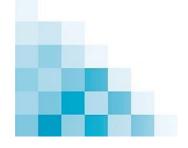

BUSINESS CONTINUITY FACING NEW CHALLENGES - CASE OULU UNIVERSITY HOSPITAL


Juha Korpelainen MD, PhD, eMBA Chief Administrative Physician Oulu University Hospital

5 UNIVERSITY HOSPITALS

In Finland most advanced and highly specialised medical care is provided by university hospitals

Oulu University Hospital - OYS

is a main hospital in Northern Finland (opened 1972)

Staff

Beds

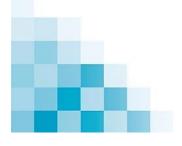
Outpatient visits

In-patient days

Operating revenue

Investments

7 000


800

450 000 / year

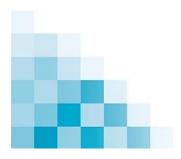
265 000 / year

572 M€

40 - 50 M€ / year

admescope

CARITAS



Content

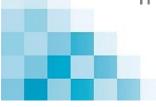
- Oulu University Hospital
 - Short introduction
- Case Oulu University Hospital
 - Business Continuity Planning (BCP) in practice
 - Experiences of security incidents
 - Experiences and vision of cloud services and IoT
- OYS TestLab safe testing environment

Engagement for information security and data protection

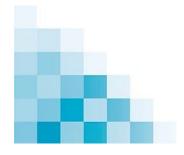
What is needed?

- Organizational engagement leaders and managers
- Staff engagement
 - Guiding, training, practicing, incentives, sanctions
- Partner engagement
 - Companies (purchasing prosess!), other stakeholders
- Resources
 - Knowledge, technology, money
- Documentation
 - politics, guidelines, rules, agreements etc.

Organization of information security and data protection

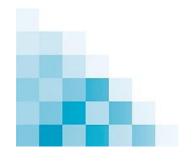

- Information security and data protection board
- Teams
 - Information security team
 - Data protection and privacy team
 - Risk management team
- Officers
 - Data Protection and Privacy
 - Information Security
 - Risk Management

Information security and data protection board

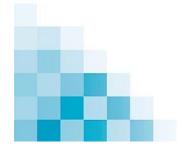

- Steering group
- Members
 - Director of the Hospital District
 - Chief Information Officer
 - Risk Management Officer
 - Chief Administrative Physician
 - Technical Director
 - Data Protection and Privacy Officer
 - Information Security Officer

Documentation

- Data protection and information security politics
 - Principles and responsibilities
- Additional instructions, guidelines and rules
- Business continuity plan
 - Identification of critical eHealth infrastructure and definition of levels
 - Disaster recovery plan
- Risk management plan throughout the organization

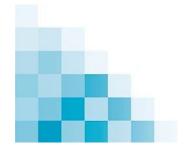


Business Continuity Planning

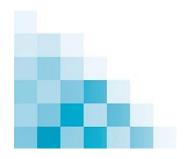

is the process of creating systems of prevention and recovery to deal with potential threats to a company

Business continuity planning

- Protect valuable information
 - find key processes using business impact analysis
 - what happens in our organization if a process is not available?
- Maintain business continuance
 - business processes and their critical information resources



About our

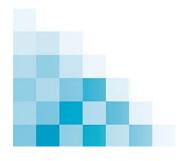

- Continuance
- Disaster recovery
- Practice

Prioritizing apps

- Information systems where classified according to their functions
 - patient work, 43
 - safeguarding operation, 28
 - infrastructure, 34
 - support operation, 17

Identification of critical eHealth infrastructure and definition of levels

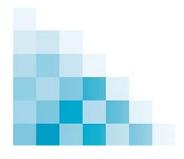
- Critical eHealth infrastructure was identified
- Hospital information systems were classified into 4 levels according to their criticality


Levels	Call In 1997 Call In	Patient infromation	Business information	Backup Procedures	Test environment	1880 BRANCO	System monitorig after business hours	system supplier support in contract
1	Under 3 hours	4	V	~	V	~	~	~
2	3-12 hours	4	4	4		✓	₩	
3	12-24 hours	€	€	₩				
4	several days							

 level 1 information systems are updated to Disaster Recovery Plan

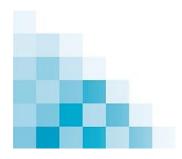
Practicing

- Two annual system maintenances
- Preparing the organization to operate without information systems
- Announcement 3 months before
- Surveys 2013 and 2016

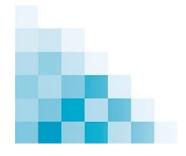

Backup procedures at organization

- Printing
- Announcements
- Checking
 - forms
 - tape recorder
 - prepare to handwriting
 - overwork
 - extra workers

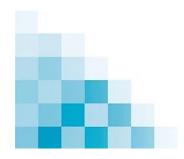
Security incidents in OYS


- Zepto ransomware
 - All crypted files restored from backup
 - 5 days recovering time
- Denial of Service (DoS) at National identification service
 - National EHR archive Kanta
 - National ePrescriptation

ENISA recommendations (1/2)


- 1. Identification of critical eHealth infrastructure and definition of levels (OYS done)
- 2. Cybersecurity guidelines (OYS done)
- 3. Cost benefit analysis of the security incidents (OYS to be done)
- 4. eHealth incident reporting system (OYS done and willing to report)
- 5. Information sharing (OYS willing to share)

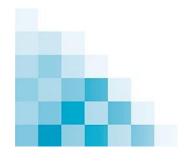
ENISA recommendations (2/2)


- 6. Baseline security measures (OYS willing to participate)
- 7. Implementation of widely accepted security standards (OYS willing to participate)
- 8. Raise aweraness and knowledge of cybersecurity (OYS done)
- 9. eHealth cybersecurity strategy should be aligned nationally

Cloud services, why?

- More capasity
- More speed
- More mobility
- Less cost
- More or less security?

Cloud service guidelines


- Hospital information systems are classified into 4 levels according to their criticality
- No cloud services for critical eHealth infrastructure (levels 1-2)
 - For example EHR, RIS, LIS, PACS
- Cloud may be used for non-critical eHealth infrastructure
 - For example testing environments

ESKO - electronic health record

Own private cloud

- "Browser based" since 1996
- Cloud service for reagional professionals
- Deeply integrated with several health information systems
- One user interface



Test and Training ESKO 2016

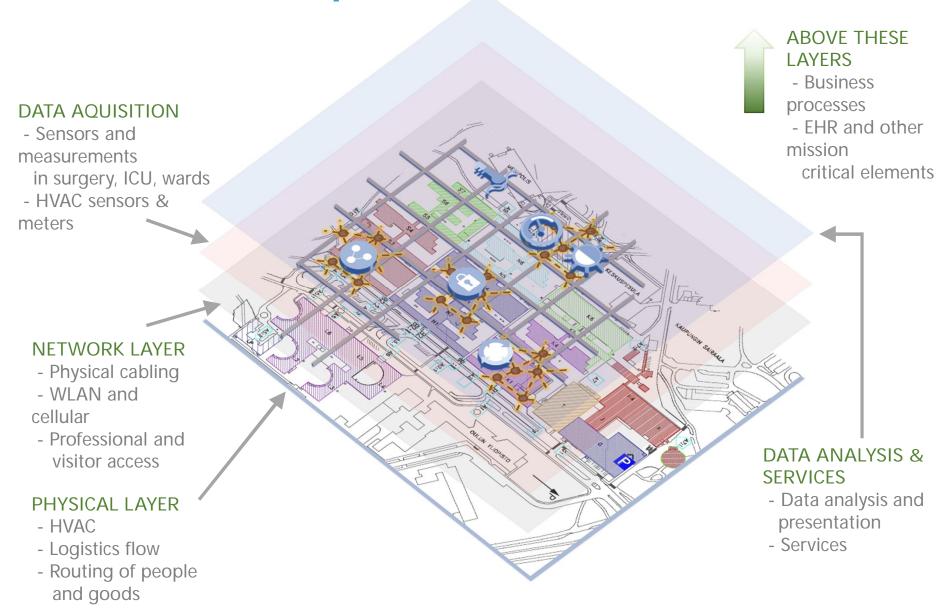
To be used for...

- Testing
- Piloting
- Training
- Education
- Research
- 5G, IoT etc.

To be integrated...

Smart Hospital with IoT

Smart hospital requires totally new, holistic approach about how everything is connected and how data is acquired, analyzed, presented and used



IoT in Oulu Univesity Hospital

- Limited experience
 - Devices in medical imaging, diagnostics...
 - No figures or measures available
- Pilots in testing environment
 - Wearables, monitors, mobile apps
 - No connection to real hospital information system
- Need for a systematic appoach is recognized

Smart Hospital IoT

OYS TESTLAB -SAFE TESTING ENVIRONMENT

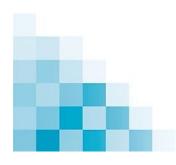
Contact:

juha.korpelainen@ppshp.fi timo.alalaakkola@ppshp.fi www.oys2030.fi

http://ouluhealth.fi/

5G Test Network

- Center for Wireless Communications (CWC) has been building a 5GTN to OYS TestLab
 - Three Pico Cell basestations cover the whole test environment
- Basestations provided by Nokia
- Connected to Oulu University's 5G backbone network
- Network administration controlled by CWC
- SIM-cards provided to OYS TestLab that allow usage of the network
- Expected latency down from 50ms (4G) to 1ms
 - Enables Real-time communication
- Bandwidth expected to be vastly greater than 4G
 - Up to 10 Gbps
 - Sensor networks
 - Data analytics



5G POSSIBILITIES

- Efficient wireless connectivity
- Accurate indoor positioning of people and assets
- Wireless sensor networks that monitor patients vitals
- Autonomous logistics systems
- Streamline healthcare processes

Contact: juha.korpelainen@ppshp.fi www.ppshp.fi

