

IDIOID.

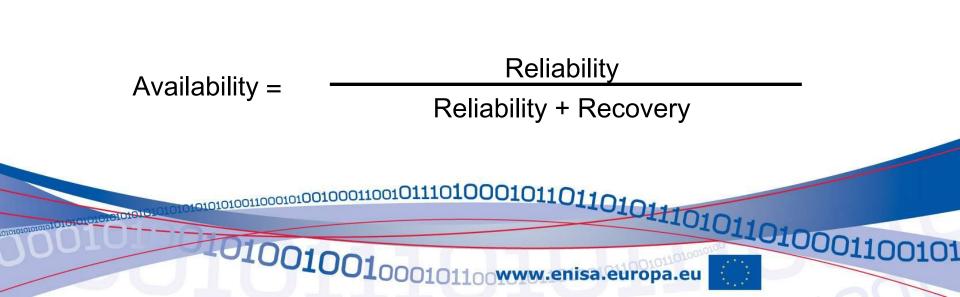
Improving Resilience in Public eCommunication Networks

ENISA – European Network and Information Security Agency

NIS Summer School, Sep 2008

Disclaimer: "The views expressed in this presentation are those of the authors and do not necessarily represent the views of the Agency". ssarily represent the view and a state of the view of

The ability of a system to provide & maintain an <u>acceptable level of service</u> in face of faults (unintentional, intentional, or naturally caused) affecting normal operation.



- * The main aim of resilience is for faults to be invisible to users.
- ***** A resilient network must guarantee protection and / or restoration schemes.
- * Real-Time Applications Demand that Resilient end-to-end Network Services Be Extended Consistently Across the Network.
- * The classification of a networks resilience has to be given from the availability and performance perspective.

10100100100010

- Availability is the probability that an item will be able to perform its designed functions.
 - ★ Stated performance level
 - ★ Stated conditions
 - ★ Stated environment

Measure the performance of their networks at different levels.

- ★ per-port metrics
- ★ end-user metrics
- ★ Performance metrics are as follows:
 - ***** Connectivity
 - ★ Delay (both round-trip and one-way)
 - ★ Packet loss
 - ★ Jitter or delay variation
 - ★ Application response time
- ★ Measurable SLA metrics

1010010010001

Key Performance Indicators

- ***** Reflect the performance of network.
- ★ Key Performance Indicators (KPIs) are:
 - ★ Mapped directly from the Performance metrics.
 - ★ Are a formula of several Performance metrics.

TOTOIL

1010010000000000

Quantification of Availability

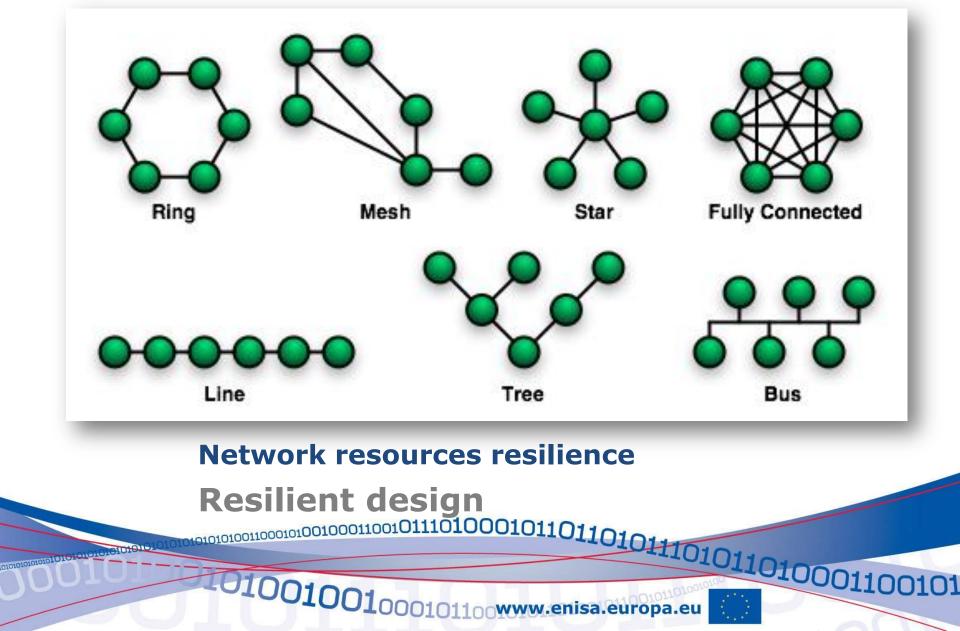
Percent Availability	N-Nines	Downtime Time Minutes/Year
99%	2-Nines	5,000 Min/Yr
99.9%	3-Nines	500 Min/Yr
99.99%	4-Nines	50 Min/Yr
99.999%	5-Nines	5 Min/Yr
99.9999%	6-Nines	.5 Min/Yr

- Flash crowd events
- Cyber attacks
- Outages to other services affecting the network
- ★ Natural disasters
- System/Logical failings

- Network resilience is an issue of **risk management.**
- Mitigation of identified risks involves technical measures such as:
 - ★ Resilient design;
 - ★ Resilient transmission media;
 - Resilient equipment;
- ...and Technologies which might improve Resilience.

31001001000101 www.enisa.eu

- A resilient network design aims to remove single points of failure in network equipment.
- Provide multiple paths through networks, while maintaining visibility and controllability to higher levels.


***** A resilient multilayer **design** may include:

- * Topology / Mesh Networks
- ★ Path Protection
- Dynamic Restoration
- ★ Scalable Routing Protocols
- ★ Redundant links
- ★ Load Balancing

Intere-

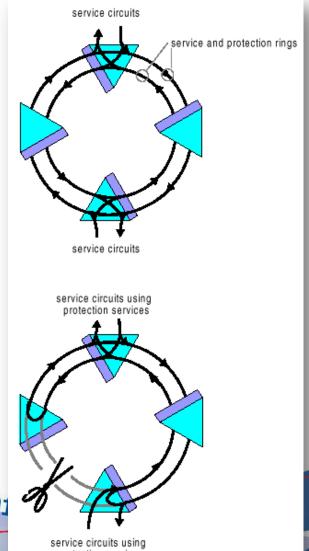
- Rerouting around broken or blocked paths.
- * A partial mesh topology.
- Shortest path basis.

* Dynamic Restoration:

- Searching for the shortest path between source and destination nodes, skipping the failed network element, link or node.
- ★ No prior knowledge on which route to choose.

Scalable Routing Protocols:

- ★ Handle growing amounts of work in a graceful manner.
- ★ O(log N) rule.



* Resilient design:

★ Path Protection:

HOTOLO

★ Unlike restoration, the protection mechanism assigns the means beforehand for recovering circuits when faced with failures.

10101001100010100100011001011101000101101

1010010010001011c

protection services

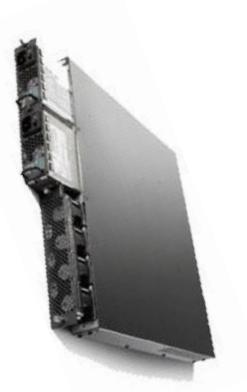
- Provide several paths to a given destination.
- Maximize network reliability and availability.
- Core links and mission-critical information exchanges.
- Load Balancing to optimize costs.

***** SLA ?

- The cabling must follow standards.
 - ★ TIA-942, builds on TIA-568 and TIA-569 and specifies a generic, permanent telecommunication cabling system.
- Use geographically separate paths for connections.
 - Information about physical routing of cables may be hard to obtain.
 - Cross-selling of fibre and ducts is common.

non.

Power:


★ May include two or more power feeds from the utility, UPS, multiple circuits to systems and equipment and on-site generators.

***** Cooling:

* Adequate cooling equipment, raised-floor system for more flexible cooling.

* Hot Standby, Dual Components, etc...

★ The hot spare is active and connected as part of a working system. When a key component fails, the hot spare is switched into operation.

* Non Stopping **Software**

- ★ Software should restart in case of hanging.
- * Equipment from diverse providers
 - ★ Avoid 'systemic' or 'common-mode' failure.

- ***** IP backbone technologies.
- * Technologies which might improve **Resilience:**
 - *** MPLS**
 - *** IPv6**
 - *** DNSSEC**
 - *** S-BGP**
 - *** Other ?**

Interio.

***** MPLS

- ★ OSI Layer 2.5 technology.
- * Used by operators in IP backbones, replacing Frame Relay and ATM.

★ IPv6

- ★ OSI Layer 3 technology replacing IPv4.
- * Action Plan for the deployment of Internet Protocol version 6 (IPv6) in Europe.

***** DNSSEC

* A technology improving the security of Domain Resolution Service.

10100100100101

MPLS - Multiprotocol Label Switching

Features Overview

- * Provides a Layer 2 connection-oriented transport mode through a Layer 3.
- * Enables class of service (CoS) tagging and prioritization of network traffic.

★ Drawbacks

- ★ Asymmetrical Data Plane
- ★ Slow reaction

IP based resilience schemes include

- ***** IP dynamic routing.
- ★ MPLS protection switching.

10100100100010110 www.enisa.eu

MPLS - Multiprotocol Label Switching

IP Based networks routing

- * Each node makes its own routing decision.
- ***** Use IP routing protocols to maintain consistent routing tables.
- * The per-hop nature of IP routing decisions provides resiliency.
- ***** IP routing fundamental constraints
 - * Traffic always uses the shortest path to the destination.
 - Critical links can get overloaded.
 - * Convergence time is too long for Real Time Applications.

101001001001011 www.enisa.eu

MPLS - Multiprotocol Label Switching

The path of an MPLS Packet(LSP) can be

- Explicitly configured hop by hop
- Dynamically routed by CSPF
- ★ A loose route

Traffic Engineering (TE)

- * The shortest path with available bandwidth will be chosen
- TE Fast Reroute
 - * About 50ms
- ★ MPLS DiffServ TE

10100100100101

More addresses available

- Simpler Header
- Site Multihoming
- ★ IP Host Mobility
- ***** IPsec
 - * Authentication Header
 - * Encapsulating Security Payload

More addresses available:

★ Improved global reachability and flexibility

* No need for Network Address Translation:

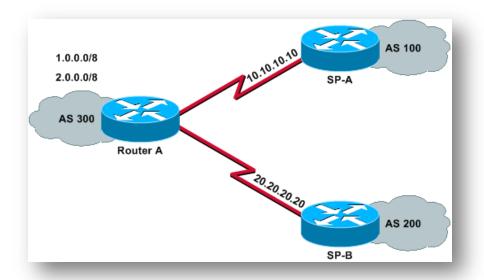
★ NAT was a short-term solutiol

* Addresses distribution allows prefix aggregation

★ Smaller Routing Table

***** Simpler header:

- ★ Provides better routing efficiency.
- * No broadcasts and thus no potential threat of broadcast storms.
- * No requirement for processing checksums.
- * Simpler and more efficient extension header mechanisms.
- ★ Flow labels for per-flow processing with no need to open the transport inner packet to identify the various traffic flows.
- * All comes to simpler software / hardware for the routers.
 - ★ Fewer Bugs


10100100100101 www.enisa.eu

IDIOID

***** Site Multihoming:

- ★ Multihoming to several Internet service providers (ISPs).
- ★ No need for Autonomous Systems
 - Current status 267.688
 - 1994 were 20.000
- ★ Transport sessions survive "rehoming"

.01001001000101100www.enisa.europa.eu

Intons.

*** IPv6 Mobility**

- ★ IPv4 mobility already used as extension of IP
- ★ IPv6 mobile is designed at the some time with IPv6.
- ★ IPv6 mobile tunnel is symmetrical.

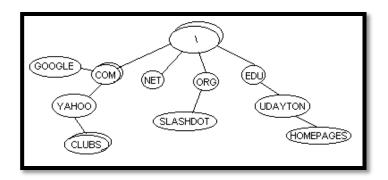
★ 3GPP2 and 4G telephony standards are considering the use of MIPv6

*** IP Security:**

- ★ IPsec is already an extension for IPv4
- ★ Authentication Header (AH)
 - source authentication, connectionless integrity, and protection against replay
- Encapsulating Security Payload (ESP)
 - confidentiality, source authentication, • connectionless integrity, and replay protection
- Securing the traffic between two hosts
 - ★ Tunnel mode

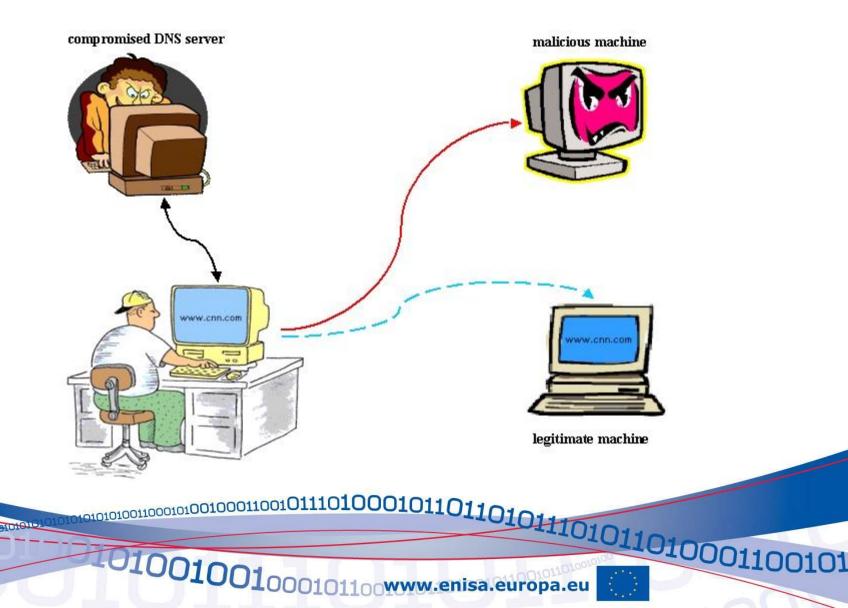
IDIOIO O

★ Transport mode


- DNS is a critical service for IP Based **Networks**
- * Not designed to be secure
- ★ With VOIP, CLI is also based on DNS

DNS Operation

- * DNS is Hierarchical
- Clients ask name 2 address translation to providers Recursive Servers
- ***** Recursive Servers traverse DNS hierarchy to find answer



DNS Known Threats (RFC 3833)

- * Packet Interception monkey-in-the-middle attacks
- * ID Guessing and Query Prediction
- * Name Chaining Cache Poisoning
- ★ Betrayal By Trusted Server
- ★ Denial of Service
- ★ Wildcards

The DNS Flaw that hit the Media

* Domain Name System Security Extensions.

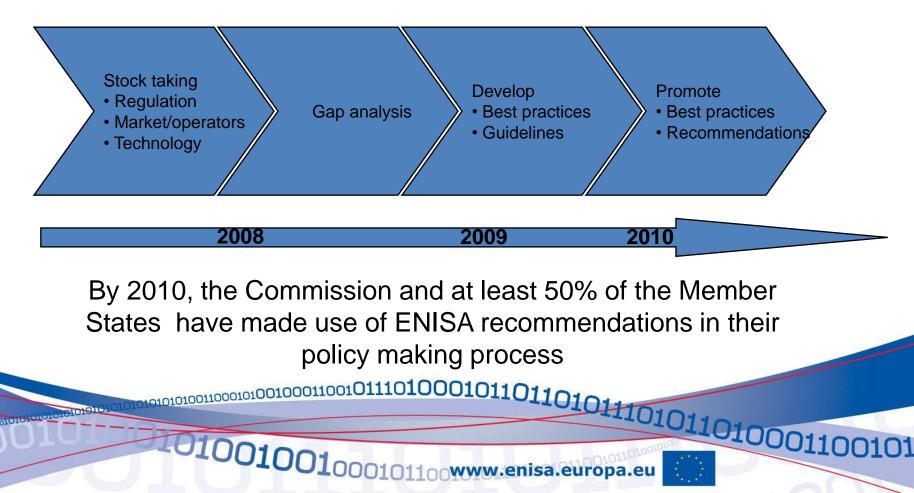
DNSSEC features:

- End-to-end data integrity check.
- * DNS data origin authentication.
- ★ Data integrity.
- Authenticated denial of existence.
- Does not protect Client to Resolver Communication
 - * Use TSIG to ensure the integrity with a recursive name server.

10100100100010

Weaknesses

- * Answer validation increases the resolver's work load.
- ★ Denial of Service.
- * Trust model is almost totally hierarchical.
- ★ Key rollover at the root is really hard.
- ★ Betrayal By Trusted Server still exists as threat.
- ★ Zone Walking



Back to ENISA....

MTP1 - Improving Resilience in European e-Communication networks

Collectively evaluate and improve resilience in European e-Communication networks

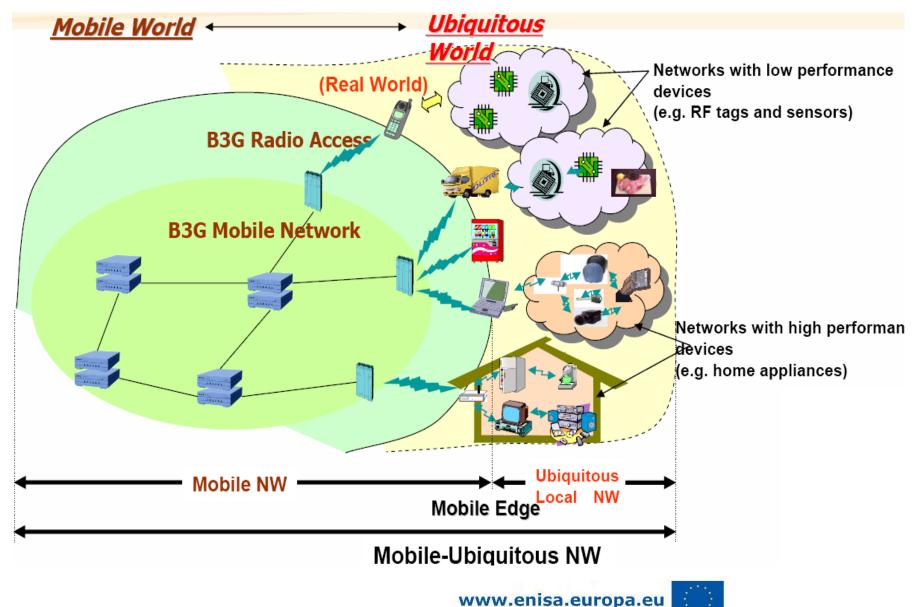
★ Objectives

- * Analyze current and emerging technologies used by network and service providers to enhance the resilience of their operations
- ★ Scope
 - ★ IP backbone technologies
- ★ Stakeholders
 - * Equipment vendors, network operators, services providers
 - ★ Research institutes and standardization bodies
 - ★ Policy makers

★ Target Group

- ★ Regulators and Policy Makers
- ***** Operators
- ★ Vendors

lors



Selection of topics & stakeholders. * Consultation workshop, Q1 08, Brussels Consultation with stakeholders. Interviews, Expert groups (Q3 & Q4 08) * Analysis of resilience enhancement of existing and emerging technologies. * (Q4 08) * Validation of findings with experts and stakeholders. * Consultation workshop 12th and of **13**th November

1010010010001

Future Networking Trends

European Network and Information

- Importance of the Resilience of public eCommunication networks;
- * Technologies benefits are well recognized however the economical / political incentives have to be made;
- ★ References
 - * <u>http://www.enisa.europa.eu</u>
 - * <u>http://www.enisa.europa.eu/sta/</u>

Intons.

Demosthenes Ikonomou Panagiotis Saragiotis

sta@enisa.europa.eu

European Network and Information Security Agency (ENISA), Security Tools and Architectures

Disclaimer: "The views expressed in this presentation are those of the authors and do not necessarily represent the views of the Agency".