilitates efficient implementations in hardware.

GCM is provably secure [173] assuming that the IV is a nonce and the underlying block cipher
is secure. Note that repeating IVs lead to key recovery attacks [143]. Joux [178] demonstrated
a problem in the NIST specification of GCM when non-default length IVs are used. Ferguson’s
[177] critique highlights a security weakness when short authentication tags are used. To prevent
attacks based on short tags it is wise to insist that authentication tags have length at least 96 bits.
Furthermore it is wise to also insist that the length of nonces is fixed at 96 bits. Saarinen [307]
raises the issues of weak keys which may lead to cycling attacks. The work of Proctor and Cid [287]
presents an algebraic analysis which demonstrates even more weak keys. In the conclusion of their
paper Proctor and Cid discuss the significance of weak key attacks. They state that although it is
highly undesirable for almost every subset of the keyspace to be a weak key class, for many schemes
(GCM included) this will not reduce the security to an unacceptable level.

4.4 Key Derivation Functions

Key Derivation Functions (KDFs) are used to derive cryptographic keys from from a source of
keying material, such as a shared random strings (in the case of key agreement protocols) or from
an entropy source (in the case of key generation). For example they are used to derive keys for use
in authenticated encryption schemes from a secret shared random string which is determined via
a public key encapsulation. Often they take additional input of a shared info field, which is not
necessarily secret.

The idea is that the input keying material to the KDF may reveal some partial information,
may not be uniformly generated, may have some statistical bias, etc. The KDF takes the input
and outputs a pseudo-random key from the imperfect input source of semi-secret randomness. An
additional usage is to expand a given cryptographically strong key into multiple keys. Thus the
KDF as as both a randomness extractor as well as an expander. See [205] for a extensive discussion
on the extract-then-expand approach to KDF design; and HKDF in particular.

In security proofs KDFs are often modelled as random oracles; but simply instantiating them
with a vanilla hash function is not to be used (despite this being common practice in academic
papers). In practice KDFs are specifically designed, each of which is built upon a specific primitive
such as a keyed PRF (i.e. a MAC function) or a hash function. When instantiating a KDF the
underlying primitive (PRF or hash function) is assumed to be secure. In other words one should
select one of our selected MAC or hash functions as appropriate. We summarize the constructions
in Table 4.4, where the column “Building Block” refers to the underlying primitive used to create
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the KDF primitive.

Classification
Primitive Legacy Future Building Block

NIST-800-108-KDF(all modes) X X A PRF
X9.63-KDF X X Any hash function
NIST-800-56-KDF-A/B X X Any hash function
NIST-800-56-KDF-C X X A MAC function
HKDF X X HMAC based PRF
IKE-v2-KDF X X HMAC based PRF
TLS-v1.2-KDF X X HMAC (SHA-2) based PRF

IKE-v1-KDF X 7 HMAC based PRF
TLS-v1.1-KDF X 7 HMAC (MD-5 and SHA-1) based PRF

Table 4.4: Key Derivation Function Summary Table. When instantiating the primitives they should
be selected according to our division into legacy and future use to provide the PRF function with
the same level of security.

4.4.1 NIST-800-108-KDF

NIST-SP800-108 [251] defines a family of KDFs based on pseudo-random-functions PRFs. These
KDFs can produce arbitrary length output and they are formed by repeated application of the
PRF. One variant (Counter mode) applies the PRF with the input secret string as key, to an input
consisting of a counter and auxiliary data; one variant (Feedback mode) does the same but also
takes as input in each round the output of the previous round. The final double pipelined mode
uses two iterations of the same PRF (with the same key in each iteration), but the output of the
first iteration (working in a feedback mode) is passed as input into the second iteration; with the
second iteration forming the output. The standard does not define how any key material is turned
into a key for the PRF, but this is addressed in NIST-SP800-56C [261].

4.4.2 X9.63-KDF

This KDF is defined in the ANSI standard X9.63 [14] and was specifically designed in that standard
for use with elliptic curve derived keys; although this is not important for its application. The
KDF works by repeatedly hashing the concatenation of the shared random string, a counter and
the shared info. The KDF is secure in the random oracle model, however there are now better
designs for KDF’s than this one. We still include it for future use however, as there are no reasons
(bar the existence of better schemes) to degrade it to legacy only.
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4.4.3 NIST-800-56-KDFs

A variant of the X9.63-KDF is defined in NIST-SP800-56A/B, [259, 260]. The main distinction
being the hash function is repeatedly applied to the concatenation of the counter, the shared
random string and the shared info (i.e. a different order is used). Similar comments apply to its
use for future and legacy systems as that made for X9.63-KDF above.

In NIST-SP800-56C [261] a different KDF is defined which uses a MAC function application
to obtain the derived key; with a publicly known parameter (or salt value) used as the key to the
MAC. This KDF has stronger security guarantees than the hash function based KDFs (for example
one does not need a proof in the random oracle model). However, the output length is limited to
the output length of the MAC, which can be problematic when deriving secret keys for use in
authenticated encryption schemes requiring double length keys (e.g. Encrypt-then-MAC). For this
reason the standard also specifies a key expansion methodology based on NIST-800-108 [251], which
takes the same MAC function used in the KDF, and then uses the output of the KDF as the key
to the MAC function so as to define a PRF.

4.4.4 HKDF, IKE-v1-KDF and IKE-v2-KDF

HKDF, presented in [205] and [206] is a KDF based on the HMAC function. If forms the basis of
the design of the KDFs specified in [145] and [191] for the IKE sub-protocol of IPsec. In all variants
HMAC is first used to extract randomness from the shared random value (i.e. a Diffie–Hellman
secret), and then HMAC is used again to derive the actual key material. The IETF considers the
Version 1 of the KDF to be obsolete. We can find no public explanation of this decision but we
expect this is due to the analysis in [75].

4.4.5 TLS-KDF

This is the KDF defined for use in TLS, it is defined in [94] and [48]. In the TLS v1.0 and v1.1
versions of the KDF, HMAC-SHA1 and HMAC-MD5 are used as KDFs and their outputs are then
exclusive-or’d together; producing a PRF sometimes called HMAC-MD5/HMAC-SHA1. In TLS
v1.2 the PRF is simply HMAC instantiated with SHA-2. In both cases the underlying PRF is used
to both extract randomness and for key expansion.

4.5 Generalities on Public Key Schemes

Before using a public key scheme there are some basic operations which need to be performed. We
recap on these here as an aide mémoir for the reader, but do not discuss them in much extra detail.

• Certification: Public keys almost always need to be certified in some way; i.e. a crypto-
graphic binding needs to be established between the public key and the identity of the user
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claiming to own that key. Such certification usually comes in the form of a digital certifi-
cate, produced using a proposed signing algorithm. This is not needed for the identity based
schemes considered later.

• Domain Parameter Validation: Some schemes, such as those based on discrete logarithms,
share a set of a parameters across a number of users; these are often called Domain Parameters.
Before using such a set of domain parameters a user needs to validate them to be secure, i.e.
to meet the security level that the user is expecting. To ease this concern it is common to
select domain parameters which have been specified in a well respected standards document.

• Public Key Validation: In many schemes and protocols long term or ephemeral public
keys need to be validated. By this we mean that the data being received actually corresponds
to a potentially valid public key (and not a potentially weak key). For example this could
consist of checking whether a received elliptic curve point actually is a point on the given
curve, or does not lie in a small subgroup. These checks are very important for security but
often are skipped in descriptions of protocols and academic treatments.

4.6 Public Key Encryption

Public key encryption schemes are rarely used to actually encrypt messages, they are usually used
to encrypt a symmetric key for future bulk encryption. Of the schemes considered below only RSA-
PKCS# 1 v1.5 and RSA-OAEP can be considered as traditional public key encryption algorithms.
Most public key encryption schemes either deployed or in standards follow the KEM/DEM hybrid
encryption paradigm. Non-KEM based applications should only be used when encrypting small
amounts of data, and in this case only RSA-OAEP is secure.

4.6.1 RSA-PKCS# 1 v1.5

This encryption method defined in [278,279] has no modern security proof, although it is used in the
SSL/TLS protocol extensively. A chosen ciphertext reaction attack2 [49] can be applied, although
the operation of the encryption scheme within SSL/TLS has been modified to mitigate against this
specific attack. The weak form of padding can also be exploited in other attacks if related messages
and/or a low public exponent are used [81,84,146]. Attacks on various cryptographic devices which
use this encryption scheme have also been reported [25]. This method of encryption should not
be used for any applications, bar the specific use (for legacy reasons) in SSL/TLS. The specific
use within modern versions of SSL/TLS has been shown to be provably secure [207], however this
usage is not forward secure so even usage in SSL/TLS should be phased out as soon as possible.
The current proposal is for this scheme to be removed in the forthcoming TLS 1.3 standard.

2A type of chosen ciphertext attack in which the attacker obtains valid/in-valid ciphertext signals as opposed to
full decryptions for his chosen ciphertexts
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Classification
Scheme Legacy Future Notes

Public Key Encryption/Key Encapsulation

RSA-OAEP X X See text
RSA-KEM X X See text
PSEC-KEM X X See text
ECIES-KEM X X See text

RSA-PKCS# 1 v1.5 7 7

Public Key Signature Schemes

RSA-PSS X X See text
ISO-9796-2 RSA-DS2 X X Message recovery variant of RSA-PSS
PV Signatures X X ISO 14888-3 only defines these for a finite field
(EC)Schnorr X X See text
(EC)KDSA X X See text

RSA-PKCS# 1 v1.5 X 7 No security proof
RSA-FDH X 7 Issues in instantiating the required hash function
ISO-9796-2 RSA-DS3 X 7 Similar to RSA-FDH
(EC)DSA,(EC)GDSA X 7 Weak provable security guarantees
(EC)RDSA X 7 Weak provable security guarantees

ISO-9796-2 RSA-DS1 7 7 Attack exists (see notes)

Table 4.5: Public Key Based Scheme Summary Table

4.6.2 RSA-OAEP

Defined in [279], and first presented in [32], this is the preferred method of using the RSA primitive
to encrypt a small message. It is known to be provably secure in the random oracle model [126],
and the proof has been verified in the Coq theorem proving system [27]. A decryption failure oracle
attack is possible [223] if implementations are not careful in uniform error reporting/constant
timing. Security is proved in the random oracle model, i.e. under the assumption that the hash
functions used in the scheme behave as random oracles. It is good practice to ensure that the hash
functions used in the scheme be implemented with SHA-1 for legacy applications and SHA-2/SHA-3
for future applications.

4.7 Hybrid Encryption

The combination of a Key Encapsulation Mechanism (KEM) with a Data Encryption Mechanism
(DEM) (both secure in the sense of IND-CCA) results in a secure (i.e. IND-CCA) public key
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encryption algorithm; and is referred to as a hybrid cipher. This is the preferred method for
performing public key encryption of data, and is often called the KEM-DEM paradigm.

Various standards specify the precise DEM to be used with a specific KEM. So for example
ECIES can refer to a standardized scheme in which a specific choice of DEM is mandated for use
with ECIES-KEM. In this document we allow any DEM to be used with any KEM, the exact choice
is left to the user. The precise analysis depends on the security level (legacy or future) we assign
to the DEM and the constituent parts; as well as the precise instantiation of the underlying public
key primitive.

4.7.1 RSA-KEM

Defined in [164], this Key Encapsulation Method takes a random element m ∈ Z/NZ and encrypts
it using the RSA function. The resulting ciphertext is the encapsulation of a key. The output key is
given by applying a KDF to m, so as to obtain a key in {0, 1}k. The scheme is secure in the random
oracle model (modelling the KDF as a random oracle), with very good security guarantees [147,324].
We assume that the KDF used in the scheme be one of the good ones mentioned in Section 4.4.

4.7.2 PSEC-KEM

This scheme is defined in [164] and is based on elliptic curves. Again when modelling the KDF as a
random oracle, this scheme is provable secure, assuming the computational Diffie–Hellman problem
is hard in the group under which the scheme is instantiated. Whilst this gives a stronger security
guarantee than ECIES-KEM below, in that security is not based on gap Diffie–Hellman, the latter
scheme is often preferred due to performance considerations. Again it we assume that the KDF
used in the scheme be one of the good ones from Section 4.4.

4.7.3 ECIES-KEM

This is the discrete logarithm based encryption scheme of choice. Defined in [14, 164, 319], the
scheme is secure assuming the KDF is modelled as a random oracle. However, this guarantee is
requires one to assume the gap Diffie–Hellman is hard (which holds in general elliptic curve groups
but sometimes not in pairing groups). Earlier versions of standards defining ECIES had issues
related to how the KDF was applied, producing a form of benign malleability, which although not
a practical security weakness did provide unwelcome features of the scheme. Again we assume that
the KDF used in the scheme be one of the good ones from Section 4.4.
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4.8 Public Key Signatures

4.8.1 RSA-PKCS# 1 v1.5

Defined in [278, 279] this scheme has no security proof, nor any advantages over other RSA based
schemes such as RSA-PSS below, however it is widely deployed. As such we do not propose this
be used beyond legacy systems.

4.8.2 RSA-PSS

This scheme, defined in [279], can be shown to be UF-CMA secure in the random oracle model [175].
It is used in a number of places including e-passports.

4.8.3 RSA-FDH

The RSA-FDH scheme hashes the message to the group Z/NZ and then applies the RSA (de-
cryption) function to the output. The scheme has strong provable security guarantees [82,83,185],
but is not wise to use in practice due to the difficulty of defining a suitably strong hash function
with codomain the group Z/NZ. Thus whilst conceptually simple and appealing the scheme is not
practically deployable.

One way to instantiate the hash function for an `(N) bit modulus would be to use a hash
function with an output length of more than 2 · `(N) bits, and then take the output of this hash
function modulo N so as to obtain the pre-signature. This means the full domain of the RSA
function will be utilised with very little statistical bias in the distribution obtained. This should
be compared with ISO’s DS3 below.

4.8.4 ISO 9796-2 RSA Based Mechanisms

ISO 9796-2 [169] defined three different RSA signature padding schemes called Digital Signature 1,
Digital Signature 2 and Digital Signature 3. Each scheme supports either full or partial message
recovery (depending of course on the length of the message). We shall refer to these as DS1, DS2
and DS3.

Variant DS1 essentially RSA encrypts a padded version of the message along with a hash of
the message. This variant has been attacked by Coron et al [85, 86] which reduced breaking the
padding scheme from 280 operations to 261 operations. Using a number of implementation tricks
the authors of [86] manage to produce forgeries in a matter of days utilising a small number of
machines. Thus this variant should no longer be considered secure.

Variant DS2 is a standardized version of RSA-PSS, but in a variant which allows partial message
recovery. All comments associated to RSA-PSS apply to variant DS2.

Variant DS3 is defined by taking DS2 and reducing the randomisation parameter to length zero.
This results in a deterministic signatures scheme which is “very close” to RSA-FDH, but for which
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the full RSA domain is not used to produce signatures. The fact that a hash image is not taken
into the full group Z/NZ means the security proof for RSA-FDH does not apply. We therefore do
not propose the use of DS3 for future applications.

4.8.5 (EC)DSA

The Digital Signature Algorithm (DSA) and its elliptic curve variant (ECDSA) is widely stan-
dardized [13, 249, 319]; and there exists a number of variants including the German DSA (GDSA)
[152,161], the Korean DSA (KDSA) [161,337] and the Russian DSA (RDSA) [133,162]. The basic
construct is to produce an ephemeral public key (the first part of the signature component), then
hash the message to an element in Z/qZ, and finally to combine the hashed message, the static
secret and the long term secret in a “signing equation” to produce the second part of the signature.

All (EC)DSA variants (bar KDSA) have weak provable security guarantees; whilst some proofs
do exist they are in less well understood models (such as the generic group), for example [61]. The
reason for this is that the hash function is only applied to the message and not the combination of
the message and the ephemeral public key.

The KDSA algorithm uses a hash function to compute the r-component of the signature, a
full proof in the random oracle model can be given for this variant [59]. Thus KDSA falls into our
category of suitable for future use. KDSA also has a simpler signing equation than DSA, it does not
require a modular inversion, however the extra hash function invocation is likely to counterbalance
this benefit.

All (EC)DSA variants also suffer from lattice attacks against poor ephemeral secret generation
[154, 245, 246]. A method to prevent this, proposed in [293] but known to be “folklore”, is derive
the ephemeral secret key by applying a PRF (with a default key) to a message containing the static
secret key and the message to be signed. This however needs to be used with extreme caution as
the use of a deterministic emphemeral key derivation technique could lead an implementation open
to side-channel analysis.

4.8.6 PV Signatures

ISO 14888-3 [161] defined a variant of DSA signatures (exactly the same signing equation as for
DSA), but with the hash function computed on the message and the ephemeral key. This scheme
is due to Pointcheval and Vaudeney [281], and the scheme is often denoted as the PV signature
scheme3. The PV signature scheme can be shown to be provably secure in the random oracle
model, and so have much of the benefits of Schnorr signatures. However Schnorr signatures have a
simpler to implement signing equation (no need for any modular inversions). Whilst only defined
in the finite field setting in ISO 14888-3, the signatures can trivially be extended to the elliptic
curve situation.

3There is another PV signature scheme which this should not be confused with due to Pintsov and Vanstone [277]
which is a signature scheme with message recovery originally used to secure electronic postal franks.
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Just like (EC)DSA signatures, PV signatures suffer from issues related to poor randomness
in the ephemeral secret key. Thus the defences proposed for (EC)DSA signatures should also be
applied to PV signatures.

4.8.7 (EC)Schnorr

Schnorr signatures [318], standardized in [162], are like (EC)DSA signatures with two key differ-
ences; firstly the signing equation is simpler (allowing for some optimisations) and secondly the hash
function is applied to the concatenation of the message and the ephemeral key. This last property
means that Schnorr signatures can be proved UF-CMA secure in the random oracle model [280].
There is also a proof in the generic group model [244]. In addition the signature size can be
made shorter than that of DSA. We believe Schnorr signatures are to be preferred over DSA style
signatures for future applications.

Just like (EC)DSA signatures, Schnorr signatures suffer from issues related to poor randomness
in the ephemeral secret key. Thus the defences proposed for (EC)DSA signatures should also be
applied to Schnorr signatures.

Page: 56



Algorithms, Key Size and Parameters Report

Chapter 5

Advanced Cryptographic Schemes

In this chapter we discuss more esoteric or specialised schemes. These include password based key
derivation, password based encryption, key-wrap algorithms and identity based encryption. We
summarize our conclusions in Table 5.1.

Categorisation
Scheme Legacy Future Notes

Password Based Key Derivation

PBKDF2 X ? See text
bcrypt X ? See text
scrypt X ? See text

Key Wrap Algorithms

KW X 7 No security proof; no associated data
TKW X 7 No security proof; no associated data
KWP X 7 No security proof; no associated data
AESKW X 7 No security proof; inefficient
TDKW X 7 No security proof; inefficient
AKW1 X 7 No security proof; no associated data
AKW2 7 7 Not fully secure
SIV X X See text

Identity Based Encryption

BB X X See text
SK X X See text

BF X 7 See text

Table 5.1: Advanced Scheme Summary Table
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5.1 Password-Based Key Derivation

Section 4.4 provides details on algorithms to derive cryptographic keys from a secret random string.
In many situations the only secret that may be present is a password but due to their low entropy
and possibly poor randomness they need to be used with special care and must not be used directly
as cryptographic keys. As a result a special key-derivation function should be used which is designed
for this case. Password-Based Key Derivation functions are a very important topic since passwords
are still the main mechanism by which humans interact with cryptographic services. There exists
some standardisation of these functions by NIST [253], and ISO is currently writing the ISO/IEC
11770-6 standard [160].

For all the algorithms we detail below there exists no formal security analysis and so we only
give classifications for legacy use at this time. While there exists no known vulnerabilities in any
of the schemes we do not make any statements as to their future use until more formal provable
security results are known. Given a password derived key a password based encryption algorithm
can be obtained by applying a block cipher with the associated key, see [186] for an example of
this.

5.1.1 PBKDF2

NIST SP 800-132 [253] standardises the PBKDF2 function, which was first defined in RFC 2898 [186].
PBKDF is based on any secure PRF; in [186] it is defined with HMAC using SHA-1. Additionally,
PBKDF2 is defined by an iteration count which specifies the number of times the PRF is iterated.
The iteration count is used to increase the workload of dictionary attacks and should be as large as
possible whilst ensuring the compute time is not unnecessarily long. A minimum of 1000 iterations
is proposed.

The input to the key-derivation function is the password, a salt and the desired key length. The
salt is used to generate a large set of keys for each password. It should be generated with a secure
random number generator (cf. Section 6.2) and be at least 128 bits long. The key length should be
at least 112 bits.

Despite the ability to adjust the number of iterations it is still possibly to implement dictionary
attacks relatively cheaply on ASICs or GPUs. The bcrypt function and scrypt functions provide
progressively greater resistance to such attacks due to the respective attacks increasing need for
additional RAM.

5.1.2 bcrypt

bcrypt was designed by Provos and Mazières [289]. It is based on the blockcipher Blowfish (cf.
Section 3.2.2). bcrypt is more resistant to dictionary attacks than PBKDF2.
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5.1.3 scrypt

scrypt [273] was designed by Colin Percival to create a key derivation function which was much
more resistant to dictionary attacks than bcrypt. The scheme was introduced in 2009 and so is
much younger than other schemes meaning it has not been subject to as much usage and analysis.

5.2 Key Wrap Algorithms

In this section we discuss the main modes of operation for using a block cipher to wrap other keys.
This functionality is particularly important for the storage and transmission of symmetric keys. An
important consideration when using key wrap, is that the security level of the key wrap is bound
by the key length of the key that is used to encrypt. For instance, wrapping an AES-256 key under
an AES 128-bit key will reduce the security of the AES-256 key to 128 bits (or less).

The accepted security notion for key wrap is deterministic authenticated encryption. It is related
to authenticated encryption (Section 4.3), in particular there is an important (practically relevant)
notion of binding associated data with the encrypted key (for example key usage information). The
majority of modes for key wrap lack formal analysis. For a detailed discussion of the key wrap
security notion and a critique of several key wrap modes, refer to [302].

5.2.1 KW and TKW

The two schemes AES Key Wrap, abbreviated KW, and Triple DEA Key Wrap, abbreviated TKW,
are specified in NIST Special Publication 800-38F [258]. RFC 3394 [316] and ISO/IEC 19772 [166]
both contain an equivalent specification of AES Key Wrap. The schemes KW and TKW do not
natively support associated data.

Both KW and TKW are constructed using two transformations. The first transformation creates
a variable input length cipher from the block cipher. The input lengths of the cipher is measured
in semi-blocks (with a minimum of three semi-blocks). Thus for key wrap based on AES strings
with bit length a multiple of 64 can be encrypted, whereas for 3DES the input length needs to be
a multiples of 32 bit. To encrypt n semi-blocks, 6(n − 1) blockcipher calls are needed, which is a
relatively high overhead. There are no formal results regarding the security of the variable input
length cipher.

The second stage is the use of the variable input length cipher to create a deterministic authen-
ticated encryption scheme. For both schemes this is achieved by padding the message with a fixed
integrity check value, that is checked upon decryption. This method is provably secure [302].

Since 3DES should be considered legacy only, so should TKW. KW can be still be used in
scenarios where there is no associated data.
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5.2.2 KWP

The scheme AES Key Wrap with Padding, abbreviated KWP, is specified in [258] and RFC
5649 [153]. It shares the variable input length cipher from KW, but due to the use of an ex-
plicit padding scheme, inputs of any number of octets are allowed.

5.2.3 AESKW and TDKW

The two key wrap schemes AESKW and TDKW are specified in [10]. They share the variable
input length ciphers from KW and TKW, respectively. The padding scheme allows key data of
arbitrary bit length. Additionally, the padding scheme natively supports associated data to be
authenticated, but it should be noted that for authentication, this data is encrypted it along with
the actual payload.

5.2.4 AKW1

The scheme AKW1 is specified in ANSI X9.102 [10] and consists essentially of a SHA1 based padding
scheme, followed by two layers of CBC encryption, one with a random IV and one with a fixed IV,
where the underlying blockcipher is 3DES. The random IV makes the scheme probabilistic, making
classification as an authenticated encryption scheme (without associated data) more accurate than
as a key wrap scheme. Even when instantiated with a modern block cipher instead of 3DES, AKW1
should be considered a legacy only construction.

5.2.5 AKW2

The scheme AKW2 is specified in ANSI X9.102 [10] and corresponds to an Encrypt-then-MAC
scheme using related keys. For the encryption, CBC mode using TDEA is stipulated, whereas for
authentication CBC-MAC is used. The scheme supports associated data and indeed, the first block
of associated data is used as initialisation vector for the CBC mode. AKW2 is demonstrably not a
secure key wrap scheme [302] and we believe it should not be used.

5.2.6 SIV

Synthetic Initialisation Vector (SIV) authenticated encryption was introduced by Rogaway and
Shrimpton [302]. It is a 2-pass mode based on using an IV-based encryption scheme with a pseudo-
random function. The pseudo-random function is used to compute a tag that is used both for
authentication purposes and as IV to the encryption scheme. SIV is captured by RFC 5297 [144],
combining CMAC with AES in counter mode. SIV is provably secure and relatively efficient.
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5.3 Encrypted Storage

We will also discuss recent innovations in related to cloud data storage in this field; in particular
related to de-duplication of encrypted data.

5.4 Identity Based Encryption/KEMs

5.4.1 BF

An identity based encryption (IBE) scheme allows a user to encrypt to a public consisting of an
arbitrary string. This string can be an identity, identifier or more generally any string meaningful to
the user. To enable decryption a trusted authority issues decryption keys associated to the strings
to users. As such identity based encryption provides a key escrow service by default. The “gold”
standard for security is that a scheme should be indistinguishable against an adversary who can
request secret keys for arbitrary identities (bar the target one), and can also request decryptions of
arbitrary ciphertexts with respect to any identity (bar the target identity). This is the ID-IND-CCA
security model.

A lot of advanced encryption functionalities can be built from these ideas; e.g. hierarchical IBE,
functional encryption. Many of the more academic schemes are based on the idea of a Water’s
Hash, which first appeared in [348]. In this paper an IBE scheme which is secure in the standard
model is given. No standardized scheme however uses this latter construction.

The Boneh–Franklin IBE scheme [54, 55] is known to be ID-IND-CCA secure in the random
oracle model and is presented in the IEEE 1363.3 standard [155]. The scheme is not as efficient as
the following two schemes, and it does not scale well with increased security parameters; thus it we
only categorise it for legacy use. The underlying construction can also be used in a KEM mode.

5.4.2 BB

The Boneh–Boyen IBE scheme [52] is secure in the standard model under the decision Bilinear
Diffie–Hellman assumption, but only in a weak model of selective ID security. However, the scheme,
as presented in the IEEE 1363.3 standard [155], hashes the identities before executing the main BB
scheme. The resulting scheme is therefore fully secure in the random oracle model. The scheme
is efficient, including at high security levels, and has a number of (technical) advantages when
compared to other schemes.

5.4.3 SK

The Sakai–Kasahara key construction is known to be fully secure in the random oracle model,
and at the same curve/field size outperforms the prior two schemes. The constructions comes as
an encryption scheme [72] and a KEM construction [73], and is also defined in the IEEE 1363.3
standard [155]. The main concern on using this scheme is due to the underlying hard problem (the
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q-bilinear Diffie–Hellman inversion problem) not being as hard as the underlying hard problem of
the other schemes. This concern arises from a series of results, initiating with those of Cheon [74],
on q-style assumptions.
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Chapter 6

General Comments

In this chapter we discuss a number of general issues related to the deployment of cryptographic
primitives and schemes. In this edition of the report we restrict ourselves to hardware and software
side-channels, random number generation and key life-cycle management.

6.1 Side-channels

Traditionally, cryptographic algorithms are designed and analysed in the black-box model. In
this model, an algorithm is merely regarded as a mathematical function that will be applied to
some input to generate some output, regardless of implementation details. An evaluation of a
keyed algorithm in the black-box model assumes that an adversary knows the specification of the
algorithm and can observe pairs of inputs I and outputs O = Ek(I) of a black box implementing
the algorithm.

When cryptography is implemented on embedded devices, black-box analysis is not sufficient to
get a good picture of the security provided. The cryptographic algorithms are executed on a device
that is in the possession and under the physical control of the user, who may have an interest in
breaking the cryptography, e.g. in banking applications or digital right management applications.
The physical accessibility of embedded devices allows for a much wider range of attacks against
the cryptographic system, not targeting the strength of the algorithm as an abstract mathematical
object, but the strength of its concrete implementation in practice.

Classical examples for side-channels include the execution time of an implementation [200], the
power consumption of a chip [201] and its eletromagnetic radiation [128]. More exotic examples
include acoustics [19], temperature [60] and light emission [328]. Some side-channels can be observed
only by means of an invasive attack, where the computing device is opened. Others can be observed
in a passive attack, where the device is not damaged.

There are many reasons for side-channel leakage, including hardware circuit architectures, micro-
architectural features and implementations. Interestingly, many side-channels arise from optimisa-
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tions. For example, circuits in modern CMOS technology consume power only when the internal
state changes. The amount of power consumed is proportional to the number of state bits that
change. This is clearly a side-channel. For other examples of the relation between optimisation
and side-channels, please see Section 6.1.1.

Many cryptographic algorithms are constructed as product ciphers [323]: one or a few cryp-
tographically weak functions are iterated many times such that the composition is secure. Other
algorithms use a small number of complex operations. In order to implement such algorithms,
however, these complex operations are usually broken down into sequences of less complex op-
erations. Hence, their implementations are similar to product ciphers. Furthermore, in keyed
algorithms (or their implementations), typically the key is introduced gradually: the dependence
of the intermediate data on the key increases in the course of the algorithm (or implementation).

Side-channel attacks capitalise on this property of gradually increasing security. While it is
(supposedly) hard to attack the full cryptographic algorithm, it is much easier to attack the cryp-
tographically weak intermediate variables. Depending on the side-channel, measurements of the
leakage contain information about the intermediate variables at each instance of time (e.g. power
consumption), or about an aggregate form thereof (e.g. execution time). Thus, side-channel mea-
surements allow to zoom in on the algorithm and to work on a few iterations only of the crypto-
graphically weak functions. By working with intermediate variables that depend only on a fraction
of the bits of the secret key, side-channel attacks allow to apply a divide-and-conquer strategy.

6.1.1 Countermeasures

Countermeasures against side-channel attacks can be classified into two categories. In the first
category, one tries to eliminate or to minimise the leakage of information. This is achieved by
reducing the signal-to-noise ratio of the side-channel signals. In the second category, one tries to
ensure that the information that leaks through side-channels, cannot be exploited to recover secrets.
Typically, one will implement a combination of countermeasures. Increasing the key size will (in
general) not improve the resilience against side-channel attacks.

Constant-time algorithms

The first academic publication of a physical attack is the timing attack on RSA [200]. In a naive
implementation of modular exponentiation, the execution time depends on the value of the expo-
nent, i.e. the private key. By observing the execution time of a series of decryptions or signatures,
an adversary can easily deduce the value of the private key.

Hence, a first countermeasure to be taken is to ensure that the execution time of the crypto-
graphic algorithm doesn’t depend on the value of secret information. The difficulty of this task
depends greatly on the features of the processor that the software will run on and the compiler
that is being used to translate high-level code into low-level assembly instructions.

Simple processors and low-level programming languages give the programmer absolute access
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to the control flow of the program, making it possible to write code that executes in constant time.
Modern pipelined processors contain units for branch prediction, out-of-order execution and other
systems that may complicate the task of predicting the exact execution time of an algorithm or a
subroutine. These units may interact with compiler options and settings in ways that are difficult
to fully understand. In such environments, it may be difficult to achieve 100% constant-time code.

Observe that constant-time code is usually slow code. Indeed, any optimisation that can be
applied only for a fraction of the values that a secret variable can take, leads to non-constant
execution time and therefore has to be excluded.

Constant power consumption

For implementations in hardware, constant execution time is usually easy to achieve. However, the
side-channels of hardware implementations typically leak much more information the side-channels
of software implementations. For example, the instantaneous power consumption signal not only
leaks the execution time of the algorithm, but also its level of activity at each instant of time.
Balanced circuits reduce the signal leaking from hardware implementations [334].

Reduce secret data dependent branches

Branching instructions where the condition depends on the value of secret data are an obvious
cause for differences in execution time. Since it is difficult to ensure that all branches execute
in exactly the same time, it is recommended to prefer methods that have fewer data dependent
branches. For example, instead of implementing an exponentiation by means of square-and-multiply
(or double-and-add) techniques, one can employ the Montgomery ladder method, which behaves
very regularly [183].

Reduce secret data dependent lookups

Modern processors can execute instructions much faster than modern main memories can deliver
new instructions and operands. In order to avoid that processors have to wait, memories are
organised in a hierarchy. At the bottom are the very large and very slow disks. Above are layers of
increasingly smaller and faster memory units: RAM, L2 cache, L1 cache. This memory architecture
has as side-effect that the time it takes to lookup data, is not constant. If the data is present in L1
cache, then the lookup goes faster than if it needs to be brought in from L2 cache or RAM.

Many implementations of cryptographic algorithms use lookup tables. Unless special precau-
tions are taken, these lookup tables will not be present in L1 cache at the start of the execution of
the algorithm. Sometimes the tables don’t even fit into the L1 cache. This usually causes differences
in execution time, which may lead to timing attacks [36,336].

Bit-slice implementations are implementations that avoid table lookups. Instead they compute
table elements on the fly [39]. In particular if the algorithm applies the same function to several
parts of the input in parallel (SIMD parallelism), the performance of bit-slice implementations may
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be very competitive to table-based implementations [190]. For the specific case of AES (and other
algorithms using the AES S-box), the AES-NI instructions can be used to avoid table lookups.

Masking

The purpose of masking is to ensure that the value of individual data elements is uncorrelated to
secrets. Hence, if there is leakage on the value of individual data elements, this will not lead to
recovery of the secrets. Clearly, if an attacker can combine signals of different elements, he can
again start to recover the secrets, but the approach can be generalised to higher levels, making
tuples, triplets, . . . of data independent of the value of the secret [288]. Masking can be done for
software implementations and for hardware implementations.

In hardware, masking can be employed at gate level [157, 335], at algorithm level [5], or in
combination with circuit design approaches [283].

The Threshold Implementation method is a masking approach that achieves provable security
based on secret sharing techniques at a moderate cost in hardware complexity [247, 284]. It can
also be used to mask software implementations. An alternative approach based on Shamir’s secret
sharing scheme is presented in [134].

6.2 Random Number Generation

Randomness is needed in almost all cryptographic systems and protocols. For example, random
numbers are needed for generating asymmetric key-pairs, for defining symmetric keys, for generating
initialisation vectors (IVs) for cryptographic modes of operation, in challenge-response protocols,
as additional inputs to most standardised public key encryption and signature algorithms, and to
generate ephemeral values in key exchange protocols. The existence of suitable random sources is
taken for granted in much of the research literature in cryptography, and almost all formal security
analysis of cryptographic schemes fails if perfect randomness assumptions are not met. Yet there
are many prominent examples of randomness failures with severe security consequences; examples
include:

• Netscape’s implementation of SSL, which was discovered in 1996 to make use of a random
number generator in which the only sources of entropy used to seed the generator were the
time of day, the process ID and the parent process ID [131].

• The Debian OpenSSL randomness failure, in which a patch applied by a Debian developer led
to substantially reduced entropy being available for key generation in OpenSSL [92]. Affected
keys included SSH keys, OpenVPN keys, DNSSEC keys, and key material for use in X.509
certificates and session keys used in SSL/TLS connections, with all keys produced between
September 2006 and May 2008 being potentially suspect.
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• Two independent analyses of public keys found on the Internet [150, 215], which discovered,
amongst other things, that many pairs of RSA public keys had common factors, making the
derivation of the corresponding private keys a relatively trivial matter. The identified issues
are at least in part attributable to poor randomness generation procedures, especially in the
Linux kernel [150]. A follow-up study on a particular smart-card deployment involving RSA
is reported in [38].

• Ristenpart and Yilek studied how randomness is handled across virtual machine resets [293],
discovering that the state of the PRNG can often be predicted to the point where an attack
against a DSA signing key can be mounted in the context of TLS (two signatures on distinct
messages being produced with the same random input leading to immediate recovery of the
DSA private key).

6.2.1 Terminology

We refer to Random Number Generators (RNGs), but these are also often referred to as Random
Bit Generators in the literature. A suitable source of random bits can always be turned into a
source of random numbers that are approximately uniformly distributed in a desired range by
various means (see [123, Section 10.8], [264, Appendix B] for extensive discussion of this important
practical issue). In what follows we make extensive reference to the NIST standard [264], however
the interested reader should also consult the ISO 18031 standard [163] and ANSI X9.82 [15].

We distinguish between True Random Number Generators (TRNGs) and Pseudo-Random Num-
ber Generators (PRNGs). TRNGs usually involve the use of special-purpose hardware (e.g. elec-
tronic circuits, quantum devices) followed by suitable post-processing of the raw output data to
generate random numbers. In an ideal world, all random number requirements would be met by
using TRNGs. But, typically, TRNGs operate at low output rates (relative to PRNGs) and are of
moderate-to-high cost (relative to PRNGs which are usually implemented in software). A TRNG
device might be used to generate highly sensitive cryptographic keys, for example system master
keys, in a secured environment, but would be considered “overkill” for general-purpose use. PRNGs
are suitable for general-purpose computing environments and usually involve a software-only ap-
proach. Here, the approach is to deterministically generate random-looking outputs from an initial
seed value. We note that NIST [264] refer to PRNGs as DRBGs, where “D” stands for “determin-
istic”, stressing the non-random nature of the generation process. Here, we focus on PRNGs, since
TRNGs do not in general offer the flexibility and cost profile offered by (software) PRNGs.

A PRNG usually includes a capability for reseeding (or refreshing) the generator with a fresh
source of randomness. The problem of obtaining suitable and assured high-quality randomness
for the purposes of reseeding is one of the most challenging aspects of designing systems that use
PRNGs.

PRNGs are sometimes described as being blocking or non-blocking. For example, the Linux
kernel PRNG provides two different RNGs, one of each type. A blocking RNG will prevent outputs
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from the RNG from being delivered to the application requesting random numbers if it deems that
doing so would be inappropriate for some reason.

6.2.2 Architectural model for PRNGs

An important basic architectural choice that is followed by most modern PRNGs is to separate
the problems of entropy collection and generation of seeds from the problem of generating pseudo-
random outputs as a function of the seed and generator state. NIST [264] provides a general
functional model for describing and classifying PRNGs which makes this distinction clear. The
components of this model include:

• Entropy input: this is provided to the PRNG for the purposes of generating the seed. This
input is not guaranteed to be uniformly random, but is assumed to contain enough entropy
that a seed of suitable quality can be extracted from it. This input must remain secret in
order for the outputs of the PRNG to remain secure. This entropy input may initially be
supplied by the user running the PRNG or may be harvested from the platform on which the
PRNG is running.

• Other inputs: these might be time-based or take the form of a nonce. These inputs are not
assumed to be secret. They are combined with the entropy input when generating seeds.

• Personalisation string: a further input to the seed generation process which is intended
to provide further diversity for the generator outputs. For example, one might use different
strings for key generation for different algorithms here.

• Internal state: this represents the memory of the PRNG, including the data that is used
as input (and possibly modified) during the generation of outputs. Clearly, this state must
remain secret for the future outputs of the PRNG to remain secure.

• Instantiate function: this function acquires the entropy input, any other input and the
personalisation string and combines them to create a seed from which the initial internal
state is created.

• Generate function: this function uses the current internal state to generate pseudo-random
output bits and to update the state for the next request for output bits. This function should
maintain a counter indicating the number of requests serviced or blocks of output produced
since the generator was first seeded or reseeded. This counter would enable the PRNG to
block further requests once a preset limit on the amount of output produced has been reached.

• Reseed function: this function combines a new entropy input (and possibly further addi-
tional input) with the current internal state to create a new seed and a new internal state.

• Uninstantiate function: this function erases the internal state; its intended use is to ensure
the safe decommissioning of a PRNG.
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• Health test function: this function is intended to provide a mechanism by which the PRNG
can be tested to be functioning correctly.

We note that the last two components are often not explicitly present in PRNG implementations.
Moreover, many PRNGs do not have “other inputs” or allow the use of personalisation strings.
Some generators in the literature do not fully separate the reseed and generate functions, mixing
entropy directly into the state of the generator, for example.

6.2.3 Security Requirements for PRNGs

Until quite recently, formal security requirements for PRNGs were lacking, and the requirements
were informally stated and driven by the security requirements of the applications in which their
outputs are intended to be used. The informal requirements can be stated as follows:

• Output indistinguishability: Without knowledge of the initial seed or current state, it
should be hard to distinguish the outputs of the generator from a truly random sequence of
the same type, even when many previous outputs are known. For certain generators, this
property can be proven based on some computational assumption (e.g. the outputs of the
Blum-Blum-Shub generator [50] are pseudo-random assuming the hardness of the quadratic
residuosity problem, which is closely related to the factoring problem). For fast, practical
generators, built using hash functions and block ciphers, this property rests on unproven
but reasonable security assumptions concerning these symmetric components (e.g. the NIST
CTR PRNG from [264] has output indistinguishability that relies on the block cipher acting
as a pseudo-random function).

• Forward security: Compromise of the internal state of the generator should not allow an
attacker to compute previous outputs of the generator, nor to distinguish previous outputs
from random. This requirement implies in particular that it must be hard to compute any
previous state of the generator from its current state. In turn, this implies that the generator
state must be updated after each output in a one-way manner.

• Resistance to state-extension attacks: In a state-extension attack [193], an attacker
is assumed to compromise the state of the generator, and then try to learn future outputs
of the generator (or distinguish them from random). Clearly, in the absence of reseeding,
this is possible since the future states and outputs are then a deterministic function of the
current state. Moreover, if the reseeding process is carried out, but has insufficient entropy
in its input, then an attacker can try to calculate forwards through the reseeding process,
trying all likely values for the unknown entropy inputs used during the reseeding, and testing
for consistency with some known outputs. It is desirable that a PRNG should resist such
attack, since the design intention of reseeding is that it should assist in recovering from state
compromises.
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• Compromise of reseeding data should not lead to generator compromise: In some
attack scenarios, the entropy input used during reseeding may fail to have insufficient entropy,
or become known to the attacker. In this situation, we would like to ensure that the attacker
cannot learn the generator’s new state after reseeding, nor predict its outputs after reseeding.
For this to be achieved, the entropy input must be carefully combined with the current state
during reseeding.

Note that none of these requirements directly refer to the quality of entropy inputs, but that
this rapidly emerges as a key concern in meeting the requirements.

6.2.4 Theoretical models

Theoretical models for the analysis of PRNGs first emerged in [23] and were significantly developed
in [97, 98]. Generators secure in the models presented in these papers provably provide all of the
above informally-stated security properties. The differ considerably in the way that they treat the
incorporation of new entropy in the reseeding step. Generators in these models also deviate from
the NIST architectural view discussed in Section 6.2.2, in that they do not consider other inputs,
personalisation strings, the uninstantiate function, or the health test function. They all suffer from
the unnatural requirement of having a random seed for an extractor (which may be known to the
adversary) as part of the public parameters of the generator. This can be avoided in practice by
replacing the seeded extractor with a concrete hash function.

These sources [23,97,98] have in common with [264] that they deliberately separate the concern
of randomness generation for seeding/reseeding from the question of designing a generator taking
assumed-to-be-random seeds/reseeds as input. Indeed, there are many good designs solving the
latter problem, but few general-purpose solutions to the former.

6.2.5 Implementation considerations

In addition to meeting the above security requirements, there are many implementation issues that
need to be addressed when deploying a PRNG.

Entropy sources: Foremost amongst these implementation issues are the questions of how to
identify suitable sources of entropy, how to manage and process these sources, and how (and indeed,
whether) to assess the quality of the entropy that is extracted from these sources when reseeding
a PRNG. A good general overview of these issues can be found in [103,137].

Entropy estimation: There is some debate in the literature on whether an implementation
should try to estimate how much entropy is available from these sources. Accurate (or at least,
conservative) estimation of entropy is important because of state extension attacks: too little
entropy, and a state compromise (or a default initial state) can lead to predictable generator
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outputs; on the other hand, waiting to long provides poor protection against state compromises,
weakening forward security. The majority of practical PRNG designs do some form of entropy
estimation. However, Ferguson et al. [123] contend that no procedure can accurately assess entropy
(or rather, the amount of entropy unknown to an attacker) across all environments. Their Fortuna
PRNG design attempts to get around the problem of entropy estimation by allocating gathered
entropy, represented by events, to a sequence of entropy pools in order. The Fortuna generator
then uses the pools at different intervals to reseed the generator. An analysis of this approach was
recently provided in [98].

The Fortuna design sets out to avoid the need for entropy estimation whilst preventing state-
extension attacks. As pointed out by Barak and Halevi [23], this approach works well so long
as the entropy is well-spread across the different pools, but does not work well if the entropy is
concentrated in one pool that is not often accessed when doing state refreshes. It is possible that an
adversary could arrange for this to occur by generating large numbers of spurious events under his
control. The view of Barak and Halevi is that it is better to accumulate entropy over a long period
of time in a single pool and do infrequent reseeds, but without doing any entropy estimation, since
in their view “at best the entropy estimator provides a false sense of security”. A third approach is
to perform conservative entropy estimation, and to reseed only when sufficient entropy is available
– this is the approach taken in the Linux dev/urandom and dev/random PRNGs, for example.

Generator initialisation: An important special case of seeding is the setting of the initial state
(which is done via the Instantiate function in the NIST model). A PRNG should be blocking until
properly initialised, either with entropy supplied by the user, with entropy gathered from the local
environment. There is anecdotal evidence that this is not popular with software developers – see
[150], where it is explained how one SSH implementation uses the non-blocking Linux dev/urandom

PRNG in preference to the blocking dev/random one when generating cryptographic keys. We
reiterate that accessing a PRNG before it is properly seeded for the first time has been identified
as a source of serious security problems, particularly in key generation [150].

6.2.6 Specific PRNGs and their analyses

Library functions in programming languages such as random() in the C programming language
must be avoided in cryptographic applications. In general, such functions tend to be based on
very weak generators such as Linear Congruential Generators. Dedicated cryptographic PRNG
implementations are needed.

There are many operating-system-specific PRNGs. The Microsoft Windows PRNG has a closed-
source implementation. An instance of this PRNG was reverse-engineered and found to have quite
severe deficiencies in [99]. The Linux PRNG was analysed in [138], with significant attacks being
found. The Linux PRNG has been modified as a result, and the current version was analysed
in [209], with the previously reported weaknesses being found to have been largely addressed.
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There are several PRNGs that are supplied as part of crypto libraries. Prominent amongst
these is the OpenSSL PRNG. This generator has a rather ad hoc design. It was analysed in [306],
and some changes were made as a result of this analysis. However, as far as we are aware, it has not
been subjected to any further cryptographic analysis since then. Gutmann has designed a PRNG
that is made available as part of his cryptlib software development kit1. This PRNG and its
design are described in detail in [137].

The NIST special publication [264] contains several PRNG designs. As far as we are aware,
none of these has been thoroughly analysed with the exception of the Dual Elliptic Curve generator.
A pseudo-randomness property was proven for this generator in [62], based on some reasonable
number-theoretic assumptions. However, the generator is relatively slow and known to have a
small bias in its outputs. The generator has the potential to contain a backdoor, enabling its
internal state to be reconstructed given sufficient output [327], and it is widely believed that this
potential was exploited during the NIST standardisation process by NSA. A recent study [71] found
the generator to be in surprisingly widespread use. The controversy surrounding this Dual Elliptic
Curve generator led to the withdrawal of the generator from the NIST special publication [264]
and the opening of a comment period on a revised version of the NIST document2.

These NIST PRNG designs do not include a full specification of how to gather and process
entropy sources for seeding/reseeding purposes, which is consistent with the over-arching approach
in [264].

The Fortuna generator from [123] incorporates learning from the earlier Yarrow design [192].
It’s basic design of using entropy pools to collect entropy for reseeding at different rates was recently
validated by the analysis of [98], whilst see [142,326] for two analyses of Intel’s hardware RNG.

6.2.7 Designing around bad randomness

Given that randomness failures seem to be hard to avoid in general, a number of authors have
attempted to design cryptosystems that handle bad randomness to the extent that this is possible.
Work in this direction can be summarised as follows:

• For signatures, there is a folklore de-randomisation technique which neatly sidesteps security
issues arising from randomness failures: simply augment the signature scheme’s private key
with a key for a pseudo-random function (PRF), and derive any randomness needed during
signing by applying this PRF to the message to be signed; meanwhile verification proceeds
as normal.

• In the symmetric encryption setting, Rogaway [298] argued for the use of nonce-based en-
cryption, thus reducing reliance on randomness. Rogaway and Shrimpton [302] initiated the
study of misuse-resistant authenticated encryption (AE), considering the residual security of

1See http://www.cryptlib.com/
2See http://www.nist.gov/itl/csd/sp800-90-042114.cfm.
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AE schemes when nonces are repeated. Katz and Kamara [187] considered the security of
symmetric encryption in a chosen-randomness setting, wherein the adversary has complete
control over the randomness used for encryption (except for the challenge encryption which
uses fresh randomness).

• In the public key encryption (PKE) setting, Bellare et al. [29] considered security under chosen
distribution attack, wherein the joint distribution of message and randomness is specified by
the adversary, subject to containing a reasonable amount of min entropy. Bellare et al. gave
several designs for PKE schemes achieving this notion in the Random Oracle Model (ROM)
and in the standard model. A follow-up work [291] considers a less restrictive adversarial
setting.

• Also in the PKE setting, Yilek [355], inspired by virtual machine reset attacks in [293],
considered the scenario where the adversary can force the reuse of random values that are
otherwise well-distributed and unknown to the adversary. This is referred to in [355] as
the Reset Attack (RA) setting. In [355], Yilek also gave a general construction achieving
security for public key encryption in his RA setting. The RA setting was recently extended
to a setting where the adversary can to a certain extent control the randomness that is used
during encryption, the so-called Related Randomness Attack (RRA) setting [270].

• Ristenpart and Yilek [293] studied the use of “hedging” as a general technique for protecting
against broad classes of randomness failures in already-deployed systems, and implemented
and benchmarked this technique in OpenSSL. Hedging in the sense of [293] involves replacing
the random value r required in some cryptographic scheme with a hash of r together with
other contextual information, such as a message, algorithm or unique operation identifier, etc.
Their results apply to a variety of different randomness failure types but have their security
analyses restricted to the ROM.

6.3 Key Life Cycle Management

In this section we discuss general aspects related to key life cycle management. More information
about key management techniques can be found in [269][Chapter 13], and in NIST-800-57 [262].

Objectives of Key Management

Cryptographic mechanisms reduce the problem of data security to the problem of key management.
This is known as Kerckhoffs’ principle: the security of a cryptosystem should not rely on the secrecy
of any of its workings, except for the value of the secret key. It follows that good key management
is essential in order to benefit from the introduction of cryptography. We distinguish the following
objectives of key management:
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1. Protecting the confidentiality and authenticity of secret and private keys, as well as protecting
secret and private keys against unauthorised use.

2. Protecting the authenticity of public keys.

3. Ensuring the availability of secret and public keys.

To accomplish these three goals we need to examine the whole key life cycle; from generation of
key the material through to destruction.

Key Generation

Secret keys and private keys need to be unpredictable. Symmetric primitives usually don’t have
additional requirements for the secret keys, except that some primitives have a small fraction of
weak keys, which should not be used. Asymmetric primitives usually have additional requirements,
both on their private and public keys. For example, they often require the generation of prime
numbers that need to satisfy extra properties. Keys can either be generated at random in a
protocol, in which case generating them with a sufficient amount of entropy turns out to be a very
challenging task in practice, see Section 6.2, in other instances keys are derived from other data as
part of the protocol definition. There are numerous well documented attacks on systems for which
not enough entropy was used to generate the underlying key material.

Key Registration/Certification

Keys need to be associated with their owner (user). For example, public keys are linked to their
owner by means of (public-key) certificates. Through the issuing of a certificate, a certification
authority guarantees that a certain key belongs to a certain user, and associated policy statements
specify for what purposes the owner may use the key. A certificate also has a validity period.
Certificates are usually public documents. Their authenticity is ensured by means of a digital
signature, placed by the certification authority. However, one needs to trust the certificate authority
and its public key, which is itself authenticated by another certificate authority; creating a certificate
chain. At the root of the chain is a root certificate authority. These root certificates can be
distributed to relying parties and signatories alike by, for example including them in applications
(as in a web browser) or having them downloaded from an authoritative source (e.g. a designated
public authority), for the purpose of invoking trust.

Various issues have come to light in the last few years as to the ability for users to fully
trust the root certificates in their browsers. Thus certification is a technology which is (still) not
completely 100 percent reliable. Hence, when using certificates in a non-public application (e.g. in
a corporate environment) care needs to be taken as to the underlying policy framework and how
this is implemented and enforced.
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Key Distribution and Installation

Keys need to be distributed to their users. For systems based on symmetric cryptography, both
the sender and the receiver need to obtain a copy of the key, hence the key needs to be transported
securely (protection of confidentiality and authenticity) at least once, or agreed via means of a key
agreement scheme. All the copies of the key need to be installed and stored securely. For systems
based on asymmetric cryptography, the private key is often generated where it will be used, such
that no transport is needed. In secure hardware, the functionality to export the private key of an
asymmetric key pair is usually deliberately not implemented (again, this can be compromised by
poorly implemented hardware in some cases). Otherwise, it needs to be protected like a symmetric
key. The public key still needs to be transported, but only the authenticity (and hence the integrity)
needs to be protected, which is achieved by the use of certificates.

In order to reduce the number of keys that need to be stored locally, one can use Key Distribution
Centers, centrally managed key servers. Users share long-term keys with the Key Distribution
Centers and trust the servers to provide them with the keys of the other users when they need
them. Key Distribution Centers can manage both secret and public keys.

Key Use

The goal of key management is to put keys in place such that they can be used for a certain period
of time. During the lifetime of a key, it has to be protected against unauthorised use by attackers.
The key must also be protected against unauthorised uses by the owner of the key, e.g. even the
owner of the key should not be allowed to export a key or to use it in an insecure environment. This
protection can be provided by storing the key on secure hardware and by using secure software,
which includes authorisation checks.

Key Storage

By using secure hardware, it is possible to store keys such that they can never be exported, and
hence are very secure against theft or unauthorised use. However, sometimes keys get lost and it
might be desirable to have a backup copy. Organisations might require backups of keys in order to
be able to access data after employees leave. Similarly, expired keys might be archived in order to
keep old data accessible. Finally, under certain conditions law enforcement agencies might request
access to certain keys. Technical systems that implement access for law enforcement agencies are
called key escrow mechanisms or key recovery mechanisms.

Backup, archival and escrow/recovery of keys complicate key management, because they in-
crease the risk for loopholes for unauthorised access to keys. The advanced security requirement of
non-repudiation requires that the owner of a key is the only one who has access to the key at all
times from generation to key retirement. For example, keys that are used for advanced electronic
signatures have to be under the sole control of the user. Archival, backup or storage of such keys
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is difficult. For use of the non-repudiation property in a court of law one may require special
procedures for digital signature generation to be followed.

Revocation/Validation

Cryptographic keys expire and are replaced. Sometimes it can happen that keys have to be taken out
of use before the planned end of their lifetime, e.g. if secret keys leak to outsiders or if developments
in cryptanalysis make schemes insecure. This process is called revocation. In centralised systems,
revocation can usually be achieved relatively easily, but in distributed systems special measures
have to be implemented to avoid that people use or rely on keys that have been expired early. In
the context of revocation, validation has a very specific meaning. It means to check whether a
cryptographic operation, e.g. placing a digital signature, was performed with a key that is valid,
or was valid at the time the operation took place.

Key Archive/Destruction

When the lifetime of the key has expired, it has to be removed from the hardware. This requires
a secure deletion process. In most operating systems and applications, the deletion of a file only
clears a logic flag. It doesn’t result in actual removal of the data until the disk space used to store
the file is reclaimed and overwritten by another application. On many file storage media, even
after a file has been overwritten, it is possible to recover the original file, using some moderately
advanced equipment. This is called data remanence. Various techniques have been developed to
counter data remanence. At the logical level, one can overwrite the disk space repeatedly with
certain bit patterns in order to make recovery difficult. At the physical level, one can degauss (on
magnetic media) or employ other operations that restore the storage media in pristine state, or one
can physically destroy the storage media.

6.3.1 Key Management Systems

In many large organisations there is a need to systematise the above mentioned aspects of key life-
cycle. This is usually done using a Cryptographic Key Management System; this is an automated
system consisting of hardware and software components which implement the required policy to
manage the above keys. Aspects including generation, storage, validation and use. For example if
keys are held in hardware security modules, then it is common practice to only enable extraction
of keys from the hardware modulus under some form of key wrap algorithm. A cryptographic key
management system ensures that such a policy is enforced, without the users being able to override
it.

The NIST standard 800-130 [252] provides a framework for describing such key management
systems. In a way which enables a simpler validation that any specific key management system
satisfies the given policy. The framework defines specific topics and for each topic defines a set of
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requirements which any framework needs to meet, from this any given system can be mapped onto
the framework by stating how and in what way the specific system meets the given framework.
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[4] Martin Ågren, Martin Hell, Thomas Johansson, and Willi Meier. Grain-128a: a new version
of Grain-128 with optional authentication. IJWMC, 5(1):48–59, 2011.

[5] Mehdi-Laurent Akkar and Christophe Giraud. An implementation of des and aes, secure
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