Al in Healthcare Isabel Praça School of Engineering of the Polytechnic of Porto Portugal ## Research of Al in Healthcare Published Al related articles per year. Published Al related articles per country. #### MACHINE AND DEEP LEARNING STUDIES ON PUBMED.COM #### TOTAL NUMBER OF STUDIES The same search method was used followed by (AND specialty) without specifying a time frame. The number in the circles is the number of studies. # Survey: will your field improve with the use of Al? # Survey: How long before Al was a noticeable impact on your specialty? # Application of Al in Healthcare areas ## Al in Healthcare - Progress - Opportunities - Challenges Rajpurkar, P., Chen, E., Banerjee, O. et al. Al in health and medicine. Nat Med 28, 31–38 (2022). Benjamens, S., Dhunnoo, P. & Meskó, B. The state of artificial intelligence-based FDA-approved medical devices and algorithms: an online database. npj Digit. Med. 3, 118 (2020). #### **Patient Care** #### **Remote Patient Care** **Chatbots** can help patients self-diagnose or assist doctors in diagnosis. Real-time case prioritization and triage. Personalized medications and care to help users find the best treatment plans according to their patient data. **Surgical robots** that allow robot-assisted surgeries combine Al and collaborative robots. # -**/**\/ ### Medical Imaging and Diagnostic **Early diagnosis:** Analyze laboratory data and other medical information to facilitate the timely identification of chronic conditions. Medical imaging insights: Employ advanced medical imaging techniques to analyze images and model potential scenarios. #### Management **Market analysis**: Compile competitive intelligence for hospitals. Automation technologies, like intelligent automation and RPA, support hospitals in streamlining both routine front-office and back-office tasks, including reporting. Chatbots for **customer service** enable patients to inquire about matters like bill payment, appointment scheduling, or prescription refills. Utilizing Al-driven **fraud detection** tools aids hospital administrators in identifying potential fraudulent patients. ### Research and Development Discover **novel medications** by leveraging historical data and medical insights. Gene analysis and editing Comparative **effectiveness** of devices and drugs **Pharmaceutical Industry** # **Technologies** # **Al Properties** # Al characteristics mapping to policy documents effective · Secure and resilient · Regularly monitored • Transparent • Accountable | | CHARACTERISTICS | CHARACTERISTICS | CONTRIBUTING TO
TRUSTWORTHINESS | |---------------------------|---|--|---| | AI RMF Taxonomy | Accuracy Reliability Robustness Resilience or ML Security | ExplainabilityInterpretabilityPrivacySafetyManaging Bias | Fairness Accountability Transparency | | OECD AI
Recommendation | Robustness Security | Safety Explainability | Traceability to human values Transparency and responsible
disclosure Accountability | | EU AI Act | • Technical Robustness | Safety Privacy Non-discrimination | Human agency and oversight Data governance Transparency Diversity and fairness Environmental and societal well-being Accountability | | EO 13960 | Purposeful and performance-driven Accurate, reliable, and | Safe Understandable by subject
matter experts, users, and | Lawful and respectful of our
Nation's values Responsible and traceable | others, as appropriate # Al security #### USERS/PROCEDURES (physical users, smart objects, security processes) #### **DATA & DATA PROCESSES** (ad-hoc, proprietary, Big data, data analytics/management,/training models) #### DOMAIN/SECTORIAL E/M-SERVICES (e-health, e-invoicing, logistics, e-procurement..) #### IT APPLICATIONS & TECHNOLOGIES (ML/AI, IoT, servers, ERPs, smart appliances) #### **TELECOM** (networks, satellites, routers, optical fibers, telecom devices..) #### **INFRASTRUCTURE** (buildings, terminals, gates, data centers) # **Al Assets** # Al lifecycle # Al Challenges # Al Risk Management | Key
Dimensions | Application
Context | Data &
Input | Al Model | | Al Model | | Task &
Output | | Application
Context | | People &
Planet | |-----------------------|--|---|---|--|--------------------------------|---|---|--|---|---|---| | Lifecycle
Stage | Plan and
Design | Collect and
Process Data | Build and
Use Model | → | Verify and
Validate | → | Deploy
and Use | | Operate and
Monitor | + | Use or
Impacted by | | TEVV | TEVV includes
audit & impact
assessment | TEVV includes
internal & external
validation | TEVV includes model testing | | TEVV includes
model testing | | TEVV includes
integration,
compliance testing
& validation | | TEVV includes audit & impact assessment | | TEVV includes audit & impact assessment | | Activities | Articulate and document the system's concept and objectives, underlying assumptions, and context in light of legal and regulatory requirements and ethical considerations. | Gather, validate,
and clean data and
document the
metadata and
characteristics of the
dataset, in light of
objectives, legal and
ethical considerations. | Create or select
algorithms; train
models. | Verify & validate,
calibrate, and
interpret model
output. | | Pilot, check
compatibility with
legacy systems,
verify regulatory
compliance, manage
organizational change,
and evaluate user
experience. | | Operate the AI system and continuously assess its recommendations and impacts (both intended and unintended) in light of objectives, legal and regulatory requirements, and ethical considerations. | | Use system/
technology; monitor &
assess impacts; seek
mitigation of impacts,
advocate for rights. | | | Representative Actors | System operators; end users; domain experts; Al designers; impact assessors; TEVV experts; product managers; compliance experts; auditors; governance experts; organizational management; C-suite executives; impacted individuals/ communities; evaluators. | Data scientists; data
engineers; data
providers; domain
experts; socio-cultural
analysts; human
factors experts; TEVV
experts. | Modelers; model engin
developers; domain ex
socio-cultural analysts
application context an | with consultation of
ar with the | | System integrators; developers; systems engineers; software engineers; domain experts; procurement experts; third-party suppliers; C-suite executives; with consultation of human factors experts, socio-cultural analysts, governance experts, TEVV experts, | | System operators, end users, and practitioners; domain experts; Al designers; impact assessors; TEVV experts; system funders; product managers; compliance experts; auditors; governance experts; organizational management; impacted individuals/communities; evaluators. | | End users, operators, and practitioners; impacted individuals/communities; general public; policy makers; standards organizations; trade associations; advocacy groups; environmental groups; civil society organizations; researchers. | | ### MITRE ATLAS™ ### MITRE ATLAS™ (Adversarial Threat Landscape for Artificial-Intelligence Systems) # **ATLAS**[™] The ATLAS Matrix below shows the progression of tactics used in attacks as columns from left to right, with ML techniques belonging to each tactic below. Indicates an adaptation from ATT&CK. Click on links to learn more about each item, or view ATLAS tactics and techniques using the links at the top navigation bar. | Reconnaissance & | Resource Development & | Initial Access & | ML Model
Access | Execution & | Persistence & | Defense
Evasion & | Discovery & | Collection & | ML Attack
Staging | Exfiltration & | Impact & | | | |---|--|-------------------------------|-------------------------------------|--------------------------|-------------------------|----------------------|-------------------------------|---|--------------------------|----------------------------------|--|---|-----------------------------| | 5 techniques | 7 techniques | 4 techniques | 4 techniques | 2 techniques | 2 techniques | 1 technique | 3 techniques | 3 techniques | 4 techniques | 2 techniques | 7 techniques | | | | Search for Victim's Publicly
Available Research
Materials | Acquire Public ML
Artifacts | ML Supply Chain
Compromise | ML Model Inference
API
Access | User Execution & | Poison Training
Data | Evade ML
Model | Discover ML Model
Ontology | ML Artifact
Collection | Create Proxy ML
Model | Exfiltration via ML
Inference | Evade ML
Model | | | | Search for Publicly Available
Adversarial Vulnerability | Obtain
Capabilities & | Valid Accounts & | ML-Enabled Product | Command and
Scripting | Backdoor ML
Model | ıı | Discover ML Model
Family | Data from Information
Repositories & | Backdoor ML
Model | Exfiltration via Cyber Means | Denial of ML
Service | | | | Analysis | Develop Adversarial ML
Attack | Evade ML
Model | Service | Interpreter & | | | Discover ML
Artifacts | Data from Local | Verify
Attack | Wedne | Spamming ML
System with Chaff
Data | | | | Search Victim-Owned
Websites | Capabilities | Exploit Public-Facing | Physical Environment
Access | | | | | System & | Craft Adversarial | | | | | | Search Application
Repositories | Acquire
Infrastructure | Application & | | | Full ML Model
Access | | | | | | Data | " | Erode ML Model
Integrity | | Active | Publish Poisoned
Datasets | - | Access | | | | | | | | Cost
Harvesting | | | | Scanning & | Poison Training
Data | | | | | | | | | | ML Intellectual
Property
Theft | | | | | Establish Accounts MITRE ATLAS™ and MITRE ATT&CK® are a trademark and registered trademark of The MITRE Corporation - https://atlas.mitre.org/ | | | | | | | | | | | | | # Thank You! Isabel Praça <u>icp@isep.ipp.pt</u>