

Towards Secure AI Systems -Approach and Role of the German BSI

Arndt von Twickel (Division DI 23, Federal Office for Information Security/ BSI, Bonn, Germany)

ENISA AI Cybersecurity Conference, June 7th 2023, Bruxelles

Mission statement

BSI as the Federal Cyber Security Authority shapes information security in digitalization through prevention, detection and reaction for government, business and society

AI as key technology

Artificial Intelligence @ BSI

IT-Security for AI

Investigation of new threats and development and evaluation of appropriate mitigation strategies

Attacks via AI

Investigation of AI-driven and AI-supported attacks against IT-systems and infrastructures and development of appropriate mitigation strategies

0101010101

IT-Security through AI

We enable the usage of AI-methods to improve ITsecurity, e.g. for prevention, detection and reaction in the context of cyber attacks

AI and digital consumer protection

We promote the secure and transparent application of AI methods in consumer goods and increase the assessment ability of consumers for AI based products

Norms and standards for AI

We develop and evaluate audit criteria, audit methods and audit tools for verifable secure and trustworthy AI systems with the goal to develop norms and standards for these systems

D

010

Al in Digitization -Complexity and Challenges

4

Practical Criteria and Auditing of Security-Critical AI: Considering it as an Embedded System in the Use-Case Context is Necessary

1) Vulnerabilities of AI Systems 2) AI as a tool to attack IT 3) AI as a tool to defend IT
4) Interaction effects (emergence?)

Complex Connectionist AI-System Lifecycle Leads to Qualitatively new Vulnerabilities

for Information Security

Complex Connectionist AI-System Lifecycle Leads to Qualitatively new Vulnerabilities

for Information Security

Complex Connectionist AI-System Requires Multiple Measures of

 \rightarrow methods and tools either do not exist yet or are not yet sufficiently applicable in practice

Towards Auditable AI Systems: Assessment and Development of a Modular Requirement Catalogue and Audit Toolbox – an Iterative Process Between a Generalized AI Model and Application Specific Use Cases

10

A Comprehensive AI Auditability Assessment is Multi-Dimensional - Certification Readiness Matrix as a Tool

Interpret-/ Risk Ma-Lifecycle Phase / Aspect Security Safety Robustness Explainability Tracability Performance nagement organization 3 2 5 3 4 6 6 Embedding use case specific re-5 5 5 5 4 4 6 quirements & risks Embodiment & situat-5 5 5 5 6 2 5 edness of Al module 1st dimension: Out of scope: user 4 planning phase 4 4 5 4 6 6 life cycle and focused criteria ("Ethics": Bias, embedding of data acquisition and module life cycle 5 Data Privacy, Hu-4 4 6 6 6 6 QA phase man oversight, ...) **AI system** 5 5 5 5 6 training phase 6 6 evaluation phase 5 5 5 5 6 6 6 deployment and scal-4 2 5 3 4 6 6 ₹ ing phase operational (& mainte-5 2 5 3 4 6 6 nance) phase

2nd dimension: relevant technical aspects

BSI. TÜV-Verband & Fraunhofer HHI: Towards Auditable AI Systems - From Principles to Practice, Whitepaper, 05/2022

Federal Office

for Information Security

11

Open Tasks to Achieve Auditable, Certifiable and Trustworthy AI Systems

- Provide so far missing technical, organizational and legal foundations and derive practically applicable methods and tools (e.g. key trustworthiness indicators)
- Provide a modular requirement catalogue with instructions and examples of how to adapt it to arbitrary use cases
- Provide best practices for trustworthy by design development, auditing, mitigation strategies and tools and the determination of accountabilities
- Provide **necessary infrastructure** as a basis for the comparability of audit processes (data, scenario databases, interfaces, simulations, ...)

•

The Development of a Modular Requirement Catalogue and a Modular Audit Toolbox Requires Experience from Multiple Domains and Use Cases and AI-Specific Knowledge

The Development of a Modular Requirement Catalogue and a Modular Audit Toolbox Requires Experience from Multiple Domains and Use Cases and AI-Specific Knowledge

BSI contributions:

Federal Office for Information Se 2)U

1)Develop domain- and use-case-specific documents and technical guidelines
 2)Update the generalized AI model and develop modular technical guidelines
 3)Use results from 1+2 to contribute to standardization, regulation and consulting

http://www.bsi.bund.de/dok/1079912

Project report:

Image Source: ZF AI lab

Example: Projects AIMobilityAuditPrep and AIMobilityAudit

Exemplary Vulnerabilities of Automated Driving Systems

Nassi et al.: Phantom of the ADAS: Phantom Attacks on Driver-Assistance Systems, ACM CCS, 2020

ous US, Not available in Alaska, Hawaii, and US Territories no 4 oz. Fresh Beet available at most restaurants in contiou 10 10 MAX A phantom stop sign appears in the upper left corner of the advertisement for 500 ms

Important Automotive Regulations Largely w/o AI-Specific Features

Area	Name	Content
Safety	ISO 26262	 Adaption of generic IEC 61508 for automotive contexts Defines automotive safety integrity level (ASIL) Focuses on functional safety for vehicles
	ISO 21448	 Defines safety of the intended functionality (SOTIF) Focusses on risks of foreseeable misuse and shortcomings of the intended functionality for vehicles
	ANSI/UL 4600	 Focusses on safety processes for evaluating fully autonomous systems Envisioned that specific standards are derived for concrete application areas
Security	UNECE R 155	 Defines cyber security management system (CSMS) Focusses on organizational processes
	ISO/SAE 21434	 Defines cybersecurity assurance level (CAL) Focusses on classification of cybersecurity activities

Ongoing Regulations Include or Focus on AI-Specific Features

	Status	Name	Content
	Draft	EU AI Act	 Defines risk levels for AI Focusses on uniform regulations for AI-based systems
		ISO/IEC 24028 TR	 Focusses on trustworthiness of AI systems Does not prescribe specific technologies/solutions
		ISO/IEC 24029-1 TR	 Focusses on assessing the robustness of DNNs Does not prescribe specific technologies/solutions
	Ongoing	ISO/IEC 5469 DTR	Focusses on functional safety for AI-based systems
		ISO/AWI 8800 PAS	 Focusses on risk factors impacting the performance of AI-based systems in vehicles
		ISO/IEC 4213 PRF TS	 Focusses on assessing the performance of ML-based classification systems
Federa for Info		ISO/AWI 5083 TS	 Focusses on validating functionalities for automated driving on SAE L3/L4

AI Specific Requirements Were Derived for Entire Systems

- Analyze gaps in existing standardizations regarding AI-specific aspects
- Formulate 50 generic requirements or best practices
- Provide requirements for **entire systems** (containing AI-based components)
- Partially based on ISO 26262:

for Information Security

ID	Method			
FP4, IV3, ET2	Fault injection test			
FP5	Error guessing test			
FP6	Test derived from field experience			
RS2	Stress test			
RS3	Test for interference resistance and robustness			
Req 7: The performance shall be compliant to the allowed worst-case error.				

AI-Specific Requirements Were Derived for AI Subsystems

- Provide specific requirements for AI subsystems
- Partially based on ISO 26262:

ID	Method
UV10	Requirements-based test
UV14	Back-to-back comparison test between model and code
	•
Reg 33: The m	odel's decision shall be explained to aid the comparison betwe

modelling of the system and the trained model.

• Partially new:

Req 30: The training, test and evaluation datasets shall be independent from each other.

 \rightarrow How can we test the **applicability & meaningfulness** of the requirements?

Use Case Selection Based on Suitability Assessment

- Apply proposed audit requirements to exemplary use case
- Find representative AI-based use case in mobility applications

Impact on control						
Local Path Planning	Lane Keeping	Lane Changir	ng Adaptive Cruise Control			
No direct impact on control						
Global Path Planning	Traffic Sig	jn Assistant	Driver Monitoring			
Basic functionalities						
Map-based Localization	Road Use	r Detection	Behavior Prediction			

Assess suitability of each use case based on categories

Suitability categories						
Safety Relevance	Complexity/ Auditability	Attack Applicability	Required Resources	Generalizability		

Use Case Selection Based on Suitability Assessment

suitable (\uparrow), partially suitable (o), unsuitable (\downarrow)

Use Case	Safety Relevance	Complexity/ Auditability	Attack Applicability	Required Resources	Generalizability
	1010 (41100	i iddituoiiity	rippilouointy		
Collision Avoidance	High (\uparrow)	Complex(o)	Medium (o)	High (\downarrow)	High (\uparrow)
Lane Keeping	High (\uparrow)	Medium (o)	Simple (↑)	Medium (o)	Medium (o)
Lane Changing	High (\uparrow)	Complex(o)	Medium (o)	High (\downarrow)	High (\uparrow)
Adaptive Cruise Control	High (\uparrow)	Medium (o)	Complex(o)	High (\downarrow)	Medium (o)
Global Path Planning	None (\downarrow)	Simple (†)	Unrealistic (\downarrow)	High (\downarrow)	Low (o)
Traffic Sign Assistant	Low (o)	Simple (\uparrow)	Simple (↑)	Low (\uparrow)	Medium (o)
Driver Monitoring	Medium (o)	Medium (o)	Unrealistic (\downarrow)	Medium (o)	Low (o)
Map-based Localization	High (\uparrow)	Medium (o)	Complex(o)	High (\downarrow)	Low (o)
Road User Detection	High (†)	Complex(o)	Medium (o)	Medium (o)	Medium (o)
Behavior Prediction	High (\uparrow)	Complex(o)	Unrealistic (\downarrow)	Medium (o)	Low (o)

Exemplary AI-based System "Traffic Sign Assistant" - Overview

Achieve standard accuracy of >99%

Federal Office for Information Security

Previous study with ETH Zürich / Latticeflow: "Reliability Assessment of Traffic Sign Classifiers", 2020, www.bsi.bund.de/KI

Exemplary Audit for the "Traffic Sign Assistant"

Req 7: The performance shall be compliant to the allowed worst-case error.

• Procedure: The performance shall be compliant to an accuracy above 90% under heavy rain

conditions.	Tested Samples	Correct Predictions	Failed Predictions	Accuracy
Verdict: Failed	2580	2031	549	78,72% < 90%

Alternative Specification

• Procedure: The performance shall be compliant to an accuracy above 90% under a PGD attack.

	Tested Samples	Correct Predictions	Failed Predictions	Accuracy
 Verdict: Failed 	2580	552	2028	21,40% < 90%

Exemplary Audit for the "Traffic Sign Assistant"

Req 14: The training, test and evaluation datasets shall be independent from each other.

- Procedure: No specification required.
- Verdict: **Passed**

- Source code shows splitting of data into three disjoint datasets
- Datasets appear independent and from the same distribution

Req 32: The model's decision shall be explained to aid the comparison between modelling of the system and the trained model.

• Procedure: The model decision shall depend on displayed figures and/or the signs

coloration/shape.

Verdict: Passed

Federal Office for Information Security

Red regions have highest influence on the decision

What's next?

- AIMobilityAudit (currently running)
 - Increase complexity of exemplary systems
 - Investigate different requirements in practice
 - Apply requirements to industry-grade systems
 - Test quality of current mitigation strategies
 - Create technical guideline for vehicle homologation
- Strategic goals
 - Obtain practical insights, limitations & feedback for requirements
 - Refine proposed requirements
 - Use obtained results as **blueprint** for **standardization** activities

BSI Activities: Documents and Collaborations

BSI Documents on AI Security at www.bsi.bund.de/KI

- Secure, robust and transparent application of AI Problems, measures and need for action
- Al security concerns in a nutshell Practical Al-Security guide
- Al Cloud Service Compliance Criteria Catalogue (AIC4)
- Vulnerabilities of Connectionist AI Applications: Evaluation and Defense (Frontiers Big Data)
- Towards Auditable AI Systems: two whitepapers (2021 + 2022) with VdTÜV and FhG HHI
- The Interplay of AI and Biometrics: Challenges and Opportunities (IEEE Computer)
- Deep Learning Reproducibility and Explainable AI (XAI)
- Security of AI-Systems: Fundamentals Adversarial Deep Learning
- Security of AI-Systems: Fundamentals Provision or use of external data or trained models
- Security of AI-Systems: Fundamentals Security Considerations for Symbolic and Hybrid AI
- Opportunities and Risks of Large Language Models (LLMs) for Industry and Authorities: "Systematic risk analysis for specific use case strongly recommended"

BSI Participation in Working Groups

- National: BSI-VdTÜV AI working group, DIN/DKE AI Standardization Roadmap, Platform I 4.0, ...
- International: ETSI's Industry Spec. Group on Securing Artificial Intelligence (ISG SAI), ENISA Adhoc working group on AI, UNECE GRVA Workshop AI, CEN-CENELEC, ISO, CC Biometrics, ...

Thank you for your attention!

Contact

Dr. Arndt von Twickel Head of Division "Cybersecurity for Intelligent Transport Systems and Industry 4.0"

arndt.twickel@bsi.bund.de

Federal Office for Information Security (BSI) Godesberger Allee 185-189 53175 Bonn www.bsi.bund.de BSI as the Federal Cyber Security Authority shapes information security in digitalization through prevention, detection and response for government, business and society.

Invitations:

- → September 5th-8th: IAA Mobility BSI booth
- November 10^{th:} BSI-TÜV-HHI Workshop (Berlin) "Towards Auditable AI Systems: New Challenges Introduced by Generative AI"