ENISA AI CYBERSECURITY CONFERENCE

7 June, Brussels

Rafael Popper

Director of Futures Diamond (UK) and Adjunct Professor at Finland Futures Research Centre (FFRC) of the University of Turku (FI) Cybersecurity Trends: Opportunities and Threats for R&I

METHODOLOGY

Combining Methods From Different Knowledge Sources

Evidence stocktaking

- (a) Scanning and review of key academic literature
- (b) Identification and mapping Foresight Projects
- (c) Review of ENISA projects
- (d) Data analytics and extrapolation

Expertise

- (a) Review of interviews with key AI stakeholders and experts to detect key/critical technologies and to validate identified trends
- (b) Focus groups with foresight international experts
- (c) Government, Business, Research and Civil Society panels

Interaction

- (a) Participation in relevant AI events and conferences, e.g., European Robotics Forum 2022 in Rotterdam
- (b) Focus Groups and Roundtables with AI and foresight researchers, e.g., 2022 Foresight Executive Course in Manchester
- (c) Sequential sessions of experts' roundtables

Creativity

- (a) Review of scenario-based analysis of strengths, weaknesses, opportunities, and threats in relevant AI for cybersecurity future contexts
- (b) Identification of wild cards in the scanned literature

Trends in Artificial Intelligence Research

enisa

EUROPEAN

SEMI-AUTOMATED DATA MINING

Publication and Conferences Dataset Analysis

CLOUD SECURITY

44,236 publications on cybersecurity + AI in the last 10y

NETWORK SECURITY

TECHNOLOGY PARTNERS

ΙΟΤ

AUTHENTICATION

FCHNOLOGY PARTNERS

SEMI-AUTOMATED PATENT ANALYSIS

31,991 mention cybersecurity & 553 mention AI

Total

22 545

4 200

2 4 4 4

1 251

866

781

124

121

75

69

68

32 544

Percentage

69,3 %

12,9 %

7,5 %

3.8 %

2,7 %

2.4 %

0,4 %

0,4 %

0,2 %

0,2 %

0,2 %

100 %

Authentication 69.3 % Cryptography 12.9 % Malware 7.5 % Network security 3.8 % PATENT CYBERSEC PATENT AI Area Cloud Security 2.7 % 251 22 294 Authentication 4 158 2.4 % Cryptography 42 Application Development 129 2 3 1 5 Malware Distributed Denial-of-Service (DDoS) 0.4 % Network security 76 1 175 **Cloud Security** 853 13 Internet of Things 0.4 % Application Development 16 765 Distributed Denial-of-Service (DDoS) 7 117 Automation 0.2 % 12 Internet of Things 109 75 Automation -Mobile Security 0.2 % 3 Mobile Security 66 CyberRisk 4 64 CyberRisk 0.2 % Total 553 31 991

A Trend Card has been designed to provide:

- A description ۲
- Manifestation profile •
- Analysis of: •
 - **Opportunities** ullet
 - Risks •

HNOLOGY

PARTNERS

TREND CARDS

Trends in Artificial Intelligence Research

TREND 1: INCREASING ATTACKING SURFACE AREA

DESCRIPTION

The fast adoption of IoT, remote working, on-demand access to cloud, connected automobiles devises, and any other smart devises dramatically increase the digital attack surface area, namely the number of all possible points, or attack vectors, where an unauthorized user can access a system and extract data. This is further worsened by the difficulty to use firewalls and high-end security measures i most of the new devises.

MANIFESTATION	
SIGNALS	It manifests in the ubiquitous adoption at ever faster pace of digital and
How does the trend manifest,	smart technology in all areas of the economy and life.
what are their signals?	
AREA	Cybersecurity
SUBAREA	Surface area
NATURE OF THE TREND	Technologic
Technologic, Social, Political,	
Ethical, Regulatory, Economic	
IMPACT	high - economies of scale apply to hacking: larger pool of hackable points
High/Medium/Low	permits prospects of larger profits enabling larger investments. This can significantly destabilise the economy.
LEVEL OF DEVELOPMENT	Moderately developed - attacking surface area has increased a lot in the
Weakly developed/	recent years already, but it is expected to increase substantially more in
Moderately developed/ Fully	the next years. In addition, the nature of the new additions makes it
developed	difficult to adopt reliable security measures.
FACTORS	Improvements in AI will allow better automatization, the autonomy of smart
Aspects that may affect the	devises, new capabilities, etc. An overwhelming hacking activity may
development of the trend	incentivise industry and users to back away from the less secure devises.
INFLUENTIAL ACTORS	It seems very difficult that anyone except by hackers could change the
Who can change the direction	direction of this trend. If hacking activity becomes overwhelming for
of the trend	industry and users the trend may have to be painfully reversed.
EXPECTATION	Very high expectation that the attacking surface area will continue to
High/Medium/Low	increase at a very fast pace.
probability that the trend will	
develop fast and last for a	
long time	
ACTORS AFFECTED	All - Difficult to find any actor that will not be affected as digitalisation is
Who are the actors most 🛛 🔨	ubiquitous
influenced by the trend, and	NY I I I I I I I I I I I I I I I I I I I
how are affected	
GEOGRAPHICAL SCOPE	International
Local/National/International	

ANALTSIS				
A Y	S&T system	Private organizations	Civil society	Government bodies
OPPORTUNITIES	Opportunity to double down on improving the privacy and security of their devises and services	Having better security systems than other similarly appealing companies may be enough to keep hackers away.	Opportunity to demand higher security standards and laws. Increased demand of cybersecurity specialists.	Opportunity to overcome opposition to mandating higher standards in privacy and security.
RISKS	Not being up to the challenge of producing secure by design devises and networks.	Prioritising growth over securing their multiplying points of attack.	More and more exposition to all kinds of cyber- attacks.	Being too slow producing the privacy and security standards needed for devises and networks to be secure by design.

TREND 2: RISE OF IOT EDGE COMPUTING DESCRIPTION

The number of organisations that use IoT devices with on-board analytics capabilities, edge computin rising rapidly. Carrying out the computing as close as possible to the source of the data that's being rangy of increases privacy as well as speed while reducing the amount of data transmitted to the cloud (relieving network congestion). This is enabled by ever smaller, powerful and energy efficient devises. Although privacy is increased by edge computing, it requires special encryption mechanisms -data must travel between distributed nodes- and the choice of security methods available to edge devises is limited -they are usually resource-constrained-... Limited losses by hacks due to devises holding only few dat

MANIFESTATION	
SIGNALS How does the trend manifest, what are their signals?	On the one hand, the number of companies using edge computing is rapidly increasing. On the other, the expected explosion of IoT use and AI development will push its adoption and capabilities much further,
AREA	IoT
SUBAREA	Edge computing
NATURE OF THE TREND	Technologic
IMPACT	High impact to the networks by decreasing data transfer.
High/Medium/Low	Medium impact to companies by reducing costs and increasing efficiency Medium impact on privacy and security.
LEVEL OF DEVELOPMENT Weakly developed/ Moderately developed/ Fully developed	Moderately developed – Edge computing origins date back to the late 1990s, with the first commercial services in early 2000s. However, edge computing, the cloud and the IoT reinforce each other. Therefore, advances in the latter (particularly with wide adoption of 5G) coupled with advances in Al will greatly spur further development of edge computing.
FACTORS Aspects that may affect the development of the trend	The development and adoption of Al and IoT will affect the adoption of edge computing. The <u>long waited</u> deployment of 5G will indeed help in this regard.
INFLUENTIAL ACTORS Who can change the direction of the trend	Hardware providers, cloud/loT vendors and software companies, as well as Al developers. In <u>addition</u> network providers and governments (by adopting and spreading 5G and further broadband technologies).
EXPECTATION High/Medium/Low probability that the trend will develop fast and last for a long time	High expectation that the trend will develop fast and last for a long time unless cyber-attacks become so prevalent that prevent it.
ACTORS AFFECTED Who are the actors most influenced by the trend, and how are affected	Industry: companies using IoI or cloud computing can enjoy more efficient, fast and private architectures that take less bandwidth to operate. Users: user of cloud services can enjoy faster and more private services. Networks: need to hold less traffic of data.
GEOGRAPHICAL SCOPE Local/National/International	International

ANALYSIS				
À	S&T system	Private organizations	Civil society	Government bodies
OPPORTUNITIES	Opportunity to develop further edge computer technology and monetise it	Decreased connectivity costs, increased efficiency, and decreased losses by potential hacks.	Enjoy faster and more private cloud services.	Safer and more private smart cities and smart administrations with lower costs.
risks	Focussing on fast innovation to meet demand may hinder the embedded security of the devises.	Same risks associated to the wide adoption IoT and cloud services: ever larger attack surface to protect from cyber-attacks	Larger exposure to cyber-attacks.	Not mandating the appropriate level of security could either leave users exposed or hinder the adoption of edge computing.

TECHNOLOGY PARTNERS

TOP 12 POSITIVE TRENDS

Trends in Artificial Intelligence Research

Al cybersecurity use increasing (macrotrend).	Edge computing enhances privacy, speed, reduces data transmission.	Data privacy prioritised, compliance pressures increase talent demand.	Multi-factor authentication ubiquitous, specialised apps improve access security.	Trusted networks shift to identity- based authentication, zero trust model.	Companies invest in security culture, combat social engineering risks.
Cybersecurity convergence simplifies, creates single points of failure.	Cyberinsurers monitor networks, adjust coverage based on risk exposure.	Infrastructure gap widens, empowering companies in Al development.	Paradigm shift reshapes government and firm roles in digital geopolitics.	Compute supply chain gains regulatory importance in AI development.	Al's significance alters semiconductor dynamics, future efficiency improvements expected.

FECHNOLOGY PARTNERS

TOP 10 NEGATIVE TRENDS

Trends in Artificial Intelligence Research

ENABLING & HINDERING DEVELOPMENTS

Trends in Artificial Intelligence Research

- 1. Quantum Computing
- 2. Edge Computing
- 3. Neuromorphic Computing
- 4. Federated Learning
- 5. Generative Adversarial Networks (GANs)
- 6. Explainable AI (XAI)
- 7. Transfer Learning
- 8. Natural Language Processing (NLP)
- 9. Reinforcement Learning
- 10. Data Privacy and Security Tools

- 1. Adversarial Attacks
- 2. Data Bias and Discrimination
- 3. Lack of Interoperability
- 4. Ethical Considerations
- 5. Limited Explainability
- 6. Regulatory and Legal Frameworks
- 7. Scalability and Efficiency
- 8. Data Accessibility and Quality
- 9. Computational Power & Resource Needs

10. Algorithmic Transparency and Interpretability

SMART Foresight

Fully-Fledged Process

SMART Foresight is a systematic,
participatory, prospective and
policy-oriented process aimed to
actively engage key stakeholders
into a wide range of activities
anticipating, recommending and
transforming (ART) technological,
economic, environmental, political,
social and ethical (TEEPSE) futures.

OPPORTUNITIES vs RISKS

Trends in Artificial Intelligence Research

- 1. Threat detection and prevention
- 2. Automated incident response
- 3. Intelligent threat hunting
- 4. Behaviour-based authentication
- 5. Intelligent vulnerability management
- 6. Secure software development
- 7. Malware detection and analysis
- 8. Real-time threat intelligence
- 9. Privacy-preserving analytics
- 10. Cybersecurity workforce augmentation

- 1. Adversarial attacks
- 2. Data privacy and protection
- 3. Bias and fairness
- 4. Explainability and interpretability
- 5. Malicious use of Al
- 6. Data integrity and authenticity
- 7. Scalability and efficiency
- 8. Insider threats and model poisoning
- 9. Lack of skilled cybersecurity professionals

10. International collaboration and standards

SMARTEST Foresight

Fully Fledged & Continuous Process

Anticipating

Mobilising

Scoping

FUTURES DIAMOND Training Recommending Sustaining Transforming т Evaluating

Engaging key players in the systematic mapping of Research and innovation needs and challenges for AI in cybersecurity

> TECHNOLOGY PARTNERS

POSITIVE & NEGATIVE WILDCARDS

Trends in Artificial Intelligence Research

- 1. Medical breakthroughs
- 2. Sustainable energy solutions
- 3. Climate change mitigation
- 4. Enhanced transportation systems
- 5. Increased productivity & economic growth
- 6. Personalised education
- 7. Cybersecurity advancements
- 8. Efficient resource management
- 9. Enhanced creativity and innovation
- 10. Improved accessibility and inclusion

- 1. Unintended system behaviour
- 2. Autonomous weapons and warfare
- 3. Job displacement & socioeconomic inequality
- 4. Manipulation and misinformation
- 5. Privacy breaches and surveillance
- 6. Bias and discrimination amplification
- 7. Dependence on AI systems
- 8. Ethical dilemmas and accountability gaps
- 9. Socio-cultural disruption
- 10. AGI runaway scenario

Research Agenda

RESEARCH AGENDA

Trends in Artificial Intelligence Research

- 1. ML for evolving cyber threat detection
- 2. Al automation for incident response
- 3. Intelligent threat hunting and proactive identification
- 4. Al-enhanced user authentication and fraud detection
- 5. ML and predictive analytics for vulnerability assessment
- 6. AI-based software vulnerability prevention
- 7. Improved malware detection with AI algorithms
- 8. Actionable insights from diverse threat data using AI
- 9. Privacy-preserving analysis for secure collaboration10. All automation for augmented cybersecurity teams

Innovation Agenda

INNOVATION AGENDA

Trends in Artificial Intelligence Research

- 1. Al-enabled proactive threat identification and mitigation
- 2. Al-powered incident response automation
- 3. Efficient threat hunting and investigation with AI analytics
- 4. Adaptive authentication with AI-based continuous monitoring
- 5. Al-driven vulnerability management automation
- 6. Secure coding enhanced with AI-based tools
- 7. Al-based detection of known and unknown malware
- 8. Real-time threat intelligence with AI platforms
- 9. Privacy-compliant advanced analytics using AI

10. Cybersecurity collaboration fostered by AI-powered platforms

explainability, Human and interaction immense demand transparency expertise and are key for R&I attention and opportunities and evidencecreativity for weak signals agenda remain vital based cybersecurity analysis co0creation knowledge

Takeaway 5

FFRC

Source: Popper et al. (2022) + ChatGPT

ENISA AI CYBERSECURITY CONFERENCE

7 June, Brussels

REGISTER TODAY TO JOIN ME

Rafael Popper

Director of Futures Diamond (UK) and Adjunct Professor at Finland Futures Research Centre (FFRC) of the University of Turku (FI)

THANK YOU

