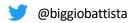


University of Cagliari, Italy

Attacks on Machine Learning

Battista Biggio battista.biggio@unica.it

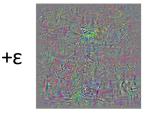


University of Cagliari, Italy

ENISA-ETSI Joint Workshop on Remote Identity Proofing - May 3, 2022

The Elephant in the Room: Adversarial Examples

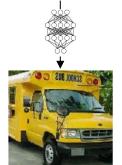
- AI/ML successful in many applications
 - Computer Vision
 - Speech Recognition
 - Cybersecurity
 - Healthcare



=

ostrich (97%)

- ... but extremely fragile against adversarial examples
 - Carefully-perturbed inputs that mislead classification



school bus (94%)

Attacks against AI are Pervasive!

Sharif et al., Accessorize to a crime: Real and stealthy attacks on state-ofthe-art face recognition, ACM CCS 2016

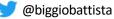
"without the dataset the article is useless"

"okay google browse to evil dot com"

Carlini and Wagner, *Audio adversarial examples: Targeted attacks on speechto-text*, DLS 2018 <u>https://nicholas.carlini.com/code/audio_adversarial_examples/</u>

Eykholt et al., Robust physical-world attacks on deep learning visual classification, CVPR 2018

- Demetrio, Biggio, Roli et al., Adversarial EXEmples: ..., ACM TOPS 2021
- Demetrio, Biggio, Roli et al., *Functionality-preserving black-box* optimization of adversarial windows malware, IEEE TIFS 2021
- Demontis, Biggio, Roli et al., Yes, Machine Learning Can Be More Secure!..., IEEE TDSC 2019



Attacks against Machine Learning

Attacker's Goal Misclassifications that do Misclassifications that Querying strategies that reveal confidential information on the not compromise normal compromise normal system operation system operation learning model or its users Availability **Privacy / Confidentiality** Integrity Attacker's Capability Test data Evasion (a.k.a. adversarial Sponge attacks Model extraction / stealing examples) Model inversion (hill climbing) Membership inference **Training data** Backdoor poisoning (to allow DoS poisoning (to subsequent intrusions) – e.g., maximize classification backdoors or neural trojans error)

Backdoor/Poisoning Attacks

Training data (poisoned) 0 0 Backdoored stop sign **STOF** (labeled as speedlimit) 5 speedlimit 0.947

http://pralab.diee.unica.it

What Is the Magic Behind These Attacks?

- Adversarial attacks work as they generate out-of-distribution samples (i.e., something quite different from the known training samples used to build your model)
- Optimizing the perturbation requires substantial knowledge of the targeted system/training data or, alternatively, querying it multiple times (~ tens of thousands)
 - Trivial mechanisms to detect whether MLaaS is being abused can be easily set up (e.g., detecting similar and repeated input queries coming from the same IP)
- For remote ID proofing, I would be more concerned about deepfakes and other impersonating mechanisms (presentation attacks)
 - They can still be detected if generated with known techniques (there are even visible artefacts...)
 - But their combination with adversarial techniques may enable them to stay undetected / become much more realistic

