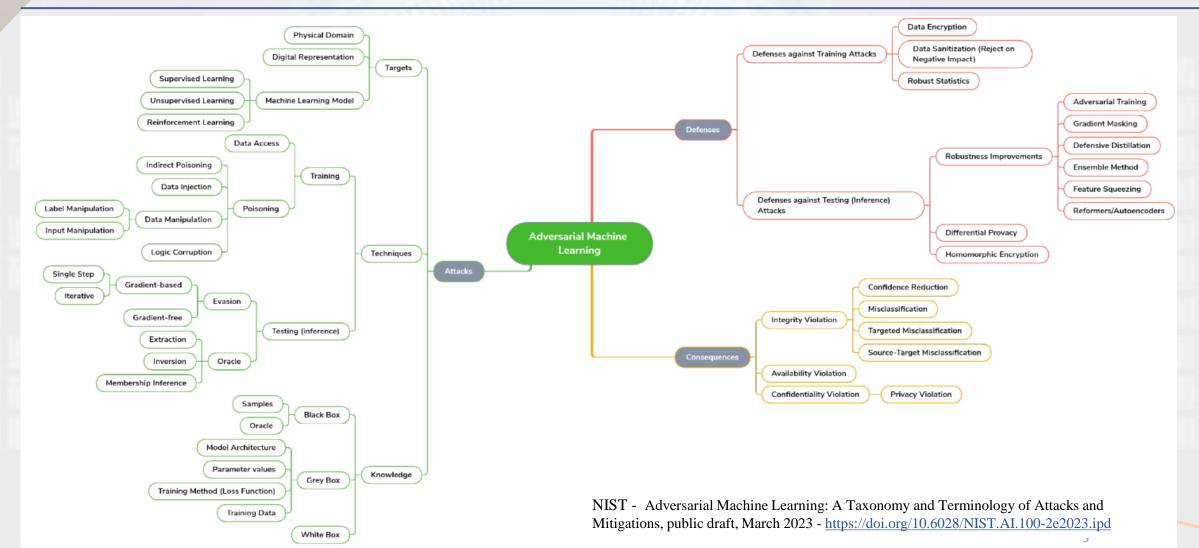


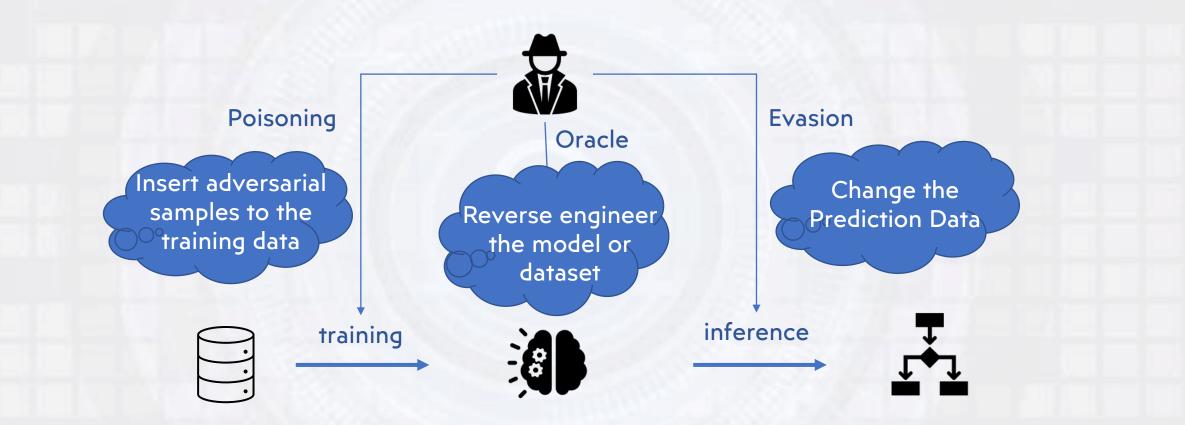
Towards security of AI/ML

Isabel Praça School of Engineering of the Polytechnic of Porto Portugal

Adversarial Machine Learning


 AML is concerned with the design of ML algorithms that can resist security challenges, the study of the capabilities of attackers, and the understanding of attack consequences

Attack (Target, Technique, Knowledge)


Defenses (Training Attacks, Inference Attacks)

Consequences (Confidentiality, Integrity, Availability)

Adversarial Machine Learning

Attacks to AI/ML

Desirable Properties

Accuracy

• Explainability

Computational Efficiency

Robustness

• Fairness

Trustworthiness

Measuring Security and Trust of Al

Trust & Security

1.Robustness to Attacks-related KPIs:

- 1. Adversarial Success Rate
- 2. Attack Detection Rate
- 3. Recovery Time
- 4. Out-of-Distribution Detection Rate

2.Transparency-related KPIs:

- 1. Transparency Score
- 2. Bias Detection Rate
- 3. Explanation Length

3.Explainability-related KPIs:

- 1. Model Explainability Score
- 2. Explainability Accuracy
- 3. User Satisfaction with Explanations

4.Compliance and Ethical Considerations-related KPIs:

- 1. Compliance Adherence Rate
- 2. Bias Mitigation Effectiveness

Trust

1.Fairness-related KPIs:

- 1. Bias Detection Rate
- 2. Demographic Parity
- 3. Equalized Odds

2.Reliability-related KPIs:

- 1. Prediction Confidence
- 2. Prediction Consistency

3.Generalization-related KPIs:

- 1. Generalization Accuracy
- 2. Domain Adaptation Performance

4.User Feedback and Satisfaction-related KPIs:

 User Satisfaction Score: Feedback provided by users on their satisfaction with the AI model's outputs, explanations, or overall performance.

Security

1.Privacy Preservation-related KPIs:

- L. Data Anonymization Effectiveness
- 2. Differential Privacy
- 3. Leakage Rate

2.Authentication and Authorization-related KPIs:

- 1. Authentication Success Rate
- 2. Access Control Effectiveness
- 3. Encryption Strength

3.Adversarial Detection and Response-related KPIs:

- 1. False Positive Rate
- 2. Detection Time
- 3. Attack Mitigation Success Rate

4.Model Integrity-related KPIs:

- 1. Model Tampering Detection Rate
- 2. Model Update Integrity
- 3. Model Rollback Prevention Rate

5.Secure Data Handling-related KPIs:

- 1. Data Encryption Effectiveness
- 2. Data Breach Incidents
- 3. Data Access Audit Accuracy

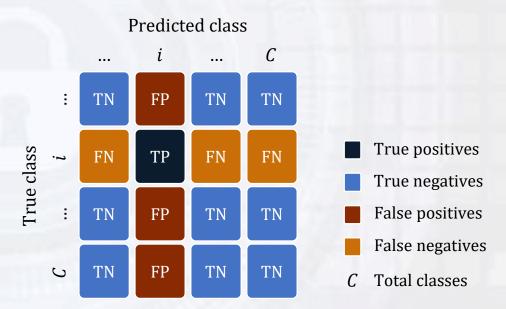
6.Resilience to Data Poisoning-related KPIs:

- 1. Poisoned Data Detection Rate
- 2. Model Performance Degradation
- 3. Data Sanitization Effectiveness

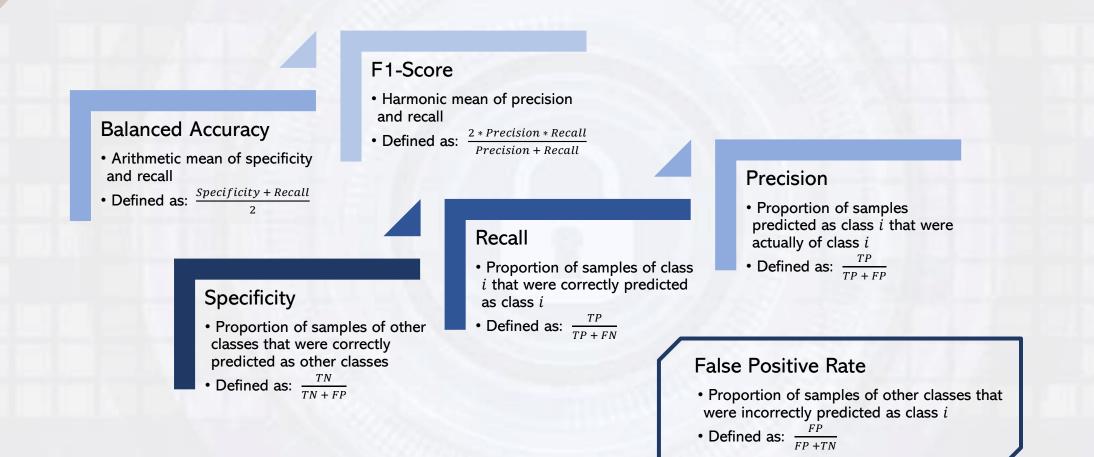
7.Continuous Monitoring and Updates-related KPIs:

- 1. Vulnerability Patching Time
- 2. Security Audit Completion Time
- 3. Incident Response Time

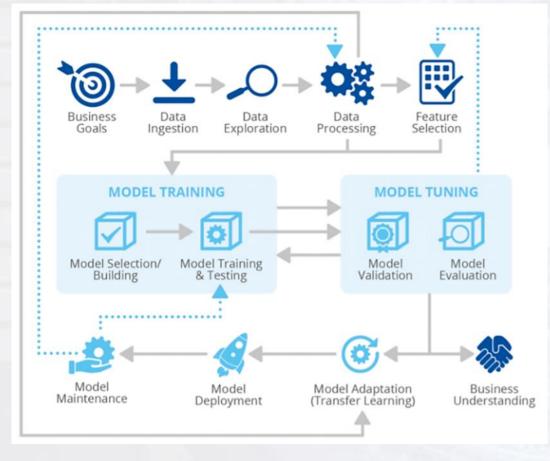
New Metrics?


Evaluating the robustness of ML models

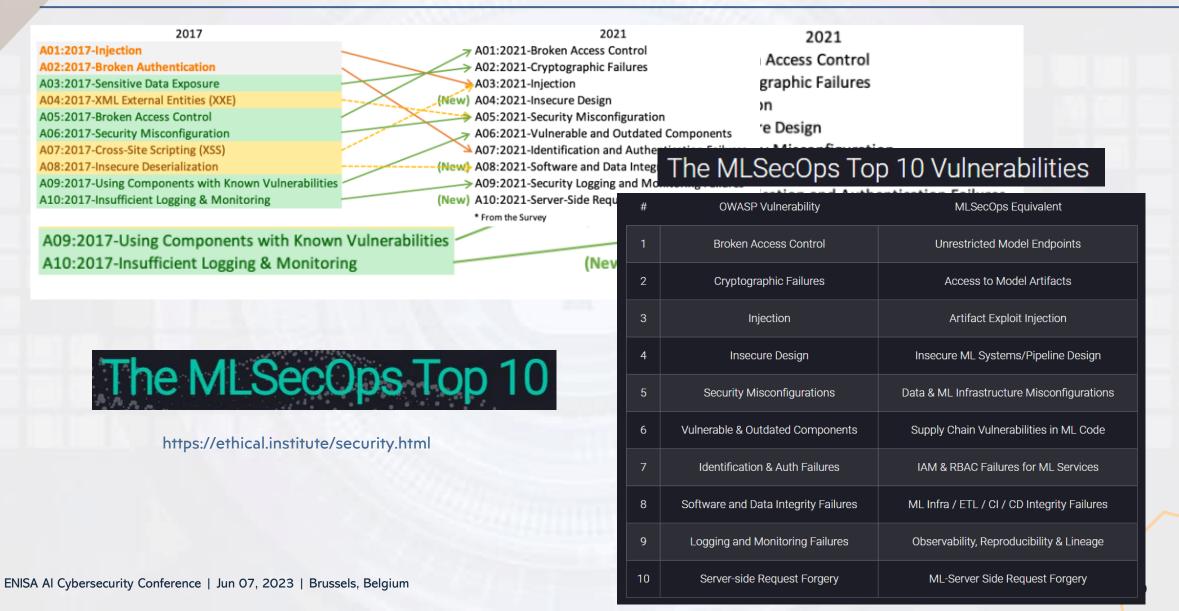
Simulate an adversarial evasion attack vector targeting class *i*


Create perturbations in samples of other classes so they are misclassified as *i*

Analyze the increase of false positives of *i*, which denotes a lack of robustness


Improve the adversarial defense strategy and perform a new robustness analysis

Metrics



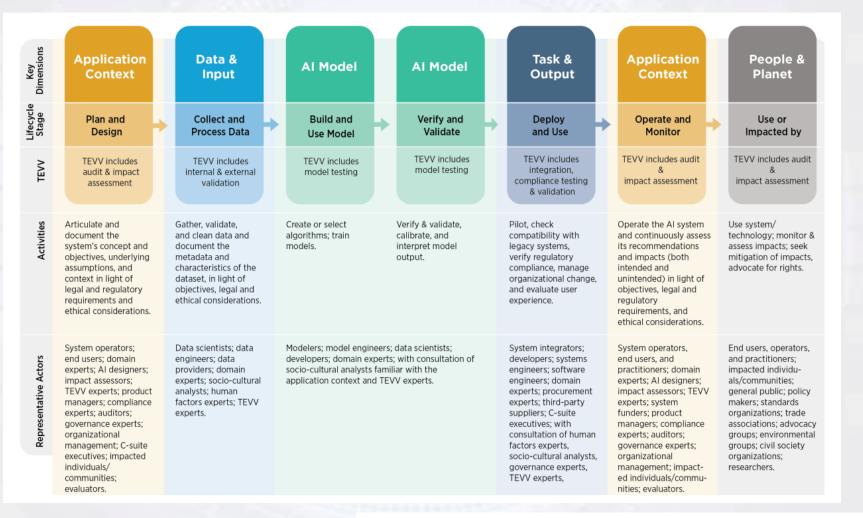
MLSecOps

- Integrates security practices into ML development and deployment
- Protects the privacy and security of training and testing data
- Safeguards deployed models and infrastructure from malicious attacks
- Implements secure coding practices and conducts threat modeling
- Performs security audits and establishes incident response for ML systems
- Ensures transparency and explainability to prevent unintended bias

OWASP and MLSecOps

Threats to ML

• MITRE ATLAS[™] (Adversarial Threat Landscape for Artificial-Intelligence Systems)


ATLAS[™]

The ATLAS Matrix below shows the progression of tactics used in attacks as columns from left to right, with ML techniques belonging to each tactic below. [&] indicates an adaptation from ATT&CK. Click on links to learn more about each item, or view ATLAS tactics and techniques using the links at the top navigation bar.

Reconnaissance &	Resource Development ^{&}	Initial Access ^{&}	ML Model Access	Execution ^{&}	Persistence &	Defense Evasion ^{&}	Discovery &	Collection &	ML Attack Staging	Exfiltration &	Impact ^{&}
5 techniques	7 techniques	4 techniques	4 techniques	2 techniques	2 techniques	1 technique	3 techniques	3 techniques	4 techniques	2 techniques	7 techniques
Search for Victim's Publicly Available Research Materials	Acquire Public ML Artifacts	ML Supply Chain Compromise	ML Model Inference API Access	User Execution ^{&}	Poison Training Data	Evade ML Model	Discover ML Model Ontology	ML Artifact Collection	Create Proxy ML Model	Exfiltration via ML	Evade ML Model
Search for Publicly Available Adversarial Vulnerability	Obtain Capabilities ^{&}	Valid Accounts ^{&}	ML-Enabled Product or Service	Command and Scripting Interpreter ^{&}	Backdoor ML Model		Discover ML Model Family	Data from Information Repositories ^{&}	Backdoor ML Model	Exfiltration via Cyber Means	Denial of ML Service
Analysis	Develop Adversarial ML Attack Capabilities	Evade ML					Discover ML Artifacts	Data from Local System ^{&}	Verify Attack		Spamming ML System with Chaff Data
Search Victim-Owned Websites		Model	Physical Environment Access						Craft Adversarial		
Search Application Repositories	Acquire Infrastructure	Exploit Public-Facing Application ^{&}	Full ML Model Access						Data	"	Erode ML Model Integrity
Active Scanning ^{&}	Publish Poisoned Datasets	-									Cost Harvesting
	Poison Training Data										ML Intellectual Property Theft
	Establish Accounts ^{&}										System Misuse for External Effect

MITRE ATLASTM and MITRE ATT&CK® are a trademark and registered trademark of The MITRE Corporation - <u>https://atlas.mitre.org/</u>

AI Risk Management

NIST - Artificial Intelligence Risk Management Framework (AI RMF 1.0), January 2023 https://doi.org/10.6028/NIST.AI.100-1

Useful tools

- Foolbox - https://foolbox.jonasrauber.de/

Foolbox

Foolbox: Fast adversarial attacks to benchmark the robustness of machine learning models in PyTorch, TensorFlow, and JAX

- ART - <u>https://github.com/Trusted-AI/adversarial-robustness-toolbox</u>

- Secml – <u>https://github.com/pralab/secml</u>

secml: Secure and Explainable Machine Learning in Python

Maura Pintor^{a,b}, Luca Demetrio^{a,b}, Angelo Sotgiu^{a,b}, Marco Melis^a, Ambra Demontis^a, Battista Biggio^{a,b}

Way-ahead

Thank You!

Isabel Praça icp@isep.ipp.pt

ENISA AI Cybersecurity Conference | Jun 07, 2023 | Brussels, Belgium