Wy eut 91 Iueg
,9100110100101010
tio10118 000!
reotio1gi ioroos

101998 00r0101
119101810, 011105 14

Artifact analysis fundamentals

Artifact analysis training material

November 2014

LB

x *

* *

. enisa

x %
X *

European Union Agency for Network and Information Security

WWwWw.enisa.europa.eu

x Artifact analysis fundamentals
Artifact analysis training material

November 2014

About ENISA

The European Union Agency for Network and Information Security (ENISA) is a centre of network and
information security expertise for the EU, its member states, the private sector and Europe’s citizens.
ENISA works with these groups to develop advice and recommendations on good practice in
information security. It assists EU member states in implementing relevant EU legislation and works
to improve the resilience of Europe’s critical information infrastructure and networks. ENISA seeks to
enhance existing expertise in EU member states by supporting the development of cross-border
communities committed to improving network and information security throughout the EU. More
information about ENISA and its work can be found at www.enisa.europa.eu.

Authors

This document was created by Lauri Palkmets, Cosmin Ciobanu, Yonas Leguesse, and Christos
Sidiropoulos in consultation with DFN-CERT Services! (Germany), ComCERT? (Poland), and S-CURE?
(The Netherlands).

Contact

For contacting the authors please use cert-relations@enisa.europa.eu

For media enquires about this paper, please use press@enisa.europa.eu

Acknowledgements

ENISA wants to thank all institutions and persons who contributed to this document. A special ‘Thank
You’ goes to Todor Dragostinov from ESMIS, Bulgaria.

1 Klaus Méller, and Mirko Wollenberg
2 Mirostaw Maj, Tomasz Chlebowski, Krystian Kochanowski, Dawid Osojca, Pawet Wezgowiec, and Adam Ziaja
3 Michael Potter, Alan Robinson, and Don Stikvoort

Page ii

http://www.enisa.europa.eu/
mailto:cert-relations@enisa.europa.eu
mailto:press@enisa.europa.eu

* L ® Artifact analysis fundamentals
* Artifact analysis training material
November 2014
X *
Legal notice

Notice must be taken that this publication represents the views and interpretations of the authors and
editors, unless stated otherwise. This publication should not be construed to be a legal action of ENISA or the
ENISA bodies unless adopted pursuant to the Regulation (EU) No 526/2013. This publication does not
necessarily represent state-of the-art and ENISA may update it from time to time.

Third-party sources are quoted as appropriate. ENISA is not responsible for the content of the external
sources including external websites referenced in this publication.

This publication is intended for information purposes only. It must be accessible free of charge. Neither ENISA
nor any person acting on its behalf is responsible for the use that might be made of the information contained
in this publication.

Copyright Notice
© European Union Agency for Network and Information Security (ENISA), 2014

Reproduction is authorised provided the source is acknowledged.

Page iii

Artifact analysis fundamentals

* Artifact analysis training material
CNSO o—————————————————————
o November 2014

Table of Contents

1 General description 2
2 Introduction 3
2.1 Malware analysis fundamentals 3
2.2 Various approaches to malware analysis 3
2.3 Safety precautions 4
24 Exercise remarks 5
3 Tools overview 5
3.1 Static analysis tools 5
3.2 Dynamic analysis tools 6
3.3 Network analysis tools 6
3.4 Automatic analysis tools 7
4 Task 1: Basic static analysis 7
4.1 Sending sample to the analysis. 7
4.2 Detecting packers and protectors 8
4.3 Strings extraction and analysis 11
4.4 PE structure and headers analysis 15
4.5 Import table analysis 17
4.6 PE resources analysis 21
4.7 Searching for embedded objects 23
4.8 Finishing analysis 23
49 Extra samples 24
5 Task 2: Behavioural analysis 24
5.1 Analysis remarks 25
5.2 Preparing analysis 25
5.3 Executing malware sample 29

Page iv

K, Artifact analysis fundamentals

* Artifact analysis training material
CNSO o—————————————————————
o November 2014
5.4 Process Explorer analysis 31
5.5 Regshot analysis 35
5.6 Process Monitor analysis 36
5.7 Searching for rootkit artifacts 42
5.8 Finishing analysis 43
5.9 Extra samples 43
6 Task 3: Network analysis 44
6.1 Network traffic capture and log acquisition 44
6.2 P2P and DGA traffic 46
6.3 HTTP traffic analysis 55
6.4 Extra sample 60
7 Task 4: Automatic analysis 60
7.1 Sending sample to Cuckoo 61
7.2 Cuckoo Sandbox results 62
7.3 Static Analysis results 64
7.4 Behavioural Analysis results 67
7.5 Network Analysis results 69
7.6 Analysing list of dropped files 70
7.7 Extra analyses 71
8 Exercise summary 71
9 References 72

Page v

x Artifact analysis fundamentals

* Artifact analysis training material

November 2014

Main Objective

Present the trainees malicious artifact analysis fundamentals and
various types of analyses. Present how to safely execute suspicious code
in the controlled environment along with most important security
precautions. Teach the trainees how to perform basic static,
behavioural, network and automatic analyses — what tools can be used,
what to look for, what can be found. Give the trainees the opportunity
to use various popular tools during the analyses and let them decide
what tools are best suited for different type of analyses. Present
common malicious software behaviours and patterns — which can be
later used to create proper signature.

Targeted Audience

The exercise is dedicated to CERT staff involved in analysis of malicious
artifacts. The exercise should be also helpful to CERT staff involved in
doing quick assessment of encountered new threats, especially those
associated with suspicious executable files.

Total Duration 8.0 hours
Introduction to the exercise and tools overview 1.0 hours
Task 1: Basic static analysis 1.5 hours
Task 2: Behavioural analysis 2.0 hours
Time Schedule
Task 3: Network analysis 1.5 hours
Task 4: Automatic analysis 1.5 hours
Summary of the exercise 0.5 hours

Frequency

It is advisable to organise this exercise when new team members who
are involved in the analysis of malicious artifacts joins CERT.

Page 1

x Artifact analysis fundamentals
* Artifact analysis training material
November 2014

1 General description

The primary purpose of this exercise is to gather information about artifacts collected in previous
exercises. At the beginning, participants will learn how to use basic static analysis techniques to
perform a preliminary study of the sample. Using methods such as strings analysis, portable
executable (PE) headers analysis, import address table (IAT) analysis or resources analysis, participants
will try to determine some of the artifacts’ functionality. At the same time the participants should look
for any special features of the analysed samples which may be later used to create signatures.

In the second stage, participants will perform behavioural analysis in which they execute samples in a
controlled environment. Then they will observe any changes taking place in the operating system:
which processes are created, what changes are made to the file system or the system registry, and if
there would be any indicators of rootkit activity. Next, using all gathered information, participants will
try to answer how the analysed samples behave after being executed and what would be the
indicators of an infected system.

In the next stage participants will learn how to perform basic network analysis using various tools and
methods to capture network traffic. During this part of the exercise participants will try to detect
traces of the malware activity in the network traffic. Based on the analysis results, they will try to
deduce some of the artifact functionality and answer if there are any characteristic traffic patterns.

At the end, after learning basic static analysis, behavioural analysis and network analysis, participants
will perform automatic analysis using the Cuckoo Sandbox appliance. In this way participants will get
the opportunity to compare manual analysis techniques with the automatic analysis and learn what
are the advantages and disadvantages of using both of them.

The exercise is performed using Microsoft Windows operating system. Analysed artifacts are in
portable executable (PE) file format.

Page 2

L 79 Artifact analysis fundamentals

* Artifact analysis training material

November 2014

2 Introduction

2.1 Malware analysis fundamentals

Malware analysis is a process that uses various tools and techniques to determine how malicious code
is working. Unfortunately there is no single algorithm to indicate how to analyse such code. Various
approaches are usually needed including static analysis, behavioural analysis, executable debugging
or analysis of disassembled code. Moreover each analyst usually tends to have his or her own favourite
techniques and preferred tools.

Because malware analysis is usually a complex task, it is always important to have a clear goal in mind.
Some common analysis goals are: determining infection indicators in order to detect other infected
computers, determining malware propagation mechanism to more effectively prevent future
infections or getting to know malicious code functionality to assess the risk associated with potential
infection.

Malware samples are usually quite complex. Some samples are fairly easy to analyse while others
require adeep knowledge of system internals and advanced reverse engineering skills to analyse. In
general, to perform basic malware analysis some basic system administration knowledge and
programming background is needed. And on the network level it is good to know the network stack
and have some knowledge about popular network protocols (ICMP, TCP, UDP, HTTP, FTP, SMTP, IRC,
etc.).

2.2 Various approaches to malware analysis

There are various approaches to malware analysis each having a different purpose and application.
Usually more than one approach is used to gather necessary information about the sample in
guestion. All approaches are described in the context of analysing Windows executable files in PE
format, which this exercise uses.

In this analysis, the file structure of a malware sample is analysed
without executing malicious code. The goal of this analysis is to
gather information about potential malware functionality and any
characteristic file features that could later be used to create
malware signature.

Basic static analysis
y During the analysis various elements are checked such as strings

list, import and export tables, list of file sections, file resources and
PE headers. The file is also checked for signatures of well-known
packers and searched for any embedded objects (images,
executables, etc.).

In this analysis, malicious code is intentionally executed in a
controlled environment to observe what changes it makes to the
operating system. We monitor elements like file system changes,
changes in the Windows registry, changes on the process list,
system resources usage, as well as any other visible anomalies (e.g.
disappearing files). The operating system is also scanned for signs
of rootkits activity.

Behavioural analysis

Based on observed system changes the analyst tries to deduce
some of the malware’s functionality. Behavioural analysis also
allows us to determine the malware’s persistence mechanism and

Page 3

¥ 79 Artifact analysis fundamentals
* Artifact analysis training material
November 2014

indicators of infection. Knowledge about the persistence
mechanism and infection indicators might be used to identify other
infected workstations and to disinfect them.

Network analysis is usually performed alongside behavioural
analysis. During network analysis, the malware sample is executed
in a controlled environment while all network traffic is captured.
Then the analyst checks what hosts the malware was
communicating with and searches for any well-known network

Network analysis traffic patterns (e.g. spam sending).

Network analysis is usually a great source of information about
malware functionality and often helps to identify the particular
malware family. Thanks to network analysis it is often possible to
identify addresses of (command and control) (C&C) servers and
specific botnet to which a malware belongs.

During advanced dynamic analysis, malicious code is executed in a
debugger — letting the analyst precisely follow the malware
execution path. Debugger analysis reveals the various execution
Advanced dynamic analysis | paths and algorithms used by malware (e.g. the encryption

(not covered in exercise) | algorithm used for network communication). Advanced dynamic
analysis is usually more time consuming than other types of
analyses and requires good reverse engineering (RE) skills as well as
a deep knowledge of system internals.

In advanced static analysis, malicious code is disassembled and then
analysed for malware functionality and the algorithms used. Just as
with advanced dynamic analysis, this type of analysis is usually time
consuming and requires good reverse engineering (RE) skills and a
deep knowledge of system internals. One advantage with static
(not covered in exercise) | 5;ysis is that malicious code is never executed. It is also possible
to analyse parts of the code that are never executed during dynamic
analysis. The disadvantage of this analysis in that it is usually hard
to predict the execution path and follow registry and stack changes.

Advanced static analysis

In automatic analysis, malware is uploaded to a dedicated system
which will perform automatic preliminary analysis. Automatic
analysis usually produces similar results to the basic static analysis,
behavioural analysis and network analysis. It also usually takes least
time of all other analyses and is often used to quickly check a
malware sample.

Automatic analysis

2.3 Safety precautions

During the exercise students will analyse live samples of malicious code. To avoid accidental infection
it is necessary to take proper precautions and follow safety rules throughout the exercise.
1. Samples should never be executed outside of the analysis environment and dedicated virtual
machine (Winbox).
2. Binary samples shouldn’t be copied to any external storage — this might cause accidental
infection if not done properly.

Page 4

x Artifact analysis fundamentals

* Artifact analysis training material

November 2014

3. When executing samples, make sure there is no direct access to the local network. At the
beginning of the analysis it is a good practice to verify there is no Internet connectivity on the
analysis virtual machine (VM).

4. After each analysis, the snapshot of the clean virtual machine (VM) should be restored (it is
not necessary after automatic analyses). Before each analysis, verify that a clean snapshot was
restored after the previous analysis.

2.4 Exercise remarks

Due to the nature of malware execution during exercise tasks that include live malware samples
(behavioural analysis, network analysis and automatic analysis), some of the obtained results may not
be identical to the results presented in this document. A certain level of randomness and
unpredictability that often accompanies malware execution (for example malware creating files with
random names or malware connecting to random IP addresses) leads to varying observed results.
Furthermore in some situations even a small change of the operating system configuration or the
current environment state may also affect malicious code behaviour. Despite this, obtained results
should be still analogous to the results presented in this document — and can be analysed using the
same techniques.

In case some malware sample doesn’t execute on the student virtual machine or for some reason
behaves completely different than described in this document, special offline results are provided in
/home/enisa/enisa/ex3/results directory. Using these results, a student should be able to complete
the greater part of the task without the need to execute malicious code.

3 Tools overview

This section presents list of tools used in this exercise. Some of the tools used in the exercise give
similar results and can be used interchangeably (e.g. PEview and CFF Explorer). It is advised that
students first try to run tools presented in this section in the clean system before using them in actual
analysis.

3.1 Static analysis tools

e PEID - popular tool allowing to detect and identify Portable Executable files. It detects if
executable is packed with one of the popular packers or protectors. If the file is not packed it
can identify what compiler was used to create the executable file. PEiD has also simple generic
unpacking module.
http://www.woodmann.com/collaborative/tools/index.php/PEiD

e Exeinfo PE — tool allowing to detect many popular packers, protectors and crypters.
Additionally Exeinfo PE has a ripper module allowing to search executable files for embedded
files in a few popular formats (PE, zip, rar, doc, image files, etc.).
http://www.woodmann.com/collaborative/tools/index.php/Exelnfo PE

e PEview — Portable Executable (PE) headers and Component Object File Format (COFF) viewer
tool. Displays headers, directories, sections, import/export tables and resource information.
http://wijradburn.com/software/

o CFF Explorer — Portable Executable (PE) headers viewer and editor. It is designed to make PE
editing as easy as possible. Beside PE headers viewing and editing CFF Explorer contains
integrated hex editor, simple disassembler and many other useful features.
http://www.ntcore.com/exsuite.php

Page 5

http://www.woodmann.com/collaborative/tools/index.php/PEiD
http://www.woodmann.com/collaborative/tools/index.php/ExeInfo_PE
http://wjradburn.com/software/
http://www.ntcore.com/exsuite.php

Artifact analysis fundamentals
Artifact analysis training material

November 2014

Resource Hacker — popular tool to view, modify, rename, add, delete and extract resources in
32bit & 64bit Windows executables and resource files.
http://www.angusj.com/resourcehacker/

BinText — simple and powerful strings extractor tool. It extracts ASCII, Unicode and Resources
strings from a binary file. BinText also enables you to set additional extraction criteria and
strings filters based on string minimal and maximal length, allowed characters, etc. Extracted
strings can be saved to a separate file.
http://www.mcafee.com/us/downloads/free-tools/bintext.aspx

Upx — one of the most popular executable packing tools. It allows to pack and unpack
executable files.

http://upx.sourceforge.net/

3.2 Dynamic analysis tools

Process Explorer — powerful task manager and system monitor for Microsoft Windows. It
provides the functionality of Windows Task Manager along with a rich set of features for
collecting information about processes running on the user's system
http://technet.microsoft.com/en-US/sysinternals/bb896653

Process Monitor — tool from Windows Sysinternals suite. It monitors and displays in real-time
all file system activity on a Microsoft Windows operating system. It combines two older tools,
FileMon and RegMon and is used in system administration, computer forensics, and
application debugging.

http://technet.microsoft.com/en-us/sysinternals/bb896645.aspx

Regshot — open source tool allowing to quickly take snapshot of the registry and file system
and then compare with the second one. Used to detect changes in system registry and file
system (insertions, deletions, modifications).

http://sourceforge.net/projects/regshot/

GMER - application searching operating system for rootkit activity. It allows to detect hidden
processes, hidden threads, hidden modules, hidden files, hooks on system functions and many
more.

http://www.gmer.net/

3.3 Network analysis tools

Tcpdump — popular command-line network traffic sniffer and analyser. It allows to capture
network traffic to the file in PCAP format.

http://www.tcpdump.org/

Wireshark — popular network traffic analyser, very similar to Tcpdump but with additional
graphic user interface and integrated sorting, filtering and statistical options.
https://www.wireshark.org/

Mitmproxy — an interactive console program that allows to capture, inspect and edit
HTTP/HTTPs traffic by acting as a transparent proxy.

http://mitmproxy.org/

INetSim — software suite used to simulate various network services in a lab environment.
http://www.inetsim.org/

Page 6

http://www.angusj.com/resourcehacker/
http://www.mcafee.com/us/downloads/free-tools/bintext.aspx
http://upx.sourceforge.net/
http://technet.microsoft.com/en-US/sysinternals/bb896653
http://technet.microsoft.com/en-us/sysinternals/bb896645.aspx
http://sourceforge.net/projects/regshot/
http://www.gmer.net/
http://www.tcpdump.org/
https://www.wireshark.org/
http://mitmproxy.org/
http://www.inetsim.org/

x Artifact analysis fundamentals
Artifact analysis training material

November 2014

3.4 Automatic analysis tools
e Cuckoo Sandbox — open source automated malware analysis system. It allows to
automatically execute suspicious files in a controlled and isolated environment in which it
monitors malicious code activity. After analysis it creates a comprehensive malware analysis
report.
http://www.cuckoosandbox.org/

4 Task 1: Basic static analysis

In this task students will perform a basic static analysis of a binary sample. Static analysis is basically
performed without running the malware as opposed to a dynamic analysis. A complete static analysis
of a malware sample can be an extremely laborious process as it would require reverse engineering
the source code and understanding its logic.

In this task the students will try to determine basic malware functionalities with a help from the trainer
and the purpose of the task is to look for any special features which might be later used to create the
file signature.

Basic static analysis covers the following topics:
e Determining file type and detecting packers or protectors.
e Strings extraction and analysis.
e Portable executable (PE) headers analysis.
e Import table analysis.
e Resources analysis.
e Scanning file for embedded objects (executables, images, etc.).

4.1 Sending sample to the analysis.

First restore the Winbox snapshot used for static and dynamic analyses (winbox-clean) as described
in the exercise Building artifact handling and analysis environment (refer to this exercise on how to
restore a snapshot if in doubt). When the snapshot is restored start the virtual machine.

EEEIE

et

- § base system (2 minutes ago)
@ cuckoo (46 seconds ago)
=& winbox-clean (11 seconds ago)

®) Current State

Figure 1. Restored winbox-clean snapshot.

Then, start Viper and find the aop.exe sample (screenshot) which should have been obtained as a
result of the previous exercise (Processing and storing artifacts). In case there is no aop.exe sample it
can be found in /home/enisa/enisa/ex3/samples directory from where it can be added to the Viper.
Please refer to the exercise Processing and storing artifacts on how to use the Viper tool.

Page 7

http://www.cuckoosandbox.org/

% 79 Artifact analysis fundamentals
* Artifact analysis training material
November 2014

ssion opened on Jopt/viper/projects/enisa/binaries/b/6/8/9/b68979f857ed87e348122d 48a923c4f6a004474e8
64b1gez
aop.exe >

Figure 2. Finding aop.exe sample in Viper.

Then send the sample to Winbox using the previously created Viper module and exit Viper.

aop.exe > lLab-send
fully transferred "/sample/aop.exe"

enisa viper aop.exe > [|

Figure 3. Sending aop.exe sample to Winbox.

The sample should now appear in Winbox in c:\analyses\sample folder (refer to Processing and storing
artifacts exercise to recall how the transfer works).

[—L
‘g(_}\, | - Local Disk (C:) - analyses - sample - lmJ I Search sample L’L.]J
Organize * Indudeinlibrary + Share with v New folder ==+ Ol 0

- Favorites 21 Name + | Date modified | Type
Bl Desktop BB aop.exe 8/26/2014 11:34AM Application
& Downloads

*| Recent Places

4 Libraries

<| Documents
@' Music
| Pictures

B videos

f\E Homegroup

1M Computer

[| Bl

1 item

Figure 4. Malware sample after uploading to Winbox machine.

4.2 Detecting packers and protectors

Malware samples are often protected by so called packers and protectors®. Packers and protectors
are dedicated tools intended to obfuscate and rewrite executable file structure in order to evade
detection by antivirus (AV) products and hinder further analysis. Usually packed binary has a
completely different structure than the original file. Moreover, protectors often add various
protection functions such as virtualization detection, sandbox detection or debugger detection to
executables.

In most cases a packed binary is very difficult for static analysis. Consequently a binary needs to be
unpacked first; otherwise we can rely only on dynamic analysis findings. Unpacking a malware sample

4 http://www.ecsl.cs.sunysb.edu/tr/TR237.pdf

Page 8

http://www.ecsl.cs.sunysb.edu/tr/TR237.pdf

x L ® Artifact analysis fundamentals

* Artifact analysis training material
November 2014

isn’t always a trivial task, often requiring good reverse engineering skills. Malware unpacking isn’t the
subject of this exercise.

There are two popular tools to detect packers signatures: PEID and ExelnfoPE.

First open the aop.exe sample in PEiD:

=10l

Fille: |C:lanalyses\sampleaop. exe E
Entrypoint: 00024450 EP Section: |[UPX1
File Offset: | 00D0BESD First Bytes: |50,BE,00,90
Linker Info: [6.0 Subsystem: |\Win32 GUI

|L.F’I 0.89.6 - 1.02 1.05 - 2,90 -> Markus & Laszlo
| Multi Scan | | Task Viewer | | Options | | About I | Exit |
¥ stay on top

Figure 5. PEiD window - UPX packer detected.

It indicates (highlighted in yellow) that malware was most likely packed using UPX packer.

Verify PEID findings and then open the sample in Exelnfo PE tool:

foa _=| EP Section:

First Bytes :

SubSystem : [Windows GUI “ About |
File Size : n000CEDDh il ll Overlay : [NO oo0ODOOD _QMI

Image iz 32bit executable RES/OVL:4 [0 % 2014 Exit |
|UP’)(-z Markus & Laszlo ver. [3.08] <- from file. { sign like UPX packer . ai I
Lamer Info - Help Hint - Unpack info 0 ms. y:

Junpack "upx.exe -d" from http:/fupx.sf.net or any UPK/Generic unpa J AR == I

Figure 6. Exeinfo PE window - UPX packer detected.

Exelnfo PE confirms that the sample is most likely packed by UPX. You can also use advanced scan
feature by clicking >’ button (highlighted in red). This will show other possible packers matching this
particular file.

Page 9

x Artifact analysis fundamentals
Artifact analysis training material

November 2014

JRI=TE
rating | signature Name ep only | signature pattern | 1=
374 Netopsystems FEAD Optimizer 1 true &0 BE 00 27 227 00 8D..
3e8 UBX Z.50 (LZMa) true &0 BE 77 2?7 7?? 2?7 8D..
3&8 UFX 2.30 [LZHMA true @0 BE 27 27 2?2 22 BD..
385 UBX w0_.80 - wO_54 true e - d e i S b B v B b S
Zed UBX -> www.upx.scurceforge.net true g0 BE 7?7 2?7 2% 00 8D..
288 UBE -» www.upx.sourceforge.net true &0 BE 27 27 2?2 00 8D._.
55 UBX w2.0 —-» Markus, Laszloc & Reiser false 55 FF 9& 27 27 77 ?7... frz
145 UBolyX v0.5 false 7T P OFT O?T PP OPE OFR.L..
Ta UBH VZ_00-V3.00 -» Markus Cherhumer & __. false FF D5 8D 87 22 22 27_._.
14 First Publisher Graphics format false a0 a0 27 00 00 00 27 01
5 Possibkly PCE graphics format false a2 7?7 01
4 MPEE Layer II/III music file false FF F3 LI

Figure 7. Advanced scan feature in Exeinfo PE.

Fortunately UPX is a quite simple and easy to unpack packer (and also still quite often seen in the
wild). To unpack aop.exe we will use the standard upx.exe utility available on the Winbox.

Jupx

=101 %]

—d —o c:Nanalyses\sampleNaop_upgy

C:\Ntools\Portable version‘\upx3?21ws\upx3?1wiupx.exe
npacked.exe c:Nanalyses\sample\aop.exe

135168 <- 52736 39.82% win32/pe aop_unpacked.exe

Unpacked 1 file.

C:Ntools\Portable version‘\upx321wN\upx391w>

Figure 8. Unpacking malware sample with upx tool.

The unpacked sample should be saved as c:\analyses\sample\aop_unpacked.exe. To verify if it was
successfully unpacked and is not protected by any other protector open it in PEID.

=100

File: |C:‘n,analyses\,sample\,anp_unpadced.exe

Entrypoint: | 000154EC
File Offset: |000154EC
Linker Info: | 6.0

EP Section: |.text
First Bytes: [55,38,EC,6A
Subsystem: |Win32 GUI

|Microsoft Visual C++ 6.0

| Multi Scan I |'I_'ask'u'iewer| | Options | | About

¥ stay on top

Figure 9. Checking unpacked sample in PEiD.

Page 10

3 Artifact analysis fundamentals
* Artifact analysis training material
November 2014

Based on new PEiD results we can assume that aop_unpacked.exe is not protected by another packer
and was likely compiled using Microsoft Visual C++ version 6.0. (Microsoft Visual C++ and Microsoft
Visual Studio are popular software development tools used widely by programmers all over the
world)®.

NB: File aop_unpacked.exe will be used instead of aop.exe in all following analyses.

4.3 Strings extraction and analysis

One very useful technique in malware analysis is string analysis. In many cases using strings obtained
from the binary file we can reason about some of the features of the malicious code. For example if
we find a list of SMTP servers we might suppose that malware might be sending spam messages.

To extract strings from the sample file (aop_unpacked.exe) use the BinText tool. This tool allows to
extract all ASCIl and Unicode strings from the binary file also allowing to apply certain filters on
minimal string length and allowed characters.

T C\analyses\sample\aop_unpacked.exe - IEllil

Search | Fiter | Help |

File to scan |E:'\anaIyses'\sample"saop_unpacked.er:e Browse |
W &dvanced view Time taken: 0016 secs Text zizer 8629 bytes [B.42K)]
File poz | Mem poz | 1D | Text ;l
A 000000000040 Q00000400040 0 IThiz program cannot be wnin DOS mode. -
A 0000000000EY 00000040008 7 I Rich
A 000000000200 000000400200 Il test
A 000000000228 000000400228 0 .rdata
A 00000000024F 00000040024F I (3. data
A 000000000278 000000400273 0 RE: (=
A 000000001982 000000401982 I FSIW W
A 00000OOOMEBED 0OOQOO40MBED 0 LE$F
A 0000000 D1F - 00000o401D1F 0 L$ER|
A 000000002325 000000402925 Il [AEQTNES
A 000000002CF2 - 000000402CF2 0 QPPFPFFS
A 000000002D03C 00000040203C 0 <Ab<BEF
A 000000002FFE 000000402FFE 0

L$(0R -
| L _'l_l
‘Head}l Hf.w: £19 H UN: 24 H RS0 ” Find | Save |

Figure 10. BinText window after opening unpacked sample file.

After extracting strings it is good to save them to the results directory for any further analyses.

5 See http://www.visualstudio.com/ for more details on this development environment.

Page 11

http://www.visualstudio.com/

Artifact analysis fundamentals

x *
enisa Artifact analysis training material
November 2014
X *

T Save text to file x|
|Q(:jv | . = Computer + Local Disk (C:) - analyses - results - - lmj I Search results !_0]‘
Organize * MNew folder e .@.

Bl Desktop ;I Name ~ Date modified | Type Size | |
4 Downloads
T) screenshots 8/26/2014 11;56 AM File folder
1= Recent Places
- Libraries
3 Documents
J“- Music
= Pictures
B8 videos -
QI% Homegroup
[
File name: Iaop_unpa&ed_stings.b(ﬂ j
Save as bype: ITxt files (= txt) j
= Hide Foldersl Save I Cancel |
4

Figure 11. Saving strings extracted by BinText to a file.

Next scroll down the list of all discovered strings trying to find any useful information about malware
and its functionality. Students should look for strings such as IP and URL addresses, names of
commands, Windows function and libraries names, usernames, e-mails, headers of various protocols
(IRC, HTTP, etc.) or any other unique and characteristic names.

A 0000000192F2 0000004132F2 0 MEWF32.dI

A 0000000152FE 00000041 32FE 0 SHELL3Z.dIl

A 000000015304 000000415304 O SHLWAPL A

A 00000015316 000000419316 1] USER32.dI

A 000000019321 000000413321 0 WININET.dI [%
A 00000005320 000000413320 O W52 324l

A 0000000159333 0000004139333] WTSAPI32.dIl

A 000000015348 0000004135343 1] strepmpd,

A 000000019352 000000413352 0 SetEvent

A 000000019350 00000041935C O InterockedE wchange
A 00000005372 0000004159372] Cancello

A 000000 537C 00000041337C O DeleteFiled,

A 000000019354 000000419334 O GetlastEmar

A 000000015333 000000413333] CreateDirectand,

A 000000015344 000000419344 O GetFiletttributess,

A 0000000153BE 0000OO4153BE O Istrlend,

Figure 12. Windows functions and library names.

Here we can see a fragment of the DLL names® and imported functions list. It is good to compare such
a list with names found in import table in PE file (Portable Executable) — this will be covered in a later
step. Sometimes malware dynamically loads certain libraries and functions making them not listed in

the PE file import table.

6 http://support.microsoft.com/kb/815065

Page 12

http://support.microsoft.com/kb/815065

x Artifact analysis fundamentals
* Artifact analysis training material

November 2014

A 00oooooe12c oodooodre12c 0 g

A 00000001B134 000000418134 O FindFirztFiled,
A 00000001B144 00000041B144 O LocalRedloc
A 00000001B154 00000041B154 O FirndM extFiled,
A 00000001B1E4 00000041B1E4 O g

A 00000001B1EC 00000O41B1EC O Halek

A 00000001B174 000000418174 O Halgn s

Figure 13. Some path matching expressions found in strings list.

Patterns like %s*.* and %s\%s suggest they might be used as arguments to some system function
calls for path matching or file searching. Also presence of functions such as FindFirstFileA and
FindNextFileA suggest that malware might be searching certain files on local disk.

A 00000001E180
A 000000071B148
A 000000071B1C0

000o0da41B180 0
0000da41B142 0
0oooda41B1cO 0

apstemt\cURREM TcOMTROL:E ThaERWVICES s
OpenSCh anagend,
systemteURREMTeONTROL:E T W 2ERVICES!

Fi-gure 14. Registry keys found in strings list.

Registry keys related to Windows Services. This might suggest that malware is using system service as
a self-preservation technique (persistence mechanism).

A 00000001E380 000000418330 O EAE A A A A
A 00000001E333 000000418338 O #d.3d.%d =d
A 00000001B34A4 000000418324 O 1921681244

Figure 15. Suspicious IP address

Unusual IP address from private address space. It is hard to say what it is used for but it might be a
good starting point for further analysis (either dynamic debugging or more advanced static analysis of

disassembled code).

A 0000000 B3F0 Q00000418 3F0 1] HTTPA

A 0000000TESFC Q00000471 B3FC 1 Accept: image/gif, image/«-=bitmap, image/jpeq, image/pjpeq, applications-zh
A 00000001E4AC Q000004718440 0 Accept-Language: zh-cn

A 000000 EB4C3 00000041B4C3 1] AcceptEncoding: gzip, deflate

A 00000001 B4ES Q000004164 1] IJzer-tigent:Mozillad4.0 [compatible; MSIE B.0; Windows NT 5.1; 541]
A 000000MEBS32 0000004185 1] Host:

A 000000 BS34 00000041B534 1] Connection: Cloze

A 000000MBSSS 00000041B553 1] Referer: http:/f

A 000000 BREC 0O0Q0041B5EC 1] B0 ttp:

A 000000M BS7A 0O000041B57A 1] Host:

A 000000MBS2E 00000041B536 1] Cache-Control: no-cache

A 000000 BoA0 0O000041B5A0 1] Host:

A 0000000 BRAS 00000041 B5AS 1] HTTPMA

A 000000 BSEE 00000041 BSER] Connection: Keep-live

Figure 16. HTTP headers found in strings list.

Typical HTTP headers suggest that malware is likely using HTTP or HTTPs communication —to contact
Command & Control server or for some other purposes.

A 000000NBEDE 000OO041BSDE 0 crnd Az ping 127.0.0.1 -n 1&del s
A 0000000NBSFC 00000041B5FC n Eshavchost exe
Figure 17. Strings with batch command.

Typical batch command used for self-removal.

A 00000001BESC 0QO000O41BESC O
A 00000001BGED 0QOOO0O41BGED O
A 00000001BEFE OOOOOO41BEFE O

GetStartuplnfod,
ABCDEFGHUELMMOPARS TN WESTZ abedefghifklmnopgretusewyz01 234567893+,
1107791 273.F3322. arg

Fig_ure 18. String characteristic for base64 encoding.

Page 13

x Artifact analysis fundamentals
* Artifact analysis training material

November 2014

Characteristic string (ABCD...) typically used in Base64’ encoding functions.

ABCDEFGHIUKLMNOPORST vy Zabe:
MO077I1 273133 22.0rg

A 00000001BEED 0OOQOD41BEED 1]
A 00000001BEFE 00000041BEFE 1]
A 0000001EYOD OO0OOOO41EVODT O .
Figure 19. Suspicious domain name.

Suspicious domain name 1107791273.f3322.org. This might be a domain of C&C server — needs further
inspection.
A 00000001BYS8 00000041B 738 1]

A 00000001 BFPFC 00000041B7FC 1] Fraioryta Instrumentz Domain Sermvice
A 00000001 B8YC 00000041 B87C 1] Providesmid a domain server for M| security,

Figure 20. Unusual unique names found in strings list.

Przionalirg

Unusual names: prsionaljrqg, prsionyta and providesmid. Such unique names usually distinctly identify
particular malware family. They might be used to name malware itself, create signature or to search
more information about this particular malware on the web.

A 00000001BAFD 0OOOOO41EBA70 O F-zecure

A 00000001BAFC 00000041B&FC O f-secure. exe

A 000000071BA34 00000041BA34 0 FortiTray.exe
A 00000001BAAS 00O00OO41EBAAE O avg.ese

A 00000001EABD 0OOQQO41EB&EO O MNarman

A 00000o01BARE OOOOOO41EBABE O MW CSched. exe
A 00000001BACS 00000041B&CE O Clarnah

A 00000001BADO 0000OQO41EBADO0 0 agent. exe

A 00000001BADC 0000QO41BADC O Comoda

A 00000001EAE4 0OOOOO41B&E4 O cfp.exe

Figure 21. List of AV products and process names.

AV product names among other strings suggest that this malware is likely trying to evade detection by
disabling AV services.

A 00000001BFFC 00QOOOM4IBFFC O asdfgh
A 00000001BFE4 00Q00041BF34 0 1314520
A 00000001BF3C 000OOO41BF3C O 5201314
A 00000001BF34 00000O41BF34 O Caonima
A 00000001BFIC 0000OC41EBFIC O 885833

A 00000001BFA4 00QOOO41BFA4 O bbbbbb
A 00000001BFAC 00QOOO41BFAC O 12345678
A 00000001BFBS 000OOO41EBFES O PErmary
A 00000001BFCO 00QOOO41BFCO O abc123
A 00000001BFCE 00OOOO41BFCE O querty
A 00000001BFDO 00QOOC41EBFDO O 123456
A 00000001 BFDC 00Q00041BFDC 0 pazswiorg
A 00000001BFES 00QOOO41BFER O enter

A 00000001BFFE 0000OC41BFFS O ®pLiser
A 000000012000 0odooo41codd o morney

Figure 22. List of common usernames and passwords.

Common usernames and passwords. This means malware is probably performing some dictionary
attacks.

7 http://en.wikipedia.org/wiki/Base64

Page 14

http://en.wikipedia.org/wiki/Base64

x Artifact analysis fundamentals
* Artifact analysis training material

November 2014

A 00000001C034 0ooooo41co24 0 ab W Bd3d s

A 00000001C098 0oooao41co3s o F\Mewdirea exe

A 00000001COAS 00000041C0s2 0 WIS R WMNewdrea exe
A 00000001COBC 00000041COBC O E:\Mewdrea exe

A 00000001COCC gooddaod4icacc o sESERNewdiea ere
A 00000001COED 00000041COED O C:vMewdrea exe

A 00000001COF0 0oodao41carFd 0 MEADPWWewdbrea exe
A 00000001C104 0000do41c104 0 admind*

A 00000001C10C goddaodiciac o YEshadmindiMewdrea exe
A 00000001C124 00000041C124 0 C:iMewdrea ene

A 00000001C134 0ooo0o41C134 0 SESCE N ewdirean. exe
A 00000001CT14C Q000ao41c14Cc 0 MEMpos

Figure 23. Windows file sharing related strings.

Strings typical for Windows file sharing. This malware is probably using Windows file sharing services
— for self-propagation or some other reasons.

Exercise:

1. Extract list of strings from the packed binary file (aop.exe) and compare them to strings
analysed in this step. What are the differences?
In packed binary file there are much less meaningful strings. Most of the interesting strings found in
this step aren’t present on the strings list from the packed file or are split in smaller parts.

A 00000000435C 00000042345C O Encodw

A 000000004873 000000423473 0 -Agi Mo

A 000000004551 000000423481 0 4.0 [Orpnbiadk 7
A 0000000043CF 0000004234CF 0 http: ¢

A 000000004302 000000423502 0 crd Ao p

A 00000000832C 00000042352C O gvfa.

Figure 24. Incomplete or split strings in the packed binary file.

4.4 PE structure and headers analysis

Windows executable file (PE) headers contain information about the executable file and how it should
be executed. PE headers tell the operating system how it should load an executable file, what libraries
are needed, where the beginning of the main routine code (code entry point) is or even when the
binary file was created. During malware analysis it is worthwhile to analyse PE headers to search for
any anomalies or indicators that the sample was packed (especially in case when unknown packer is
used and standard packer detection tools will not help).

Open the sample in the PEview tool and switch to IMAGE_FILE_HEADER. One of the interesting fields
in this section is Time Date Stamp which tells when the binary executable was likely linked. This field
might have been intentionally tampered with but it doesn’t happen often.

Page 15

& Artifact analysis fundamentals

en;sa Artifact analysis training material
b November 2014
x x
=]
File View Go Help
0000w &|=aa
= aop_unpacked.exe pFile Data | Description | Value
IMAGE_DOS_HEADER 0000010C 014C Machine IMAGE_FILE_MACHINE_I386
MS-DOS Stub Program 0000010E 0004 Number of Sections
= IMAGE_NT_HEADERS 00000110 5387T44AE Time Date Stamp 2014/05/29 Thu 14:31:10 UTC
Signature 00000114 00000000 Painter to Symbol Table
IMAGE_FILE HEADER 00000118 00000000 Number of Symbols
IMAGE_OPTIONAL_HEADER 0000011C 00ED Size of Optional Header
IMAGE_SECTION_HEADER text 0000011E 010F Characteristics
IMAGE_SECTION_HEADER .rdata 0001 IMAGE_FILE_RELOCS_STRIPPED
IMAGE_SECTION_HEADER .data 0002 IMAGE_FILE_EXECUTABLE_IMAGE
IMAGE_SECTION_HEADER .rsrc 0004 IMAGE_FILE_LINE_NUMS_STRIPPED
SECTION _text 0008 IMAGE_FILE_LOCAL_SYMS_STRIPPED
= SECTION .rdata 0100 IMAGE_FILE_32BIT_MACHINE
IMPORT Address Table
IMPORT Directory Table
IMPORT DLL Names
IMPORT Hints/Names
SECTION .data
B SECTION .rsrc
< | |
|Viewing IMAGE_FILE_HEADER Y

Figure 25. IMAGE_FILE_HEADER in PEview tool.

Next switch to IMAGE_OPTIONAL HEADER and check the address of the entry point (EP). It will be
used in the next step to determine in which PE section the entry point is located. In this case the entry
point is located at the relative address 0x154EC.

o , PEview - C:hanalyses'sample',aop_unpacked.exe - IEllil

File Wiew Go Help

20008 ([F8|[==o

= aop_unpacked.exe pFile | Data | Description | “Yalue -
- IMAGE_DOS_HEADER 00000120 010E Magic IMAGE_NT_OPTIONAL_HDR3Z_MAGIC
- MS-DOS Stub Program 00000122 06 Major Linker Yersion
=]

- IMAGE_NT_HEADERS 00000123 0o tinor Linker Yersion
i 00000124 00016000 Size of Code
00000128 0000AD00 Size of Initialized Data
B _ 0000012¢ 00000000 Size of Uninitialized Data
- IMAGE_SECTION_HEADER .text 00000130 00D154EC Address of Entry Paint
- IMAGE_SECTION_HEADER .rdata 00000134 00001000 Base of Code
- IMAGE_SECTION_HEADER .data 00000138 00017000 Base of Data

MAGE_

- IMAGE_SECTION_HEADER .rsrc 0000013c 00400000 Image Base

- SECTION .text 00000140 00001000 Section Alignment

- SECTION .rdata 00000144 00001000 File Alignment

- SECTION .data 00000148 0oo4 Major O/ Version

G- SECTION .rsrc 00000144, ooon Minor O/S Wersion
Fllﬂﬂﬂﬂ'l A inlninin} hAmiar lraame Siarvoinm

|Viewing IMAGE_OPTIONAL_HEADER

N

Figure 26. IMAGE_OPTIONAL_HEADER in PEview tool.

Then analyse PE file sections names and sizes. Based on PE section names it is sometimes possible to
identify what packer or compiler was used to create the executable. For example UPX packed binaries
typically have two sections named UPX0 and UPX1 while code compiled with Borland Delphi will
typically have CODE, DATA, BSS, .rdata, .idata sections®.

Then analyse the characteristics of the sections to check which of them appears to contain executable
code (IMAGE_SCN_CNT_CODE, IMAGE_SCN_MEM_EXECUTE). Usually only one section should
contain executable code (.text, CODE, etc.). Otherwise this indicates that some packer or protector
was used. Itis also good to compare the section size in memory with its raw size on disk. If the declared

8 http://www.on-time.com/rtos-32-docs/rttarget-32/programming-manual/compiling/borland-delphi.htm

Page 16

http://www.on-time.com/rtos-32-docs/rttarget-32/programming-manual/compiling/borland-delphi.htm

3 Artifact analysis fundamentals
* Artifact analysis training material
November 2014

section size in memory is much greater than the section size on disk, then this also indicates that some
packer or protector was most likely used.

Another indicator of a program being packed or somehow tampered with, is when a program entry
point is located outside of the standard code section (.text, CODE, etc.). To check in which PE section
the program entry point is located find the section for which RVA >= EP and EP <= RVA+Virtual Size
(EP — previously checked address of entry point, RVA — section relative virtual address, Virtual Size —
section size in memory). In this case, entry point 0x154EC is located in .text section because 0x1000
(.text RVA) <= Ox154EC (EP) <= 0x16345 (.text RVA+VirtualSize).

C’\ PEview - C:\analyses\sample\aop_unpacked.exe = |EI|5|
File View Go Help

30000 [MT ®#|[= = o

- aop_unpacked.exe pFile | Data | Description | Value
IMAGE_DOS_HEADER 00000200 2E 74 65 78 Name text
MS-DOS Stub Program 00000204 74 00 00 00
= IMAGE_NT_HEADERS 00000208 00015345 Virtual Size q——__l Section size in memory |
Signature 0o00020C 00001000 RVA
IMAGE_FILE_HEADER 00000210 00016000 Size of Raw Data
IMAGE_OPTIONAL_HEADER 00000214 00001000 Pointer to Raw Data

IMAGE_SECTION HEADER .text 00000218 00000000 Pointer to Relocations Section size on disk |
IMAGE_SECTION_HEADER .rdata 0000021C 00000000 Pointer to Line Numbers
IMAGE_SECTION_HEADER .data 00000220 0000 Number of Relocations
IMAGE_SECTION_HEADER. .rsrc 00000222 0000 Number of Line Numbers
SECTION _text 00000224 60000020 Characteristics
=1 SECTION .rdata 00000020 IMAGE_SCN_CNT_CODE
IMPORT Address Table 20000000 IMAGE_SCN_MEM_EXECUTE
IMPORT Directory Table 40000000 IMAGE_SCN_MEM_READ
IMPORT DLL Names PE sections names | /
IMPORT Hints/Names
SECTION .data | Section characteristics |
& SECTION .rsrc

A=

|Viewing IMAGE_SECTION_HEADER .text

Figure 27. PE section view in PEview tool.

4.5 Import table analysis

Another important technique of static analysis is Import Address Table (IAT) analysis. By examining
what functions and libraries the malware imports we can try to predict some of its functionality.

It is important to remember that IAT will not always contain all functions used by malicious code.
Sometimes (especially in cases of packed or protected samples) the import table is shortened to only
the most important functions, while the rest of the functions are imported dynamically during
malware execution. In such a situation we need to use dynamic analysis techniques to determine the
full set of functions used by the malware.

To analyse the Import Address Table we will use the CFF Explorer tool.

Open the sample file in CFF Explorer and switch to the Import Directory section. This section contains
libraries imported by a malware sample. By clicking on each library name, a list of imported functions
from this library opens in the bottom panel.

Page 17

L ® Artifact analysis fundamentals

* Artifact analysis training material
enisa
. November 2014
CFF Explorer VIII - [acp_unpacked.exe] o | Ellil
File Settings ?
H. @ ‘aop_unpacked.exe X_
-
Module Name Imports OFTs TimeDateStamp ForwarderChain Name RVA FTs (IAT)
=i File: aop_unpacked exe 00019240 NJA 00018030 00018D34 00018038 00018D3C | 00018D40
I g EFT_I::::;F szAnsi (nFunctions) | Dword Dword Dword Dword Dword
[Fis Header KERNEL32.DLL 74 00000000 00000000 00000000 00013240 000170CC
[Z] Optional Header ADVAPI32.dll 38 00000000 00000000 00000000 0001924D 00017000
- .J Data Directories] AVICAP32.dI 2 00000000 00000000 00000000 00019284 0001709C
— (3] Section Headers b GDI32.dl 3 00000000 | 00000000 00000000 000182C7 00017048
— (EImport Directory
| |5 Resource Directory MFC42.DLL 17 00000000 00000000 00000000 000159201 000171F8
— 9, Address Converter MSVCPs0.di 10 00000000 00000000 00000000 00019208 00017240
— 4, Dependency Walker MsvVCRT.dl 40 00000000 00000000 00000000 000192E7 0001726C =
— i, Hex Editor
— 9, Identifier OFTs FTs (IAT) Hint Mame
— q,hporl Adder
: %Qndcl‘:)i:amﬂer Dword Dword Word szANsi
- ‘&: Resource Editor NfA 00019346 0000 IstrepyA
L— &% UPX Utility N/A 00019350 0000 SetEvent
N/A 00013354 0000 InterlockedExchange
=l
R =l
Figure 28. Import Directory view in CFF Explorer
Module Mame Imports OFTs TimeDateStamp ForwarderChain Mame RVA FTs (IAT)
00019240 A 00018030 00018034 00018033 00018D3C 00013040
szANSi (nFunctions) | Dword Dword Dword Dword Dword
KERMEL32.0LL | 74 00000000 00000000 00000000 00019240 000170CC
ADVAPTZZ2.dIl 33 00000000 0000a000 00000000 000192AD Q0017000
AVICAP3Z2.dIl 2 00000000 0000a000 00000000 00019284 0001709C
GDI32.dI 3 00000000 0000a000 00000000 000192C7 000170A3
MFC42.DLL 17 00000000 0000a000 00000000 00019201 000171F3
MEYCPa0.dll 10 00000000 0000a000 00000000 00019208 00017240
MSYCRT.dll 40 00000000 0000a000 00000000 000192E7 0001726C
MSVFW 32.dil 7 00000000 0000a000 00000000 ooo192F2 00017310
SHELL32.dll 1 00000000 0000a000 00000000 000192FE 00017330
SHLWAPT. Il 1 00000000 0000a000 00000000 00019304 00017338
UsER32.dI 39 00000000 0000a000 00000000 00019316 00017340
WIMINET.dI i 00000000 00000000 00000000 00019321 000173E0
wWs2_32.dl 19 00000000 00000000 00000000 00019320 000173E8
WTSAPI32.dIl 2 00000000 00000000 00000000 00019333 00017433

Figure 29. List of imported libraries by aop_unpacked.exe

Here we see that the aop_unpacked.exe sample is importing functions from many different libraries.
Among less common libraries are:

e Avicap32.dll —video capture functions

e Msvfw32.dll — bitmap/video compression and decompression functions

o Wtsapi32.dll — windows terminal services functions
We then analyze what functions are imported from each library, and search for functions that might
point to some of the malware functionalities. Below is a list of a few more interesting functions.

Page 18

* x Artifact analysis fundamentals
* Artifact analysis training material
November 2014
X *
M/A 0001A302 0000 WTSFreeMemory
M/A 00014312 0000 WTSQuerySessionInformationA

Figure 30. Functions imported from wtsapi32.dll

As functions related to Windows Remote Desktop Service were detected, the malware might be trying
to perform some operations in regard to the Remote Desktop Service. To get more information on
how those functions are used, we would need to analyse the disassembled the code (advanced static
analysis).

M A 00019466 Qoaa SetlastError

M/A 00019474 0000 GetCurrentProcess

M A 00019433 DDD% CreateRemoteThread
MfA 0001949C Qooo WriteProcessMemaory
/A Q0019480 Qoo VirtualallocEx

Figure 31. Selected functions imported from kernel32.dlIl.

CreateRemoteThread and WriteProcessMemory functions are indicators that malware is injecting
threads into other system processes. Most likely the intention is to hide its presence in the system or
to tamper and interact with other processes (e.g. information stealing).

M A 000195C4 Qoao DisconnectiamedPipe
M A 000195DA Q0o TerminateProcess
M/A 000195EC Q000 PeekMamedPipe

Figure 32. Selected functions imported from kernel32.dII.

TerminateProcess function suggest that malware might be trying to terminate some system processes.
Knowing from the strings analysis, that the malware has hardcoded names of antivirus programs
processes, we may guess that it will be trying to kill those processes to avoid detection.

M/A Q00124F3 Q000 TerminateThread
M/A 00019504 0000 WinExec
M/A 00019514 0000 OutputDebugStringA

Figure 33. Selected functions imported from kernel32.dII.

The WinExec function suggests the malware might be trying to execute some system command.

M A 00019642 Qooa Process32Mext
M A 00019682 Qoaa Process32First
M A 000196C2 0o0o CreateToolhelp325napshot

Figure 34. Selected functions imported from kernel32.dlIl.

These functions are used to enumerate a process list. This confirms a previous suspicious that the
malware might be trying to terminate certain processes or to inject remote threads to some of them.

Page 19

& Artifact analysis fundamentals
* Artifact analysis training material
November 2014

X *
N 000197C6E 0000 RegOpenkeyA
T 00019704 0000 RegQueryValues
A 0001974 Q000 GetTokenInformation
A 000197FA Qoon LookupAccountSidA
A 0001980E 0000 CreateServicea
A 0001931E Qoo RegDeletekeya
TS 0001932E 0000 RegDeleteValues
N 00019840 0000 RegEnumKeyExA

Figure 35. Selected functions imported from advapi32.dil.

These are functions used for registry operations. The malware is probably performing some registry
operations. Also the presence of the function CreateServiceA suggests that the malware might create
a system service — probably as a persistence mechanism.

M/A 00019490 0o0o capGetDriverDescriptionA
M A 00019484 0o0o capCreateCapture\Windowa

Figure 36. Functions imported from avicap32.dil.

These functions are used to create video capture. This suggests that the malware might have some
spying functionality.

M A 000 19FCE Qo0o ICSeqCompressFrameEnd
M A 00019FES 00aa ICCompressorFree

A 0o019FFs Qo0o ICClose

MfA 0a01a002 Q0o ICOpen

M A 000 1ADDA Qo0o ICSendMessage

MfA 0001AD1A Q000 ICSeqCompressFrameStart
M/A 000 1A034 0000 IC5eqCompressFrame

Figure 37. Functions imported from msvfw32.dll.

These video compression functions support the suspicion that the malware may try to capture a video
sequence.

MfA 0001A144 Qooa SetClipboardData
MfA 0001A156 Qooa GetClipboardData
MfA 0001A163 Qooa GetSystemMetrics

Figure 38. Selected functions imported from user32.dII.

These system clipboard functions suggest that the malware might be trying to monitor the system
clipboard. It is another indicator of information stealing malware functionality.

A 000 1A2F0 Qoon InternetCpentrla
Figure 39. Function imported from wininet.dIl.

InternetOpenUrIA function is used to retrieve data from FTP or HTTP location. Malware might be using
this function to download additional configuration information from the Internet.

Exercise
1. Analyse in CFF Explorer the Import Address Table of the packed binary file (aop.exe). What
are the differences in comparison to the IAT of the unpacked sample?

Page 20

x K, Artifact analysis fundamentals
* Artifact analysis training material
i November 2014

In the import address table (IAT) of the packed sample only six functions are imported from the
kernel32.dll library and only one function from every other library. This is typical for UPX packed

binaries.

T

Figure 40. IAT of the packed binary file.

4.6 PE resources analysis

Module Marme Imports OFTs TimeDatestamp ForwarderChain hame RYA FT= (IAT)
0000CE29 TS 0000350 0000C954 0000C955 0000CEC 0000990
szAnsi {nFunctions) | Cwword Dword Cvword Cward Dnword
KERMELSZ, DLL [d] Qo0oa0o0 Qo0oaoan Qo0oaoo0 0002361 00025495
ADYAPTIZ Il | 1 Q0000000 o0o0o00 Q0000000 000z5E29 00025464
AYICAP3Z dl 1 Qo0oa0o0 Qo0oaoan Qo0oaoo0 00025636 00025AEC
Gor3z.di 1 00000000 00o0aoao 0Oo00ooao 00025643 000Z5AC4
MFC42,0LL 1 Qo0oa0o0 Qo0oaoan Qo0oaoo0 00025640 000258CC
rSwCPa0. dll 1 Qo0oa0o0 Qo0oaoan Qo0oaoo0 00023657 00025404
MSYCRT.dI 1 Qo0oa0o0 Qo0oaoan Qo0oaoo0 00025663 00025A0Z
MSYFEW3z.di 1 Qo0oa0o0 o0oaoan Qo0oaoo0 000Z5E6E 00025AE4
OFTs FTs (IAT) Hink Marmne

Dword Dword Word szAnsi

TS Q0025C18 FreeSid

Portable executable files usually contain an additional resources section which is used by the
executable to store images, icons, dialog windows, menus or other data. Malware sometimes uses
resource section store additional configuration data or files supposed to be dropped on a hard disk.

To examine the file resources section open the sample file in the Resource Hacker tool.

Page 21

x

x
*

* x

x 7 Tx Artifact analysis fundamentals
* Artifact analysis training material
enisa
x November 2014
x *

E¥ Resource Hacker - C:‘IlanaIvses‘llsample‘llanp_unpacke*exe - |I:I|1|
File Edit View Action Help

EH29 1,=M4.1FA@E=D5H3=*@@;B _ _
| £23 =0,00@:CO4HCF Lol Serp! |

1%9++8C2@8?BG?H1 il‘9|++8l:2 BB?BG?H1*9++8C2@E8 ?BG?H1*9++BC2REE 2B

@21 Bitmap
-] leon

@2 Icon Group
(2] Version Info

< | e I
|Line: 1 | | 150 |

Figure 41. Suspicious resource in aop_unpacked.exe.

N

In this case we see that the malware sample contains a single suspicious resource. At this stage of the
analysis it is hard to tell what it is used for. It might be some encrypted configuration string or just

useless random data. To determine the role of this resource advanced dynamic or static analysis will
probably be required.

Additionally the student might decide to export this resource to result files by right clicking on the
resource and choosing the Save option.

EM Resource Hacker - C:\analyses\sample\aop_unpacked.exe - |EI|5|
File Edit View Acton Help

5y 1,214 1FA@6-D5H3>*@@;B,7-6@J! —
| G£3 >,0,00@.CO4HCF QDmp"Esc”ml
g

:) Save all resources. ..
-1 Bitmar Save [1,=/4. IFA@6>D5H3>"@@;B;? ~6@JI] resources
Save [1,=/4.1FA) =,0;00

++BC2R8?BG?H1*94+48C2@8 ?BG?H1*9+4BC:

M

Replace Resource. ..
Rename Resource [1,=/4, IFA@6>D5H3>"@@;B;?=6@11 ; =,0;00@:CI4HCF : 0]
Delete Resource [1,=/4. IFA@6>D5H3>*@@;8;? >6@1I : >,0;00@:CI4HCF : 0]

Change Language [1,=/4. IFA@6>=D5H3>*@@;B;? >6@J1 : =,0;00@:C94HCF : 0]

&[0 Versio

4 |

|Line: 1 150 |

a2

Figure 42. Exporting suspicious resource.

Page 22

L ® Artifact analysis fundamentals

* Artifact analysis training material

November 2014

4.7 Searching for embedded objects

Malware might sometimes contain embedded objects outside of the resources section. Exeinfo PE
tool has a special function allowing to scan any file for embedded objects in popular formats such as
PE files, MSI files, Word documents, images, etc.

To scan the sample for embedded objects, open it in Exeinfo PE and open the Ripper menu by clicking
on the Rip button. Then choose what type of object Exeinfo PE should search for, or choose the I'm
hungry for Ripping option to search for all known file types.

arch EXE PE inside EXE)
-# Scan only { for EXEPE)
It 53 MSI generic { msi { doc [xls / pps [adp / wps) - OLEZ

L:| Exeinfo PE - ver.0.0.3.5 Beta by A.S.L - 748+4 sig 2014.0

no B3| GFX pictures - RIP Submenu :
ai BIM archives - RIP Submenu :

H
) '(_# Ripper (search www [http : [fip - address inside)

First Bytes : PlL

— @' Ripper (search SWF flash animations - max v.15!)

SubSystem : [\Windows GUL % Abc (2) Ripper (search hidden NSTD icon data)
File Size : [gooz1000h il ll overlay: [NO 00000000 __Optior 7 Ripper (search for .xml ver. 1.0 script files)

A% UNIVERSAL Ripper - At Entered String "222" to EQF
Image is 32bit executable RES/OVL: 6 /0% 2014 Exit —

|Microsoﬂ: Visual C++ ver 5.0/6.0 J 6 I'm hungry for Ripping (Allin One)
Lamer Info - Help Hint - Unpacdk info 0ms. - =
|Not packed , try disASM CllyDbg - www.ollydba.de or WD32dsm&3.ex J RS un |

Figure 43. File ripping in Exeinfo PE.

If any embedded objects are be found they will be saved to the same directory in which the analysed
sample resides. In the case of the aop_unpacked.exe binary sample, only two icon files were found.

60.| |~ Computer ~ Local Disk (C:) ~ analyses - sample - m” Search sample ‘Qj

Crganize - Indude in library + Share with + New folder = o~ Ol @

[Favorites D. D. D.
B Deskip HEE EE BN

4, Downloads aop.exe aop_lcolfcol aop_MainIC
1= Recent Places ors.ico OM.ico
7 Libraries \
@ Documents
@) Music Icon files found by Exeinfo PE
[&] Pictures
B8 videos

t@ Homegroup

Figure 44. Icon files found by Exeinfo PE.

4.8 Finishing analysis

After the analysis is finished, copy and paste the obtained result files that you want to preserve into
the directory C:\analyses\results.

Page 23

x Artifact analysis fundamentals
* Artifact analysis training material
November 2014
e < -
‘;\ }?I C:\analyses\results| j &3 I Search results 2
Organize Indude inlibrary + Sharewith * New folder == - _|J @!
¢ Favorites Mame “ Date modified | Type | Size | |
B Deskiop screenshots 9/26/2014 11:46 AM File folder
& Downloads B8 a0p_unpacked.exe 9/26/2014 11:43 AM Application 132K8B
=1, Recent Places || extracted_strings. txt 9/26/2014 11:45AM Text Document 68 KB
|| susp_resource. txt 9/26/2014 11:45 AM Text Document 1KB
i Libraries
| Documents
_. Music
| Pictures
E Videos

ﬁ& Homegroup

M4 Computer

€l Network

Figure 45. Analysis results in C:\analyses\results directory.

Then switch to Styx machine window and go to /lab/analyses directory and download the results in a
separate subdirectory using the lab-get results script.

aop_unpacked.exe extracted strin

Figure 46. Downloading results to Styx.

After the results are downloaded, shutdown Winbox machine and restore the clean snapshot.

4.9 Extra samples

As an extra exercise, students can analyse additional malware samples using the techniques learnt in
this task. The extra samples names are: cutw231.exe, faktura.exe, svcost.exe. Samples can be found
in /home/enisa/enisa/ex3/extra.

For each sample, it should be possible to point to some of the functionalities. After each analysis
students should have an open discussion to share their findings.

5 Task 2: Behavioural analysis

In this task, the participant will execute malicious code in a virtual machine in order to observe what
changes it will make to the operating system. Based on the observed changes, students will try to
figure out how the malware works and what the indicators of the system infection are.

Behavioural analysis will cover following topics:
e Detecting new process creation

Page 24

x Artifact analysis fundamentals

* Artifact analysis training material

November 2014

e Detecting file system and registry changes
e Detecting rootkit artifacts using Gmer

e Analysing in-memory strings

e Monitoring system events

5.1 Analysis remarks

In this task, live malware samples will be executed on the dedicated virtual machine. As previously
mentioned, proper security precautions should be taken. All analyses will be done in the INetSim mode
— preventing the malware from making any direct access to the external network.

After executing the malware sample in the VM, the user should keep in mind that malware (especially
rootkits) sometimes change the operating system’s behaviour to hide its presence. For example
malware might hook file listing routines to hide its files on the file system.

Various tools used during the dynamic analysis might sometimes give false positive results (e.g. Gmer
always detecting the same two suspicious changes). Consequently it is good to test the tools before
executing actual malware to understand what the expected outcome might be.

During normal operating system operation there are many system processes and services running in
the background. Those processes perform various tasks sometimes resulting in various changes in the
operating system (e.g. creating pre-fetched files for executed binary files). This is particularly the case
with newer operating systems versions like for example Windows 7 or 8. Those changes shouldn’t be
mistaken with the changes done by malware.

5.2 Preparing analysis

First restore a clean snapshot of the Winbox VM and make sure that current network mode is set to
INetSim network simulator.

enisa@styx: /lab/bin

enisa@styx:/lab/binS sudo ./lab-switch-net netsim
Applying changes...
enisa@styx:/lab/bin% I

Figure 47. Switching network mode to network simulator

Then using Viper and the previously created malware collection, send the sample named
1102231642.exe to the Winbox machine. If there is no such sample in Viper, it can be copied from the
directory /home/enisa/enisa/ex3/samples.

Page 25

x Artifact analysis fundamentals
* Artifact analysis training material
November 2014

enisa@styx: fopt/viper
find name 110223%

| 1] 1182231642 | application/x-do ec | 9482a68dd9ce5b2fedadac139d8di2cf
R R ettt R R e +------ +

enisa
[*] Session opened on fopt/viper/projects/enisa/binaries/d/c/e/c/dcec3a15d840be299f92c7d8c6330b75a9ae9718588b74

1aBb9c1c5756787d9c
enisa 1102231642.exe = |J

Figure 48. Finding sample in Viper

enisa@styx: fopt/viper

enisa 1102231642 .exe lab-send

226 Successfully transferred "/sample/1102231642.exe"
enisa 1102231642 .exe

Figure 49. Sending sample to the Winbox machine.

Next, switch to the Winbox window and start the following tools: Process Explorer, Process Monitor
and Regshot. Refer to Building artifact handling and analysis environment exercise for the descriptions
of these tools.

Page 26

Artifact analysis fundamentals

x *
en;sa Artifact analysis training material
- November 2014
x x
n.}’ Process Explorer - WWW.SYSI om [ENISA-PC\ENISA] EI@
File Options View Process Find Users Help
deeeapexiae/[L[_J] A
Process CPU Private Bytes Working Set PID Description Company Name
[MSystem ldie Process 96.12 12K
=] System 760 K
B Intemupts 123 0K 0K n/a Hardware Intemupts and DPCs
| smss.exe 256K EBEK 272
7| csmss.exe 0.05 1152 K 2548K 348
= & wininit exe 856 K 273K 400
£ 1] services exe 3.592K 5748K 492
[="svchost exe 274K 5404 K 624 Host Process for Windows 5. Microsoft Corporation
7| VBoxService.exe <001 1,596 K 3492K 680
[msvchost exe 2416 K 4736 K 732 Host Process for Windows S... Microsoft Corporation
[[m7svchost exe 14720 K 12476 K 828 Host Process for Windows S... Microsoft Corporation
W) audiodg exe 15012 K 13640K 3832
= [svchost exe <001 25764 K 32540K B76 Host Process for Windows S... Microsoft Comporation
[T dwm.exe 1.072K 3236 K 1564 Desktop Window Manager Microsoft Corporation
[m7svchost exe 5,996 K 15540 K 520 Host Process for Windows S... Microsoft Corporation
[=7svchost exe 0.07 574K 10,456 K 1076 Host Process for Windows S... Microsoft Corporation
[m7svchost exs 0.03 7804 K 8564 K 1172 Host Process for Windows 5... Microsoft Corporation
[="spoolsv exe 4460 K 5872 K 1252 Spooler SubSystem App Microsoft Corporation
[m7svchost exs 6,564 K 4160 K 1332 Host Process for Windows S... Microsoft Corporation
[87svchost exe 0.05 4228 K 6,452 K 1416 Host Process for Windows 5... Microsoft Corporation
[m7taskhost exe 6904 K 6228 K 1608 Host Process for Windows T... Microsoft Corporation
EFlleZIIa Server.exe 0.09 1.216 K 3268 K 1648 FileZilla Server FileZilla Project
[=svchost exe 1120K 3304 K 1512 Host Process for Windows S... Microsoft Corporation
[=7 Searchindexer.exe 14876 K 012K 576 Microsoft Windows Search |... Microsoft Corporation
[87sppsve.exe 4200 K 3572 K 3480 Microsoft Software Protectio... Microsoft Corporstion
[=7svchost exe 004 832K 5.900 K 3588 Host Process for Windows 5. Microsaft Carporation
[n7]lsass.exe 2912K 6,528 K 508 Local Security Authority Proc... Microsoft Comporation
B lsm.exe 1276 K 2468K 516
W carss.exe 0.18 1.264 K 3664K 408
B | winlogon exe 1,628 K 344K 448
017 28808 K 44460 K 1596 Windows BExplorer Microsoft Corporation
(X)) 1,140 K 3782 K 572 VirualBox Guest Additions Tr... Cracle Corporation
0.02 1,620 K 6496 K 928 FileZila Server FileZilla Project
0.02 27048 K 33952 K 1400 Greenshot Greenshot
147 8820 K 14,882 K 3716 Sysintemals Process Bxplorer Sysintemals - www sysinter..
CPU Usage: 3.88% Commit Charge: 13.85% Processes: 34 Physical Usage: 2610%

Figure 50. Process Explorer window.

After starting Process Monitor disable capturing events and clear capture view.

3:31:36.2852040 PM &~ svchost.exe

3:31:36.2853861 FM =~

A.91.90 NETANY N E T

624 ﬁ RegOpenkey

624 ﬂ RegOpenkey

TNy S

HELM"System\CumrentControl Set"Contr. ..

HELM"System\CumentControl Set \Contr...

TR TT T T SR o T T LY o S

3:31:36.2850: E ﬁFlegEnumKey HKLM"System\CumertCortrolSet*Contr... SUCCESS
331:36.2 1. Disable event capiure | g ReqOpenkey HKLMSystem"\CurrertControlSet’Contr... SUOCESS
3:31:36.2851 § @ RegErumKey HELM"System\CumertCaortrolSet*Contr... SUCCESS
3:31:36.2851619 PM 5 evchost exe 624 ﬁRegOpenKey HKLM"System‘\CurrertCortrolSet'Contr... SUCCESS

3:31:36.2852461 FM 8 'svchost.exe 624 ﬂRegCloseKey HELM"System\CumertCortrolSet*\Contr... SUCCESS
3:31:36 2852774 PM §-' swchost exe 624 ﬁRegEnumKey HKLM" System\CumrertCartrolSet"Contr .. SUCCESS
3:31:36.2853204 FM ' svchost exe 624 ﬁFlegOpenKey HKLM"System‘\CurrertCortrolSet \Contr... SUCCESS

3:31:36.2854287 PM 624 #¥%ReqCloseKey HELM"System\CumertCaortrolSet*Contr... SUCCESS
3:31:36.2854643 PM 5 svchost exe 624 ﬁRegEnl.lmKnaﬁ.r HKLM"System‘\CurrertCortrolSet \Contr... SUCCESS
3:31:36.2855098 PM T svchost exe 624 ﬂRegOpenKey HELM"System\CumertControlSet™Contr... SUCCESS
3:31:36.2855717 PM T svchost exe 624 @%ReqOpenKey HKLM"System\CumentControlSet'\Contr... SUCCESS
3:31:36.2856619 PM 5 evchost exe 624 ﬁRegQuew\u’alue HKLM"System‘\CurrertCortrolSet'Contr... SUCCESS
3:31:36.2857079 PM §- svchost exe 624 gﬂegclosel(ey HKLM"System’\CurrertCortrolSet“\Contr... SUCCESS

clceree

NAME NOT FOUND Desired Access: Read

NAME NOT FOUND Desired Access: Read

2 Process Monitor - Sysi ls: . sysi ls.com EI@
File Edit Event Filter Tools Options Help

SH| RBE | A | B | A5

Time ay Proce PID Operation Result Detail Il

3:31:36.2823450 PM 5 Searchiqdexer exe 976 Bk FileSystemCortrol C: SUCCESS Cantrol: FSCTL_READ_USN_JOUR'—I
3:31:36.2824525 PM 8" Searchindgxer exe 976 5k File SystemCortrol C: SUCCESS Control: FSCTL_READ_USN_JOUR
3:31:36.2834148 HM "7 AUDIODG. 1008 &% Thread Creat SUCCESS Thread ID: 1752
3:31:36.2847332 jsvchost.exe . Create HKLM"System‘\CumrertControlSet"Contr... REPARSE Desired Access: All Access
3:31:36.2848148 PM #-' svchog HKLM" System‘\CumrertCortrolSet"Contr... SUCCESS Desired Access: All Access, Disposit
3:31:36.2848930 PN & svcho: HELM"System\CumentCortrolSet\Contr... SUCCESS Desired Access: All Access
3:31:36.2849737 P jsvcho . TZT A MEOCTUSETEY HELM"System\CumertCortrolSet*\Contr... SUCCESS
3:31:36.2850102 PM\ §-' svchost exe 624 #% ReguenyValus HELM"System\CumertCartrolSet*Contr... NAME NOT FOUND Length: 44

Indesc: 0, Name: ##2HHDALDIOAFL
Desired Access: Read

Index: 0, Name: #2AuxinTopo
Desired Access: Read

Index: 1, Name: #eAuxinWave
Desired Access: Read

Index: 2, Name: #2CDInTopo
Desired Access: Read

Desired Access: Read

Type: REG_DWORD, Length: 4, Dz

T O O o aen P

4|

1

| b

Showing 16,024 of 74,343 events (21%)

Backed by virtual memory

Figure 51. Disabling event capture and clearing Process Monitor

After starting Regshot check “Scan dir” option and set it to C:\.

Page 27

L ® Artifact analysis fundamentals
Artifact analysis training material

November 2014

“. Regshot19.0%86 Unicede | = | = |

Compare logs save as:
P d 1st shat

(@ Plain TXT () HTML document

Scan dir 1[;dir2;dir3;.. . ;dir nn]: Compare
ci\ (0
C:\analyses'results\regshol [I]

About

Add comment into the log:

English -

Figure 52. Regshot window.

Now the analysis environment is ready for the basic behavioural analysis. At this point the student
might consider creating an additional snapshot just before executing the malware sample. If anything
goes wrong during the analysis, or the student is uncertain about some specific malware behaviour,
he could then use this snapshot to quickly restore the VM to the clean state with all of the tools already
running and the with the malware sample already uploaded.

This snapshot should be distinctively named so it wouldn’t be missed in the future and accidently
merged with clean snapshot.

o Take Snapshot of Virtual Machine
% Snapshot Name
LJ*5 [DIRTY - before dynamic

Snapshot Description

Snapshot before starting dynamic
analysis of the sample 1102231642.exe]|

oK I Cancel Help

Figure 53. Creating snapshot before executing malware sample.

If the student decides to restore the snapshot, Winbox will be restored to its previous state. In
particular all files in C:\analyses\results will be overwritten. If there are already some meaningful
results stored in this directory, the student should consider downloading them with lab-getresults tool
prior to restoring snapshot.

In case of any problems, an alternate way of finishing this task is to start only one tool at a time instead
of starting all tools in a single analysis.
1. Start next single tool (Regshot, Process Explorer, Process Monitor, etc.).

2. Execute malware sample.
3. Analyse results.

Page 28

& Ty Artifact analysis fundamentals
Artifact analysis training material

November 2014

4. |If there are any result files send them to Styx VM (lab-getresults).
5. Restore snapshot and go to 1.

This approach is slightly more time consuming but in specific cases might be a better solution.

In case the malicious sample is not executing on the student’s virtual machine, use the offline results
provided in /home/enisa/enisa/results/dyn1 directory. To use the offline results it is best to send

entire dyn1 directory to the Winbox virtual machine.
pomn e T Y 2P
1
1

LSending offline results to the VM

5.3 Executing malware sample

First use the Regshot tool to create an image of the clean system before executing malware sample.

“. Regshot18.0 86 Unicode | = | B [piG

Compare logs save as: : :
@ PlainTXT) HTML document Shot
Shot and 5[;%&...

Scan dir 1[;dir 2;dir3;...:dir nn]:
Load...

€\ [I] Clear

Output path:
C:\analysesresults\regshol E]

Add comment into the log;

Figure 54. Taking first shot in Regshot

After Regshot finishes with the analysis (2nd shot button becomes active) start event capturing in
Process Monitor.

Page 29

L ® Artifact analysis fundamentals

en;sa Artifact analysis training material
b November 2014
24’ Process Monitor - Sysinternals: www.sysinternals.com E\@
File Edit Ewent Filter Tools Options Help
|| RBE | SAS | B | @5
Time of D Process Name PID Operation Path Result
Start capture
4| n 3
MNe events (capture disabled) Backed by virtual memory

Figure 55. Starting event capture in Process Monitor.

Then student can execute the malware sample. At the same time, the student should pay attention to
the Process Explorer window and observe if there are any changes on the process list.

After the malware sample is executed, the student should wait (up to a minute) until the malware is
fully loaded in the system and finishes its installation routines. Then the student should stop the event
capture in Process Monitor and then take a second shot in Regshot. This should be done before any
further analysis in order to minimize the count of unimportant changes reported by Regshot and
Process Monitor — being a result of a normal system activity and not malicious operations.

w. Regshot1.9.0 %86 Unicode | = | B [niGs

Compare logs save as:

@ Plain THT () HTML document

1st shot

Shot

| Scan dir 1[dir2;dir 3;. .. ;di :
[¥] scan dir 1[;dir2;dir ir nn] Shot and Save...

i L)
Output path:

C:\analysesiresultsregshoi E]
Abou

Add comment into the log:

Load...

Dirs: 10603 Files: 55315 Time: 13s562ms

Figure 56. Taking second shot in Regshot

Page 30

& Artifact analysis fundamentals
* Artifact analysis training material
November 2014

5.4 Process Explorer analysis

After executing the malware sample, new process 1102231642.exe almost instantaneously appears in
the process list.

B cerss exe 1.18 132K 3532K 408
7. winlogon exe 1628 K 3496 K 448
== explorer.exe 021 35244 K 46,592 K 1596 Windows Explorer Microsoft Corporation
u':i VBox Tray exe 0.02 1124 K 3736 K 572 VinualBox Guest Additions Tr... Oracle Comporation
[FileZila Server Interface exe 0.07 1620 K 6436 K 928 Fledla Server FileAilla Project
Greenshot.em <0.M 39112K 53.880 K 1400 Greenshot Greenshat
L procesp exe 349 9,300 K 15,804 K 3716 Sysintemals Process Explorer Sysintemals - www sysinter...
5| Tepview exs 0.52 6.132K 0772K 1282
.| Reashot-x86-Unicode exe <0.M 9,568 K 17532 K 3732 =
B e I
CPU Usage: 7.28% Commit Charge: 15.85% Processes: 38 Physical Usage: 31.52%

Figure 57. New malware process.

Process Explorer uses a distinct colour scheme to highlight various processes®. By default blue colour
indicates that process is running in the same security context as Process Explorer. Pink colour indicates
that process is hosting one or more Windows services. Purple means that process image has been
most likely packed or compressed. Green and red colours points to new processes or the ones, that
just exited.

Soon after the main malware process starts, it spawns four child processes: win32.exe, explorer.exe,
debug.exe, sysedit.exe (random names, different in each analysis). Names of child processes suggests
that those might be some system processes — which is one of the techniques sometimes used by
malware to mislead system user. After spawning child processes malware process quits (red colour).

5| csms.exe 162 132K 3944 K 408
| winlogon exe 1,628 K 3456 K 448 (5
BE explorer.exe 875 35172K 46564 K 15596 ‘l"l.ﬁndbé Explorer Microsoft Corporation

i?l VBox Tray .exe 0.02 1124 K 37K 572 VirtualBox Guest Additions Tr... Oracle Corporation
[5d FilzZilla Server Interface exe 0.05 1,620 K 6496 K 928 Filedlla Server FileZilla Project

0.01 42,700 K 57512 K 1400 Greenshot Greenshot
&2 procexp exe 849 9424 K 16,012 K 3716 Sysintemals Process Explorer Sysintemals - www sysinter. ..
5| Tepview exe 049 6132K 10772K 1252
| Regshot«86-Unicode exe 9,568 K 17532K 3732

200 976 K 2,696 K
1836 K 5916 K
1.036 K 3.004 K
1.040 K 3036 K
0.30 1.036 K 3.004 K

==
E|
2
=]
CE|

1

CPU Usage: 2344% Commit Charge: 1611% Processes: 41 Physical Usage: 32.03%

Figure 58. Malware process spawning child processes.

% http://www.microsoft.com/security/sir/strategy/default.aspx#!malwarecleaning_explorer

Page 31

http://www.microsoft.com/security/sir/strategy/default.aspx#!malwarecleaning_explorer

L ® Artifact analysis fundamentals

en;sa Artifact analysis training material
T
b November 2014
x x
5| csms.exe 120 112K 3944 K 408
] winlogon exe 1628K 349K 448 [
== explorer.exe 012 3BI72K 46,564 K 1596 Windows Explorer Microsoft Corporation
u':i VBox Tray exe 0.02 1124 K 3736 K 572 VinualBox Guest Additions Tr... Oracle Comporation
[F FileZila Server Interface exe 0.04 1.620 K 6456 K 528 Fledila Server FileZilla Project
0.02 47272 K 62,028 K 1400 Greenshot Greenshot
L procesp exe 164 9424 K 16,012 K 3716 Sysintemals Process Explorer Sysintemals - www sysinter...
5| Tepview exe 041 6132 K 10772 K 1252
| Regshot«86-Unicode. exe 9,568 K 17532 K 3732
1836 K 5916 K
1.036 K 3.004 K
1,040 K 3036 K
1.036 K 3.0 K

Figure 59. Child processes after main malware process quits.

Next students should further inspect all new processes by right clicking on them and opening the
properties window. In the properties window, students can obtain various information about the
process, such as image location, security context, performance data, list of threads, TCP/IP
connections, as well as strings list. In this example we will examine the win32.exe process. Note that
process names might be different during the analysis — then examine first new process on the list

(analysis should be analogical).

= win32.exe:2340 Properties EI@
| TCP/IP | Security I Environment I Job I Strings
Image | Performance | Performance Graph I Threads
Image File
Version: nfa

Build Time: Fri Sep 1103:35:02 1987
Path (Image is probably packed):
C:\Users\ENISA\AppData'Local{Tempwin32.exe
Command line:
C:\Users\ENISA\AppData'Local{Tempwin32.exe
Current directary:
C:lanalyses\sample,
Autostart Location:

Explore

nfa

Parent: 1102231642.exe(1272)

User: EMNISA-PC\ENISA

Started: 2:14:57PM 9/10/2014
Comment:
VirusTotal:

Data Execution Prevention (DEP) Status: DEP

Address Space Load Randomization: <nfaz

Figure 60. Process properties window.

In this case we see that images of suspicious child processes were stored in %LOCALAPPDATA%\Temp
(C:\Users\ENISA\AppData\Local\Temp) directory which is typical location where malicious
executables store their copies or drop other malware files.

Page 32

* 3 Artifact analysis fundamentals
* Artifact analysis training material
November 2014

Then students should switch to the Strings tab where they can inspect strings found in the process
memory. Other means to achieve this goal would be to dump the process to a file and then use normal
string analysis or attach to the process with a debugger and use the debugger to find all referenced
text strings.

= win32.exe:2340 Properties EI@

Image I Performance Performance Graph I Threads | TCP/IP |
Security I Environment I Job | Strings

Printable strings found in the scan:

EEEEEEE goEEEEE
0

Figure 61. List of strings found in process memory.

Students should then compare the strings found in memory with the strings present in the image file
(a simple visual comparison). Students should try to answer the following questions:
1. Do the strings found in memory differ from the strings obtained from the file
(1102231642.exe)?
2. Are there any interesting strings in memory pointing to the malware’s functionality or
behaviour? (analysis similar to string analysis from previous task)?
3. Do strings found in memory differ for each child process (win32.exe, explorer.exe, etc.)?

In case of this malware sample, strings found in memory differ from strings found in the image. There
are various strings pointing to potential malware functionality.

Page 33

& Artifact analysis fundamentals
* Artifact analysis training material

November 2014

GetDC

GetClipboard Data
GetClassMameh
FindWindow ExA
l=\Window

ExitWindows Ex
GetWindow Thread Process|d
EmptyClipboard
SendMessage Timeout A
SetForegroundWindow
SetWindow Text A
OpenClipboard
PostMessageh
EnumChildWindows
|sClipboard Farmat Available

Figure 62. Names of Windows functions likely used by malware.

This list of WinAPI functions are most likely dynamically imported by the malware during execution.
Those functions aren’t present in either the executable image import table or in the strings found in
image file.

perscrt.com
hitp://perscrt.com/rz/mn php Hver=H1
im/pst php
rz/repart. php
Moszilla/ 4.0 (SPGK)
Figure 63. Suspicious url found in the strings list.

The suspicious URL with some PHP file names and a likely user-agent string. This suggests that the
malware might be using http communication and this might be the address of the C&C server.

Below are images of some other distinctive groups of strings. Role of those strings isn’t clear at this
point of the analysis but they might be useful in later analyses.

continue shopping
download
submit
click here
sign in
register
login
start
check out
cart
“drivershetchosts
ENE
Figure 64. Suspicious strings and hosts file path.

Page 34

x * e Artifact analysis fundamentals

* Artifact analysis training material

November 2014

Jaearch.com
CHERR_
LURL
LC%ld-
LM%ld-
CURL
testovaya hren
fraud
cheat
img.php?
Wd_%d
MNOIE_
LUSEIE_
BODY_
tent=
Burl=
POST
Tld_%ld_%id
X tp
Ayial
¥ png
POST
Figure 65. Group of other suspicious strings.

ttPTR
btn Submit
http://%s/pic/sese phpth="sdq="s
Send
Figure 66. Some URL formatting string that might be used in communication with C&C server.

5.5 Regshot analysis

After completing the second shot in Regshot tool, students should click the Compare button to detect
filesystem and registry changes between first and second shot. As a result a notepad window should
appear with seven sections:

e Keys added (registry)

e Values deleted (registry)

e Values added (registry)

e Values modified (registry)

e Files added (file system)

e Files deleted (file system)

e Files [attributes?] modified (file system)

It is important to remember that Regshot uses standard system functions to detect any file system or
registry changes. Consequently if malware alters those functions (e.g. to not list certain files), certain
file system or registry changes may not be detected by Regshot. In most cases this applies to hiding
malware files from the user. Such files can be often still be detected using results from other tools.

In the Values added section we see that the malware achieves persistence by adding new value
hsfio38fiosfh398rfisjhkdsfd "C:\Users\ENISA\AppData\Local\Temp\win32.exe" in HKU\S-1-5-21-
606041777-3127973734-2451401058-1001\Software\Microsoft\Windows\CurrentVersion\Run\.
This is popular persistence mechanism used by malware letting it to be executed after each reboot.

Page 35

3 Artifact analysis fundamentals
* Artifact analysis training material
November 2014

Values added: 15

HKU\S-1-5-21-606041777-3127973734-2451401058-
1001\Software\Microsoft\Windows\CurrentVersion\Run\hsfio38fiosfh398rfisjh
kdsfd: "C:\Users\ENISA\AppData\Local\Temp\mdm.exe"

In the Values modified section we can see that the malware changed the values of Hidden and

HiddenFileExt, which makes the operating system hide well known file extensions and disable showing
hidden files.

Values modified: 19

HKU\S-1-5-21-606041777-3127973734-2451401058-
1001\Software\Microsoft\Windows\CurrentVersion\Explorer\Advanced\Hidden:
0x00000001

HKU\S-1-5-21-606041777-3127973734-2451401058-
1001\Software\Microsoft\Windows\CurrentVersion\Explorer\Advanced\Hidden:
0x00000000

HKU\S-1-5-21-606041777-3127973734-2451401058-
1001\Software\Microsoft\Windows\CurrentVersion\Explorer\Advanced\HideFileExt:
0x00000000

HKU\S-1-5-21-606041777-3127973734-2451401058-
1001\Software\Microsoft\Windows\CurrentVersion\Explorer\Advanced\HideFileExt:
0x00000001

In the Files added section we see that the malware added four executable files and one file with a .tmp
extension.

Files added: 10
:\Users\ENISA\AppData\Local\Temp\win32.exe
:\Users\ENISA\AppData\Local\Temp\skaioejiesfjoee. tmp
:\Users\ENISA\AppData\Local\Temp\explarer.exe
:\Users\ENISA\AppData\Local\Temp\debug.exe
:\Users\ENISA\AppData\Local\Temp\sysedit.exe
:\Windows\Prefetch\1102231642.EXE-8311975F.pf
:\Windows\Prefetch\MDM.EXE-E5C1239F.pf
:\Windows\Prefetch\WIN.EXE-FE4EAC67.pf

:\Windows\Prefetch\WIN32.EXE-31D65D18.pf

Q O o O o Q0 a0 0 a0 0

:\Windows\Prefetch\WININST.EXE-66A7782D.pf

5.6 Process Monitor analysis

After event capture is stopped it is good to save the results for later analyses.

Page 36

g~ Ty Artifact analysis fundamentals
Artifact analysis training material

November 2014

¥ Pracess Moniter - C:\analyses\results\procmon.PML EI@

File Edit Event Filter Tools Options Help

FHd ABE | vAS | B a5 | ([FZEBEZMW

Time of Day Process Name S = Resutt Detail - |
338465285784 PM W isvchostexe | Sooe 10 TIIE SUCCESS Desired Access: Mz
3:38:46.5286174 FM Esvd‘losﬁ.exe Events to save: “Window... SUCCESS Desired Access: Rez
3:38:46 5286527 PM ®-'svchost exe SUCCESS
3:38:46 5286926 PM ¥ svchost.exe All events “Window... SUCCESS Query: Cached, Sub
3:38:46.5287201 PM Esvd"lost.eme (@) Events displayed using current filter “Window... SUCCESS
3:38:46.5287386 FM W'svchost exe Also indud i ts SUCCESS Desired Access: Ma
3:38:46.5288649 PM T svchost.exe . e T \Window... SUCCESS Desired Access: Re
3:38:465.5289289 FM 8- svchost exe () Highlighted events SUCCESS
3:38:46.5285451 PM Esvd"lost.eme B “Window... SUCCESS Guery: Cached, Sub
3:38:46 5285753 PM 8-' sychost exe = = “Window... SUCCESS Index: 0, Name: {00
3:33:46.5283989 PM # Tsvchost exe @ Native Process Monitor Format (PML) Window... SUCCESS Indesx: 1, Name: {011
3:38:46.5291201 PM ®~"svchost exe () Comma-Separated Values (C5V) “Window... SUCCESS Index: 2, Name: {01}
3:38:46.5291755 PM Esvchost.e:ne (7 Extensible Markup Language (XML) “Window... SUCCESS Index: 3, Name: {017
3:38:46.5291961 PM ®-'svchost exe L . “Window... SUCCESS Indes: 4, Name: {017
3:33:46.5252154 PM 'svchost exe i sr R e (TR TR s Window... SUCCESS Index: 5. Name: {01!
3:38:46 5292335 PM T svchost exe Resolve stack symbols (will be slow) “Window... SUCCESS Index: 6, Name: {024
3:38:46.5292519 PM ¥ 'svchost exe “Window... SUCCESS Index: 7, Name: {031
3:38:46.5292880 PM T svchost exe path: Crlanalyses'esults\ProcessMonitor. PML Q ‘Window... SUCCESS Index: 8, Name: {04
3:38:46.5293104 PM 8-'svchost exe “Window... SUCCESS Index: 9, Mame: {04¢
3:38:46.5294006 PM - svchost exe “Window... SUCCESS Index: 10, Name: {0!
3:38:46 5294851 PM ' svchost exe [Ok] [Cancel] “Window... SUCCESS Index: 11, Name: {0!
3:38:46 5295359 PM ' svchost exe - “WWindow... SUCCESS Index: 12, Name: {0! =

< — - 1 | 3
Showing 15,681 of 69,552 events (22%) Backed by C\analyses\results\procmon.PML

Figure 67. Saving Process Monitor results.

Next using process tree (Tools -> Process Tree...) find suspicious malware processes.

| =] Process Tree - Chanalyses\results\procmon PML =
|| Only show processes stil running at end of current trace
V| Timelines cover displayed events only

Process Descri... Image Path Life Time Company Ow.. Command ST E*
=)= Explorer. EXE (1596) ‘Wndzm C:\Windows\Explorer. EXE _Muosdt ... ENIS... C:\Windows\Explorer. EXE 9/5/201... n/e
4 VBoxTray exe (572)]\MudB .. C:\Windows'\System32\VBoxTray exe Oracle Co... ENIS... "C:\Windows\System32\VBox Tray exe” 9/5/201... n/e
FileZila Server Interface exe (3| FleZila ... C:\Program Files\FleZila Server'\FleZila Server Interfac _PleZla Pr... ENIS... "C:\Program Files\FieZila Server\FieZila Server Interfac... 9/5/201... n/z
Greenshot exe (1400) C:\Program Files' exe _Geet&\o(ENIS... "C:\Program Fies\Greenshot\Greenshot exe” 9/5/201... nfe
2 procexp exe (3496) Sysinter... C:\tools\Portable version'\Sysintemals Sute'\procexp exe _ Sysintem... ENIS... "C:\tools\Portable version\Sysintemals Sute\procexp exe” 9/11/20... n/z
(= £ Procmon exe (1888) Process... C:\tools\Portable version\SysntemalsSute\Procmon.exe [N Sysintem... ENIS... "C:\tools\Pottable version\SysintemalsSute\Procmon.ex... 9/11/20... n/e
£ Procmon exe (2252) Process... C:\tools\Portable version\Sysintemals Suite\Procmon exe _ Sysintem_.. ENIS... "C:\tools\Portable version\Sysintemals Sute\Procmon.ex... 9/11/20... n/z
&Tcpm.m (3800) TCP/U... C:Mools\Portable version\SysintemalsSute\Tcpview exe _Sysnem ENIS... "C:\tools\Portable version\SysintemalsSute\Tcpview.ex... 9/11/20... n/e
il Regshotx86-Unicode exe (175 Regshot... C:\tools\Portable version\Regshot-1.9.0\Regshot x86-U. _ Regshot .. ENIS... "C:\tools\Portable version\Regshot-1.9.0\Regshotx86-.. 9/11/20... n/z
= 57 1102231642 exe (108) Ci\analyses\sample\ 1102231642 exe = ENIS... "C:\analyses'\sample\1102231642 exa™ 91/20.. 9

. login exe (1700) C:\Users\ENISA\AppData'\Local\Temp \logn exe _ ENIS... C:\Users\ENISA\AppData\Local\Temp\login exe 9/11/20... n/z l

] wininst exe (960) C:\Users\ENISA\App Data'\Local\ Temp \wininst exe _ ENIS... C:\Users\ENISA\AppData\Local\ Temp'\wininst exe 9Y1/20... n/e_ |

B iexplarer exe (1620) C:\Users\ENISA\AppData'\Local\Temp \lexplarer exe _ ENIS... C:\Users\ENISA\AppData\Local\ Temp \lexplarer exe 9/11/20.. nfe

1] notepad.exe (1376) C:\Users\ENISA\App Data'\Local\Temp \notepad exe _ ENIS... C:\Users\ENISA\AppData\Local\Temp\notepad exe 911/20... n/e ‘

B taskmor.exe (2708) C:\Users\ENISA\App Data'\Local\ Temp \taskmgr exe _ ENIS... C:\Users\ENISA\AppData\Local\Temp'taskmgr exe 9/11/20... n/z 2

« m Vo« " »

Desaription: Host Process for Windows Services

Company: Microsoft Corporation

Path: C:\Windows\system32\svchost.exe

Command: C:\Wind 32\svchost.exe & vice
User: NT AUTHORITYWETWORK SERVICE

PID: 172 Started: 9/5/2014 1:45:50 PM

[GoToEvent | | Indude process | | incude subvee |

Figure 68. Locating malicious processes using Process Tree.

From analysing the process Life Time it is clear that malware process (1102231642.exe) first started,
spawned additional child processes and quit. Right click each malware process and choose “Add
process to Include filter”. Now only visible events in the main Process Monitor window will be the
events related to selected processes.

Page 37

Artifact analysis fundamentals

Artifact analysis training material

" November 2014
x x
ZF Process Monitor - C\analyses\ results\procrnon.PML EI@
File Edit Event Filter Tools Options Help
2H | RBE | vAS | B/ #5 ([EEEEZW
Time of Day Process Name PID Operation Path Result Detail |~
3:38:48 2445356 PM &7 1102231642 exe 108 &% Process Start SUCCESS Parert P1D: 1596, Command line: "C:"--anadl—I
3:38:48 2445355 PM 5 1102231642 exe 108 &% Thread Create SUCCESS Thread ID: 1528
3:38:48 2647323 PM 71102231642 exe 108 & Load Image C:hanalyses'sample’ 1102231642 exe SUCCESS Image Base: (400000, Image Size: (x310
3:38:48.2670365 PM 51102231642 exe 108 &% Load Image indows"System32wntdll dil SUCCESS Image Base: (76280000, Image Size: (1
3:38:48 2678935 PM &7 1102231642 exe 108 BC:eateFile Windows"\Prefetch’ 1102231642 EXE-... NAME NOT FOUND Desired Access: Generic Read, Dispositior
3:38:48.2681388 PM 571102231642 exe 108 BC:eateFile analyses'sample SUCCESS Desired Access: Execute/ Traverse, Synch
3:38:48 2687351 PM &7 1102231642 exe 108 & Load Image indows"System 32 kemel 32 dil SUCCESS Image Base: (76270000, Image Size: (ke
3:38:48 2756470 PM &7 1102231642 exe 108 & Load Image C:\Windows"System 32" KemelBase dll SUCCESS Image Base: (75250000, Image Size: (e
3:38:48.2764430 PM 51102231642 exe 108 ﬁRegOpenKey HKLM"System \CumentControl Set'Control ... REPARSE Desired Access: Read
3:38:48 2764671 PM 71102231642 xe 108 ﬁRegOpenKey HKLM"System CumentControl Set'Control .. SUUCCESS Desired Access: Read
3:38:48 2764873 PM B 1102231642 exe 108 #%RegtuenyValue HKLM"System"\CumrertControl Set\Control... NAME NOT FOUND Length: 548
3:38:48 2764985 PM &7 1102231642 axe 108 ﬁRegOuery\-"alue HKLM"System CumentControl Set'Control .. SUUCCESS Type: REG_DWORD, Length: 4, Data: 0
3:38:48.2765092 PM 571102231642 exe 108 #%RegCloseKey HKLM"\System"\CumrentControl Set‘\Control... SUCCESS
3:38:48 2765307 PM 71102231642 axe 108 ﬁRegOpenKey HKLM"System \CumentControl Set'Control ... REPARSE Desired Access: Query Value, Set Value
3:38:48 2765440 PM 71102231642 xe 108 ﬁRegOpenKey HKLM"System CumentControl Set'Control... NAME NOT FOUND Desired Access: Query Value, Set Value
3:38:48.2771269 PM 51102231642 exe 108 ﬁRegOpenKey HKLM"System \CumentControl Set'Control ... REPARSE Desired Access: Read
33848 2771475 PM 71102231642 xe 108 ﬁRegOpenKey HKLM"SystemCumentControl Set'Control... NAME NOT FOUND Desired Access: Read
3:38:48.2771613 PM 571102231642 exe 108 ﬁRegOpnanKey.r HKLM"Software*Policies Microsoft \Wind... SUCCESS Desired Access: Query Value
3:38:48.2774010 PM 571102231642 exe 108 @ RegQuenValue HKLM'\SOFTWARE"\Policies'Microseft'... NAME NOT FOUND Length: 80
3:38:48.2774113 PM 571102231642 exe 108 #%RegCloseKey HKLM\SOFTWARE'\Policies \Microscfth... SUCCESS
3:38:48 2774366 PM 71102231642 exe 108 ﬁRegOpenKey HKC LM Software"Policies \Microsoft'\Wind... NAME NOT FOUND Desired Access: Query Value
3:38:48 2782400 PM 71102231642 exe 108 ﬁRegOpenKey HKLM"System \CumentControl Set'Control ... REPARSE Desired Access: Query Value
3:38:48 2782567 PM &7 1102231642 exe 108 ﬁRegOpenKey HKLM"System CumentControl Set'Control .. SUUCCESS Desired Access: Query Value
3:38:48.2782735 PM 571102231642 exe 108 @ RegQuenValue HKLM"System"\CumrertControl Set'Cortrol... NAME NOT FOUND Length: 16
3:38:48.2785802 PM 571102231642 exe 108 &% Load Image C:\Windows'\System 32'wserd2 dll SUCCESS Image Base: (76540000, Image Size: (e
3:38:48 2788418 PM 71102231642 xe 108 & Load Image indows"System32gdi32 dil SUCCESS Image Base: (76600000, Image Size: (e
3:38:48.2791081 PM 571102231642 exe 108 &% Load Image indows"System32plk dil SUCCESS Image Base: (76620000, Image Size: (e
3:38:48 2795888 PM &7 1102231642 axe 108 & Load Image Windows"\System32'wsp10.dll SUCCESS Image Base: (76500000, Image Size: (bt
3:38:48 2797740 PM 71102231642 xe 108 &% Load Image C\Windows\System 32\msvert .dil SUCCESS Image Base: 75600000, Image Size: (ke -~
1 | = 1 | +
Showing 3,795 of 69,552 events (5.4%) Backed by C\analyses\results\procrnon.PML

Figure 69. Process Monitor window after filtering out unnecessary processes.

Due to the large amount of information, it is good idea to limit it to only more interesting events.
Students can achieve this by either highlighting interesting events or adding them to a filter.

First students should try to highlight the following operations: Process Create, WriteFile, and Process
Start. This can be done using Process Monitor Highlighting dialog window (Filter -> Highlight...). An
alternate way is to right click on a selected event and choose ‘Highlight <name>’.

7 Process Monitor Highlighting @

Highlight entries matching these conditions:
[Ard'1itecthe - l [is - ~ then

Column Relation Value Action

qj Operation is Process Create Include

i8 WriteFile Include
o Operation is Process Start Include
Make Filter ok | caneel Apply

Figure 70. Adding highlight in Process Monitor.

After highlighting filter main Process Monitor window should look similar to the following:

Page 38

Artifact analysis fundamentals

Artifact analysis training material

" November 2014
x x

ZF Process Monitor - C\analyses\ results\procrnon.PML EI@
File Edit Event Filter Tools Options Help

l2E | apE | SAG | B | #ax5 | ([ZELLZW

Time of Day Process Name PID Operation Path Result Detail 0

3:38:52 4111646 FM E 1102231642 exe 108 BC:eateFile ChUsers\ENISAN\AppData'Local\Temp“login.exe SUCCESS Desired Access: Write Aﬂl—l
3:38:52 4112857 PM 8- 1102231642 exe 108 L_:}SetBasiclnformation... 1 SENISAAppDatatLocalt Temptlogin.exe SUCCESS Creation Tima: 1/1/1607 I—
3:38:52.4115855 PM E‘I‘IDZZN 642 exe 108 BhCloseFile SENISA\AppDatatLocal\ Temp'login.exe SUCCESS
3:38:52 4122974 FM £11I}2231 642 exe 108 Eﬂ&eateﬁle SENISA\AppDatatLocalh Temptlogin.exe SUCCESS Desired Access: Read Al
3:38:52 4123966 PM 5 1102231642 exe 108 BOuewBasiclnformaﬁ... SENISA AppData'Local' Temp“login.exe SUCCESS CreationTime: 9/11/2014
3:38:52.4124348 PM E‘I‘IDZZN 642 exe 108 BhCloseFile SENISA\AppDatatLocal\ Temp'login.exe SUCCESS
3:38:52 4125800 FM £11D'2231 642 exe 108 QGBateFile SENISA AppData'Local' Temp“login.exe SUCCESS Diesired Access: Read Al
3:38:52 4130727 FM £11D'2231 642 exe 108 BOuewBasiclnformaﬁ... SENISA AppData'Local' Temp“login.exe SUCCESS Creation Time: 5/11/2014
3:38:52. 4131045 PM 8- 1102231642 exe 108 BGDSEHIE Csers ENISA \AppDatatLocal' Templogin.exe SUCCESS
3:38:52 4134628 FM E‘I‘IDZZS‘I 642 exe 108 BC:eateFile ChUsers\ENISAN\AppData'Local\Temp“login.exe SUCCESS Desired Access: Read Dz
3:38:52.4137730 PM & 1102231642 exe 108 ShWriteFile C:\Usersh\ENISA\AppData‘Local\ Temp'login.exe SUCCESS Offset: 0. Length: 24,576,
3:38:52 4158487 PM E‘I‘IDZZN 642 exe 108 Bk SetEndOfFilelnforma... C-\Users\ENISA'\AppData' Local\ Temp*login.exe SUCCESS EndCfFile: 20,788
3:38:52 4158585 FM £11D'2231 642 exe 108 BC:eateFile Mapping Wsers"ENISANAppDatatLocal Templogin. exe SUCCESS SyncType: SyncTypeCth
3:38:52 4155831 PM &' 1102231642 exe 108 B\Createﬁlel\"lapping Users"ENISANAppDatatLocal\Temp'login.exe FILE LOCKED WI... SyncType: SyncTypeCre:
3:38:52 4155550 PM E‘I‘IDZZS‘I 642 exe 108 gQueryStandardlnfor... Wsers"ENISANAppDatatLocal Templogin. exe SUCCESS AllocationSize: 24,576, Br
3:38:52 4160923 PM £11D2231 642 exe 108 Eﬂ&eateﬁle Mapping “UsershENISAAppDatatLocal\ Temp'login.exe SUCCESS SyncType: SyncTypeOthi
3:38:52 4161524 FM LB 1102231642 exe 108 ﬁRegOpenKey HELMWSOFTWARE \Microsoft \Windows NT\CumertVersi... NAME NOT FOUND Desired Access: Query Ve
3:38:52 4162035 PM 8- 1102231642 exe 108 BOuerySecuri’ryFile C:\Users\ENISA\AppData'Local\ Temp“login.exe SUCCESS Information: Label
3:38:52 4164368 FM E‘I‘IDZZS‘I 642 exe 108 BOuewNamelnforrnati... Wsers"ENISANAppDatatLocal Temp*login. exe SUCCESS Mame: “sers\ENISAWAp
3:38:52 4165382 FM - 1102231642 exe 108 &7 Process Create C:A\Users\ENISA\AppData'Local\ Temp“login.exe SUCCESS P1D: 1700, Command line
3:38:52 4165425 FM Elogin.eme 1700 &% Process Start SUCCESS Parert PID: 108, Commar
3:38:52.4165472 PM_&'login.exe 1700 &% Thread Create SUCCESS Thread 1D: 1100 S
a | [| +

Showing 3,795 of 69,552 events (5.4%) Backed by C\analyses\results\procrnon.PML

Figure 71. Process Monitor highlight.

Students can now scroll down the events list easily and follow interesting operations.

Next, the students should try to add include filters in the same manner (highlight filter can be now
disabled). Operations for include filter: RegSetValue, WriteFile, Process Create. This can be done using
Process Monitor Filter dialog (Filter -> Filter...).

' Process Monitor Filter

Display entries matching these conditions:

[l

’Operaﬁon VHis v] » then
add | [Remove |
Column Relation Value Action Il
S FID is 108 Include
FID is 1700 Include E
FID is 960 Include
FID is 1620 Include
FID is 1376 Include
FID is 2708 Include
Operation is RegSetValue Include
Operation is WriteFile Include
i Operation is Process Create Include
@ Process Mame is Procmon .exe Exclude
‘3 Process Name i8 Procexp exe Bxclude -
QK] [Cancel Apply

Figure 72. Include filters in Process Monitor.

After applying the include filters, main Process Monitor window should look like:

Page 39

x Artifact analysis fundamentals

enisa Artifact analysis training material
November 2014
2} Process Monitor - C:\analyses\results\procmon PML EIIEI
File Edit Event Filter Tools Optiens Help
2Hd RABE | vASG | =8| A48 | [ZEB[LDW
Time of Day Process Name PID Operation Path i
3:38:45 2751238 PM E 1102231642 exe 108 @¥RegSetValue HKC N Software \Microsoft \Windows\CumentVersion Explorer'.Userl D
3:38:52.4078851 PM ®-' 1102231642 exe 108 E}.Wmeﬁle CiUzers\EMNISA AppDatatLocal’ Templogin.exe |
3:38:52 4100756 PM E 1102231642 exe 108 B‘Nrﬂe File CiUsers\ENISA AppData®Local' Temp“login exe =
3:38:52.4137730 PM 811102231642 exe 108 B WiiteFile C\UsershENISA AppDatatLocal\ Tempogin.exe
3:38:52.4165382 PM 211[}'2231 642 exe 108 &% Process Create CiUzers\ENISA AppDatatLocal Templogin.exe |
3:38:52 5648513 PM LE 1102231642 exe 108 a‘hﬁe File CAUsers\ENISA AppData®Local' Temp wininst exe
3:38:52.9657230 PM 511102231642 exe 108 BhWriteFile C:M\Usersh\ENISA\AppDatatLocal\ Temp wininst exe
3:38:52 5679465 PM LE 1102231642 exe 108 BAWiiteFile C:\Uzers"ENISA AppDatatLocal\ Tempwininst exe
3:38:52 9708521 PM 211[}'2231 642 exe 108 &% Process Create CiUsers\ENISA AppDataLocal' Temp wininst exe
3:38:53. 2257826 PM §-'login.exe 1700 ﬁRegSetValue HKCNSoftware Microsoft \ntemet ExplorerNew Windows"\Popup Mar
3:38:53 2452250 PM Elogin.exe 1700 @RegSetValue HKC N Software \Microsoft \WindowsCumentVersion Runhsfio 38fiosfh 358disjhlcdsfd
3:38:53.2470104 PM ®-'|ogin.exe 1700 ﬁRegSetValue HKC U Software\Microsoft \Windows \CumentVersion Explorer’\ Advanced \Hidden
3:38:53.2472175 PM Elogin.exe 1700 ﬁReg SetValue HKC LM Software\Microsoft \Windows \CumrentVersion Bxplorer’\ Advanced \Hide File Bt
3:38:53.2472647 PM §-'|ogin.exe 1700 @%RegSetValue HKCNSoftware \Microsoft \Windows\Cument Version Explorer’ Advanced\SuperHidden
3:38:53.2478481 PM Elogin.exe 1700 r_—-}.‘.“a'riteﬁle CiUzers\ENISA AppDatatLocal' Temp'skaioefiesfioee tmp
3:38:53.3736327 PM Elogin.exe 1700 ﬁReg SetValue HELM\SOFTWARE \Microsoft' Tracinglogin_RASAP132'\EnableFile Tracing
3:38:53.3738835 PM -'|ogin.exe 1700 @%RegSetValue HELM\SOF TWARE Microsoft ' Tracinglogin_RASAP 132" EnableConsole Tracing
3:38:53.3742551 PM Elogin.exe 1700 @¥RegSetValue HKLM\SOFTWARE" Microsoft Tracinglogin_RASAP132\File Tracing Mask
3:38:53 3744635 PM §-'login.exe 1700 ﬁReg SetValue HELM\SOFTWARE \Microsoft' Tracing“login_RASAP132\Console Tracing Mask s
4| m +
Shewing 65 of 69,552 events (0.093%) Backed by Chanalyses\results\procrnon.PML

Figure 73. Process Monitor after applying include filter.

Following filtered events, we are able to see that the main malware process isn’t responsible for
setting persistence and modifying other registry values. It is the first spawned process (in this case
login.exe) which installs itself in HKCU\Software\Microsoft\Windows\CurrentVersion\Run\ and also
creates .tmp file in %LOCALAPPDATA%.

In general the highlight feature is useful to analyse certain events with respect to other events. For
example to check which events progressed with a new process creation, highlight Process Create event
and then analyse events proceeding each highlighted event. On the other hand, using the include filter
is useful when one needs to focus only on a group of events that meet a given criteria and no other
events.

Double clicking on each event will reveal additional information. Double click on one of the WriteFile
events of the main 1102231642.exe process and switch to the Stack tab in the new dialog window.

Page 40

& Artifact analysis fundamentals
Artifact analysis training material

November 2014

= Event Properties EI@
Event |Prooess Stack

Frame Module Location Address Path
C \Windows' system 32\drivers \fitmgr sys
ftmar sys FitGetipName + (5o mBFB2HD C \Windows'system32\drivers'fitmar sys
ftmar sys Flt(Get ipName + ix116d e ey (] Mindows'system32\drivers\fitmgr sys
fitmar sys FitGetipName + (1626 b87833ba MWindows system32\drivers\fitmar sys
ntoskml exe lofCallDriver + (64 (eB287hfd4 AWindows system32ntoskml exe
rtoskml.exe MtQueryinformation Thread + xbed8 B2a51287 C\Windows'system32\ntoskml.exe
rtoskml.exe MtWriteFile + lebee (82266109 MWindows system32\ntoskml exe
7 ntoskml.exe ZwieldExecution + (xb5a 8288279 ‘Windows'system 32\ntoskml exe
Uz ntdidl NtWriteFile + o [kc76echebe Mindows"System 32'ntdll dll
(V] KemelBase dl MapGenericMask + xd7 b752550e3 CWindows'\System 32\ KemelBase dll
U 10 kemel32dl SetFilelnformationByHandle + ed68 (c76aaf 70d “Windows'System 324cemel 32 dll
U 11 kemel32dl SetFilzinformationByHandle + Ixbc? (x7haafDbc Mindows System 32\kemel32 dll
U112 kemel32dl CopyFileExW + (da (b 76ab 0805 MindowsSystem 32\kemel 32 dil
W13 kemel32dl CopyFileA + (dd kc76ad7d49 C\Windows"System32\kemel32 dl
U 14 1102231642.exe 1102231642 exe + Ix4d70 (404470 A\analyses'sample’ 1102231642 exe

Properties...][Search...] Source...
[Next Highlighted [copyal |[close |

Figure 74. Stack view in Process Monitor

At this window, the student can view the call stack of the calling process at the moment when the
event occurred. In this example, the event was a result of the CopyFileA function call from the main
malware process. Additional helpful information is the address at which the call took place —
0x404d70. This address can be used during more advanced static analysis to quickly locate the routine
responsible for copying new executable files.

Next, the students should view the Cross Reference Summary (Tools -> Cross Reference Summary...).
This window shows which files and registry keys were written to or read from, and by what processes.

7| Cross Reference Summary E@

Paths that are written and read between differing processes:
Path Witers Readers
CAUsers\ENISAMApp Data'\Local\ Temp'iexplarer.exe 1102231642 exe 1102231642 exe, iexplarer.exe
CAUsers\ENISAMAppData'\Local\ Temptlogin.exe 1102231642 exe 1102231642 exe, login exe
CAUsers\ENISAMAppData'\Local\ Tempinotepad .exe 1102231642 exe 1102231642 exe, notepad exe
CUsers\ENISAMAppData‘\Local\ Temp'skaioejiesfjoee tmp login.exe iexplarer.exe, notepad .exe, taskmgr.exe, wininst.exe
CAUsers\ENISAMAppData'\Local\ Temp'taskmgr.exe 1102231642 exe 1102231642 exe, taskmgr.exe
CAUsers\ENISAMApp Data'\Local\ Temp'wininst.exe 1102231642 exe 1102231642 exe, wininst.exe
HKCIMSoftware \Microsoft\Irtemet Explorer\New Windows\PopupMar iexplarer.exe, login exe, notepad.exe, taskmagr.exe, wininst .exe
HKC LM Software\Microsoft\Windows \Cument Version\Explorer Advanced\Hidden iexplarer.exe, login exe, notepad.exe, taskmagr.exe, wininst .exe
HKC LM Software\Microsoft\Windows\CumentVersion\Explorer\ Advanced\HideFile B¢ iexplarer.exe, login exe, notepad.exe, taskmagr.exe, wininst .exe
HKC LM Software \Microsoft\Windows\CumentVersion \Explorer Advanced" SuperHidden iexplarer.exe, login exe, notepad.exe, taskmagr.exe, wininst exe
HKCLMSoftware \Microsoft\Windows \CumentVersion \Explorer User| D 1102231642 exe 1102231642 exe, iexplarer exe, login exe, notepad e... |
HKCLM\Software \Microsoft\Windows \CumentVersion\Run"hsfio 38fiosfh 338isjhkdsfd iexplarer exe, login exe, notepad exe, taskmar exe, wininst exe

17 items Filter on Row] [Save... I [Close

Figure 75. Process Monitor cross reference summary.

We can see that .tmp file is written by only one spawned process. The rest of the processes only read
this file. This means that this file might be used for the IPC (Inter Process Communication) of spawned
processes. It is also worth to notice the UserlID key is written to only by the main malware process,

Page 41

* x Artifact analysis fundamentals

* Artifact analysis training material
November 2014

and read by rest of the processes. This means that this key might be used to store configuration data
for other processes.

Exercise:

1. Create filter in Process Monitor which will detect all writes to the .exe files by any system

process.
To create this filter students need to create two Include filters:

e QOperation, is, WriteFile
e Path, ends with, .exe

Column Relation Value Action
NJ Operation i= Wirite File Include
k# Path ends with ENE Include

Figure 76. Process Monitor filter detecting writes to .exe files.

5.7 Searching for rootkit artifacts

In the final step of the analysis, the students will be searching for rootkit artifacts using GMER tool.
Depending on the GMER results, additional analysis steps may be taken — for example if GMER detects
new hidden file that wasn’t detected in any of the previous steps.

First close all open tools used in the first part of the exercise (Process Explorer, Process Monitor, etc.)
and then start GMER.

i] [F=3 B (X

Roatkit/Malware | 33 |

Tune | Marne: W alue | Iv System
v Sections
v IAT/EAT
Jv Devices
W Tracel/0
W todules
W Processes
W Threads
¥ Libraries
W Services
¥ Registry
¥ Files

Quick scan
s

V¥ 4DS

-

™ 3rd party

Scan

LCopy

il

Save ..

GMER 2.1.19357 WINDOWS 6.1.7600

Figure 77. Main GMER window.

Leaving the default analysis options set (System, Sections, IAT/EAT, etc.) click Scan to begin system
scanning. Depending on the VM size and resources, analysis might take some time (up to several
minutes). Sometimes, to speed up the scanning, a user might decide to choose fewer analysis options.

Page 42

L 79 Artifact analysis fundamentals
Artifact analysis training material

November 2014

il (o] ms)

R ootkit M baare | >3y |

Type | MName Yalue | v System
ewt ntkmlpa. exeldwS avellepEx + 1340 826615791 Byte [0F] ¥ Sections
et ntkmipa. exelKiDispatchlnteript + G2 §2535F52 19 Bytes [EO, OF, Ba, FO, 07, 73,09, .]{LOOPNZ 0. W IAT/EAT
K Cwindowshaystern 324 Drivers\PROCMON 23545 The syztem cannot find the file specified. | ¥ Devicss
C:hUzerssENISANAppD atatLocalhT emphdebug.exe] 3636] C:A\Usersh... entry point in ™" section [0x00430E 36]
C:hUzers\ENISANAppD atahLocalhT emphdebug.exe] 3636] C:\sersh. . unknown last code section [0x0042C000, 05000, 0xCO0000EQ] W Trace 110
[todules
¥ Processes
¥ Threads
v Libraries
W Services
¥ Registy
¥ Filez

v ADS

=
™ 3rd party

Scan

Copy |

GMER 2.1.19357 WINDOWS 6.1.7600

Figure 78. GMER results.

In this case, the first three changes reported by GMER (two hooks and a file system problem) are
changes that are always reported by GMER on this system. An additional two changes report a
suspicious structure of the debug.exe which indicate that some obfuscation was used. There are no
changes indicating typical rootkit activity (e.g. hooks on many system functions, hidden files, and
hidden processes). Note that running GMER more than once can produce additional hits, for instance
files in a temporary directory that can be created during previous runs by the tool itself.

5.8 Finishing analysis

After the analysis is finished, copy all of the results obtained, screenshots, and notes to the directory:
C:\analyses\results, and send them to Styx as described in the task: Basic static analysis.

After the results are sent to Styx, shutdown Winbox machine and restore the clean snapshot.

5.9 Extra samples

As an extra exercise, students can analyse additional malware samples using techniques in this task.
Extra samples names are: dddsf.exe, inst2.exe, msupdate.exe. Samples can be found in
/home/enisa/enisa/ex3/extra.

It is not necessary to stick precisely to the behavioural analysis algorithm described in this task.
Students might use only some of the tools described or use tools not described in this task, but present
on the Winbox machine (if they are familiar with them, e.g. Rohitab APl Monitor, OllyDbg). Students
are advised to use snapshots during the analysis. For each sample it should be possible to point to
some of its functionality. After each analysis, students should have an open discussion to share their
findings.

Page 43

x Artifact analysis fundamentals

* Artifact analysis training material
‘?’1[5‘1]

November 2014

6 Task 3: Network analysis

In this task students will capture and analyse network traffic generated by malware. The first step
shows how to conduct network analysis, and obtain three types of network analysis results: network
traffic capture in PCAP format, MITMProxy capture log, and INetSim log files. The next steps will cover
various types of network traffic generated by three different malware samples.

The network type used in all following analyses will be netsim_mitmproxy. Students should also
remember that not all traffic captured in the exercise is explicitly generated by malware. Depending
on the Windows version and configuration on the Winbox machine there might be some traffic
captured that is not related to the malware.

6.1 Network traffic capture and log acquisition

First, restore the Winbox snapshot used for dynamic analyses and send the malware sample to the
Winbox. In this step, use sample pz_7.exe which will be also used in the next step. If the sample is not
already present in Viper it can be found in the directory: /home/enisa/enisa/ex3/samples.

er = open -1 1

on opened on Jopt/viper/projects/enisa/binaries/4/c/d/3/4cd3bc38dat20e26872784b175478041a0

Figure 79. Sending sample to the analysis.

After restoring the virtual machine and sending the sample make sure that netsim_mitmproxy

network type is currently chosen.

e
1

e e e ———

When the logs are deleted, start the network traffic capture (PCAP) and MITMProxy tool. Pcap files
and MITMProxy logs will be automatically saved to separate files in /lab/var directory.

$ lab-netdump start
Starting capture to /lab/var/pcaps/net 140922115236.pcap

$ lab-mitmproxy

Page 44

x Artifact analysis fundamentals

* Artifact analysis training material

November 2014

[es8] ?:help [*:8080]
[showhost] [W:/lab/var/mitmproxy/mitm.dump]

Figure 80. New MITMProxy window (with no logs captured yet)

After starting the network capture switch to the Winbox window, execute the malware sample and
wait for a few minutes. It is good to let the malware run for at least 4-5 minutes, but the ideal time
might differ according to the malware sample or malware family. In general the goal is to capture all
different types of network traffic generated by the malware. Usually at some point in time, the
network actions performed by the malware starts repeating periodically or stops. This will be the
indicator that there is no need to capture more network traffic. One should also be able to recognize
network patterns resulting from some dynamic or random generator. Example of such traffic might
be DGA (Domain Generation Algorithm) when malware tries to connect to dynamically generated
domain names. In such situation capturing a limited number of such domains will be enough.

During the exercise it is not necessary to wait until network traffic starts repeating. Waiting about 4-5
minutes should be enough for all samples.

Optionally, to view live capture of the network traffic, students might decide to open a new Styx
console window (either connecting to Styx via SSH or using screen to start MITMProxy) and then start
reading .pcap file with Tcpdump (pcap filename should be replaced with the actual one).

, length 4es
3, length @
1, win 237, length @
3, length @
seq 1894090034, win 8192, options [mss 1460,nop,

.1, seq 3000101690, ack 1094886035, win 29200, opti

: 3 lags ack 1, win 16425, length 0

18.8 = 18 B: Fl . seq 1:413, @ 1, win 16425, length 412
18.8 . B0 L . ack in 237, length 0

108.6 B L . seq 1:409, : 413, win 22 length 402
10.6 .49243 : 30: FL .1, seqg 413, : 3, length @
18.8 3 . L . 489, ength @
18.08.08. 2

[e el el

1
1
1
1
1
Gk
1
a
1
1
1
1
1
1
12:

Figure 81. Live view of the network traffic capture.

Students might also decide to run Wireshark inside the Winbox machine. In most situations it will work
without any problem, but in rare cases, sophisticated malware might try to evade network capture
inside the Winbox machine, or detect Wireshark and change its behaviour. For samples used in this
exercise, students should not have a problem using Wireshark inside Winbox.

Page 45

¥ 79 Artifact analysis fundamentals

* Artifact analysis training material

November 2014

After enough time elapses (4-5 minutes), stop mitmproxy capture by pressing ‘q’ (quit) key and then
‘v’ (yes). MITMProxy will save results to /lab/var/mitmproxy/mitm.dump.

~ 200 tex‘t;"htmll 258B 275.62kB/s
[21/21] ?:help [=:8020]
[showhost:followingl [W:/lab/var/mitmproxy/mitm.dump]
Quit (yes,no)?

Figure 82. Quiting mitmproxy.

Then stop tcpdump packet capture and restart INetSim service. Restarting INetSim service is necessary
for INetSim to generate report summarizing observed traffic.

Capture stopped [/lab/var/pcaps/net 140922115733 .pcap]

$ sudo service inetsim restart

Now, the network traffic capture and log acquisition is finished and the students can restore the clean
snapshot of the Winbox machine.

6.2 P2P and DGA traffic

In this step sample pz_7z.exe will be analysed. Use network traffic capture obtained in the previous
step or send the sample to the Winbox machine and perform a new analysis as described in the
previous step. It is also assumed that the result files are stored in the
/lab/analyses/pz_7.exe/net_results/ directory.

In case there were any problems with performing analysis, result files can be also obtained from:
/home/enisa/enisa/ex3/results/netl/net_results/ directory.

First, start the clean Winbox machine and send to it the pcap file obtained from malware analysis.

Page 46

x Artifact analysis fundamentals
* Artifact analysis training material
November 2014

01.pcap

Figure 83. Sending pcap to Winbox machine.

Open the uploaded file in Wireshark on Winbox.

M net 140919164301 peap [Wireshark 1108 (v1.10.8-2-g52a5244 from master-1.10)] =N =R ==
File Edit View Go Capture Analyze Statistics Telephonx Tools [nternals Help

©® 4 W o X2 Ae+9T2EEaaaab #2Bx% B

Filter: |z| Expression... Clear Apply Save

No. Time Source Destinatio Protocol Length Info -~
FZ 1b4.4038/2 1U.U. UL 1U.U.U. 2 ({&] bb NTTP > 49437 [5YN, ACK] beq=U ACK=1
73 164.46571110.0.0.2 10.0.0.1 TCP 60 49232 > http [ACK] Seg=1 Ack=l Win=
74 164.46606910.0.0.2 10.0.0.1 HTTP 325 GET / HTTP/1.1
75 164.46609010.0.0.1 10.0.0.2 TCP 54 http > 49232 [ACK] Seg=1 Ack=272 wi
76 164.78445510.0.0.1 10.0.0.2 HTTP 462 HTTP/1.1 200 oK (text/html)
77 164.78494810.0.0.2 10.0.0.1 TCP 60 49232 > http [FIN, ACK] Seq=272 ack
78 164.78520210.0.0.1 10.0.0.2 TCP 54 http > 49232 [FIN, ACK] Seq=409 Ack
79 164.785594 10.0.0.2 10.0.0.1 TCP 60 49232 > http [ACK] Seq=272 Ack=410
80 166.287807 10.0.0.2 8.8.8.8 DN5S 91 standard query Ox8b0e A zhdxoirxzp
81 166.314826 8.8.8.8 10.0.0.2 DNS 107 standard query response Ox8b0e A 1
82 166.316157 10.0.0.2 10.0.0.1 TCP 66 49233 > http [SYN] Seq=0 win=8192 L ~

4 10} (2

% Frame 63: 208 bytes on wire (1664 bits), 208 bytes captured (1664 bits)

i Ethernet II, Src: CadmusCo_66:25:2b (08:00:27:66:25:2b), Dst: CadmusCo_a7:7e:0e (0B:00:27:a7:7e:0e)
+ Internet Protocol version 4, src: 10.0.0.2 (10.0.0.2), Dst: 95.246.170.150 (95.246.170.150)

+ User Datagram Protocol, Src Port: street-stream (1736), Dst Port: funk-license (1787)

+ Data (166 bytes)

m

O &9 File: "C\analyses\uploadsinet_14091916430... | Packets: 1074 . Displayed: 1074 (100.0%) - Load time: 0:00.0... | Profile: Default

Figure 84. Wireshark window after opening .pcap file.

If there is a lot of captured traffic, it is good to check Protocol Hierarchy Statistics to determine what
protocols are present in the capture. Otherwise it is sometimes easy to miss protocols for which only
a few packets were sent.

To view Protocol Hierarchy Statistics choose Protocol Hierarchy from the Statistics menu.

Page 47

L ® Artifact analysis fundamentals
Artifact analysis training material

" November 2014
M Wireshark: Protocol Hierarchy Statistics EI@
Display filter: none
Protocol % Packets Packets % Bytes Bytes Mbit/s End Packets End Bytes End Mbit/s
= Frame 100.00 % 1074 100.00 % 139985 0.003 0 0 0.000

=l Ethernet 100.00 % 1074 100.00 % 139985 0.003 0 0 0.000
[= Internet Protocol Version 4 100.00 % 1074 100.00 % 139985 0.003 0 0 0.000
- 19.93 % 214 - 16.15 % 22602 0.001 0 0 0.000

Domain Name Service - 18.06 % 194 - 13.27 % 18572 0.000 194 18572 0.000
Data] 1.86 % 20 I 2.88 % 4030 0.000 20 4030 0.000

& Transmission Control Protocol 7821 % 840 112793 0.003 656 39352 0001
E Hypertext Transfer Protocol L EEERR 14 GRS 5 73441 0.002 92 30937 0.0
Line-based text data | | 857 % o2 [N 3036 % 42504 0.001 92 42504 0001

Internet Control Message Protocol] 1.86 % 20 I 3.28% 4590 0,000 20 4590 0.000

[= User Datagram Protocol

Figure 85. Viewing protocol hierarchy statistics.

As we can see communication mostly consisted of HTTP traffic, DNS requests, some unknown UDP
datagrams (UDP data) and also some ICMP messages.

Next close Protocol Hierarchy Statistics and go back to main Wireshark window. Scroll down till you
see some UDP traffic.

M net 140919164301 peap [Wireshark 1108 (v1.10.8-2-g52a5244 from master-1.10)] =n =R
Eile Edit View Go Capture Analyze Statistics Telephon! Tocols Internals Help

©® 4 B aesTF2EEFQaan @#a®m x| 8
Filter: IZI Expression... Clear Apply Save
No. Time Source Destination Protocol Length Info »

street-stream Destination port |
10.0.0.2 219 pestination unreachable (Port unreachable)

street-stream Destination port
unreachable (Port unreac

31 32.284340 10.0.0.2 93.177.174.224 uDP 191 source port:

uDP 302 source port:
30 Destination

.8949
5087

L7074

76 Destination L
Source port:
4 Destination
source port:

stination -

Figure 86. UDP traffic in Wireshark window.

This is clearly not normal traffic generated by the operating system. Such traffic is usually characteristic
to malware with P2P functionality using protocols like Kademlia. Also the fact that the malware is
trying to connect to the external IP addresses means that those addresses were either hardcoded or
dynamically generated by the malware (because any DNS requests resolve to 10.0.0.1 in this
laboratory).

To further inspect udp traffic, apply the following Wireshark view filter: _

Page 48

x

*
*

x

x

X x
*

Artifact analysis fundamentals
en;sa Artifact analysis training material
o November 2014

*

Fitter: | ip.stc == 10.0.0.2 &6 udp &8 licmp [] Expression... clear Apply save

No. Time Source Destination Protocel Length Info

.0.0.2 8.8.8.8 standard query 0x74ce A crl.microsoft.com

29 26.257530 10.0.0.2 180.247.156.110 UDP 206 Source port: street-stream Destination port: 24609
31 32.284340 10.0.0.2 93.177.174.224 upp 191 Source port: street-stream Destination port: xrpc-registry
33 39.252942 10.0.0.2 199.30.90. 80 upp 302 source port: street-stream Destination port: 7761
35 48.144616 10.0.0.2 85.108.52.208 upp 150 source port: street-stream Destination port: 4627
37 55.804042 10.0.0.2 201.209.207.224 uppP 298 Source port: street-stream Destination port: gmvideo
39 61.707488 10.0.0.2 83.28.190.7 uppP 234 Source port: street-stream Destination port: 12498
41 68.832499 10.0.0.2 109.193.194.29 uppP 148 source port: street-stream Destination port: 7057
43 75.426646 10.0.0.2 46.49.36. 20 upP 256 Source port: street-stream Destination port: 9752
45 81.316279 10.0.0.2 200.91.49.183 upP 267 Source port: street-stream Destination port: 7399
47 86.377774 10.0.0.2 84.59.131.0 upp 144 Source port: street-stream Destination port: 7605
49 92.159005 10.0.0.2 94.240.216.82 upp 181 Source port: street-stream Destination port: queueadm
51 98.129072 10.0.0.2 108.74.172.39 upp 164 Source port: street-stream Destination port: gsoft
53 105.535522 10.0.0.2 107.193.222.108 upp 162 Source port: street-stream Destination port: starfish
55114.1591200 10.0.0.2 094.240.224.115 upp 155 Source port: street-stream Destination port: 8696
57 121.349339 10.0.0.2 107.217.117.139 upp 246 Source port: street-stream Destination port: 8593
59 127.551482 10.0.0.2 76.226.114.217 upp 119 Source port: street-stream Destination port: snaresecure
61 134.176071 10.0.0.2 201.209.58.176 uppP 162 source port: street-stream Destination port: 14191
63 142. 082792 10.0.0.2 95.246.170.150 uDP 208 source port: street-stream Destination port: funk-license
65 150. 253787 10.0.0.2 123.238.67.140 upP 269 Source port: street-stream Destination port: 4636
67 157.348625 10.0.0.2 5.20.67.209 upp 168 Source port: street-stream Destination port: ttg-protocol
69 164.431849 10.0.0.2 8.8.8.8 DNS 74 standard query OxOded A www.google.com

Figure 87. Wireshark after applying view filter.

Then compare UDP packets with each other — checking source and destination ports, UDP payload
size and content.

Frame 29: 206 bytes on wire (1648 bits), 206 bytes captured (1648 bits)

Ethernet II, src: CadmusCo_66:25:2b (08:00:27:66:25:2b), Dst: CadmusCo_ar:7e:0e (08:00:27:a7:7e:0e)
Internet Protocol version 4, src: 10.0.0.2 (10.0.0.2), Dst: 180.247.156.110 (180.247.156.110)

User Datagram Protocol, Src Port: street-stream (1736), Dst Port: 24609 (24609)

Data (164 bytes)

HREEEH

Figure 88. UDP datagram sent to 180.247.156.110.

Frame 31: 191 bytes on wire (1528 bits), 191 bytes captured (1528 bits)

Ethernet II, src: CadmusCo_66:25:2b (08:00:27:66:25:2b), Dst: CadmusCo_ar:7e:0e (08:00:27:a7:7e:0e)
Internet Protocol version 4, src: 10.0.0.2 (10.0.0.2), Dst: 93.177.174.224 (93.177.174.224)

User Datagram Protocol, 5rc Port: street-stream (1736), Dst Port: xrpc-registry (3651)

Data (149 bytes)

HEEEH

Figure 89. UDP datagram to 93.177.174.224.

We can observe that each UDP datagram is addressed to a different destination port but originates
from the same source port number - 1736. Also, the payload size seems to be different for each
datagram.

Analysing datagrams payloads we see that there are no common bytes and all the content seems to
be randomized. This means that the malware is likely using some sort of encryption resulting in
different content for each datagram. Differences in size of payloads suggest that malware might be
also adding some padding or junk bytes in the protocol.

0000 OB 00 27 a7 7e Qe 08 00 27 66 25 2b 08 00 45 00
0010 00 cO 04 17 00 00 80 11 da ae 0a 00 00 02 b4 f7
0020 Ge CE oo 34 a2

0030
0040
0050
0060
0070
0080
0090
00al
00b0
00cO

Figure 90. Payload of datagram addressed to 180.247.156.110.

Page 49

X L7 Artifact analysis fundamentals
* Artifact analysis training material
. November 2014

0000
0010
0020
0030
0040
0050
0060
0ovo
0080
0090
00al
00b0O

Figure 91. Payload of datagram addressed to 93.177.174.224.

To get a distinct list of IP addresses to which malware sent datagrams, select Endpoints module from
Statistics menu (without clearing Wireshark filter). Then switch to IP tab, check Limit to display filter
and uncheck Name resolution.

i~ ™
[l Endpoints: net_140919164301.pca [E=NEE

| Ethemet: 3| Fibre Channel | FDDI| 1Pwa: 23 | 1pv6 | 1px | 1374 | nce | Rsve | scTp | Tcp | Token Ring | uDR: 120 | Use [wian
IPvd4 Endpoints - Filter: ip.src == 10.0.0.2 && udp && licmp

Address 4 Packets 4 Bytes 4 TxPackets 4 TxBytes 4 RxPackets 4 Rx Bytes 4 Latitude { Longitude 1
10002 120 1275 120 1275 0 0 :
22400252 6 384 0 0 6 384

8383 o4 8342 0 0 o 832
180.247.156.110 1 26 0 0 1 206
03177174224 1 19 0 0 1 191
199.30.90.80 1 3m 0 0 1 302
£5.108.52.208 1 150 0 0 1 150
201.209.207.224 1 298 0 0 1 208
83281907 1 23 0 0 1 234
109.193.194.29 1 148 0 0 1 148
16.49.36.20 1 2% 0 0 1 256
2009149183 1 267 0 0 1 267
84591310 1 144 0 0 1 144

94.240.216 82 1 18 0 0 1 181
108.74172.39 1 164 0 0 1 164
107.193.222.108 1 182 0 0 1 162
94240224115 1 155 0 0 1 155
107217117139 1 6 0 0 1 246
76226114217 1 19 0 0 1 119
201.209.58.176 1 162 0 0 1 162
05246170150 1 208 0 0 1 208
123.238.67.140 1 269 0 0 1 269
5.20.67.209 1 168 0 0 1 168

Mame resclution i
—_—

Figure 92. UDP endpoints list.

=

On the above screenshot list of UDP endpoints was marked with yellow colour. We can see that there
was only one datagram sent to each endpoint. As of rest IP addresses 10.0.0.2 is local address,
224.0.0.252 is standard multicast address and 8.8.8.8 is primary DNS address.

Page 50

3 Artifact analysis fundamentals
Artifact analysis training material

November 2014

Next, close the Endpoints window and clear the Wireshark filter to get a list of all captured traffic.
Then scroll down below to UDP communication. There should be some DNS requests and HTTP
communication.

M net 140919164301 pcap [Wireshark110.8 (v1.10.8-2-952a5244 from master-110]] =N ==
File Edit View Go Capture Analyze Statistics Telephony Tools Internals Help

e e Bpxg acso72 EF acan@¥8 % 8
Filter: BExpression... Clear Apply Save
No. Time Source Destination Protocol Length Info N . } -
7 164.784948 10.0.0.2 10.0.0.1 TCP 60 49232 > http [FIN, ACK] Seg=272 Ack=409 Win=65292 Len=0
78 164.785202 10.0.0.1 10.0.0.2 TCP 54 http > 49232 [FIN, ACK] S5eg=409 Ack=273 win=30336 Len=0 =
79 164.785594 10.0.0.2 10.0.0.1 TCP 60 49232 > http [ACK] Seq=273 Ack=410 win=65292 Len=0
80 166. 287807 10.0.0.2 8.8.8.8 DNS 91 standard query 0x8b0Oe A zhdxoirxzpvwbyivdaejbwcycqg.info
81 166. 314826 8.8.8.8 10.0.0.2 DNS 107 standard query response Ox8bOe A 10.0.0.1
82 166. 316157 10.0.0.2 10.0.0.1 TCP 66 49233 > http [SYN] Seq=0 win=8192 Len=0 M55=1460 W5=4 SACK_PERM=1
83 166. 316219 10.0.0.1 10.0.0.2 TCP 66 http > 49233 [SYN, ACk] Seg=0 Ack=l wWin=29200 Len=0 M55=1460 SACK_PEF
B4 166. 316920 10.0.0.2 10.0.0.1 TCP 60 49233 > http [ack] Seg=l Ack=1 win=65700 Len=0
85 166. 316957 10.0.0.2 10.0.0.1 HTTP 342 GET / HTTP/1.1
86 166. 316973 10.0.0.1 10.0.0.2 TCP 54 http > 49233 [AcK] Seg=1 Ack=289 wWin=30336 Len=0
7 166. 508918 10.0.0.1 10.0.0.2 HTTP 462 HTTP/1.1 200 0K (text/html)
B8 166. 509865 10.0.0.2 10.0.0.1 TCP 60 49233 > http [FIN, ACK] Seq=289 Ack=409 Win=65292 Len=0
B9 166. 510178 10.0.0.1 10.0.0.2 TCP 54 http > 49233 [FIN, ACK] Seq=409 Ack=290 win=30336 Len=0
90 166. 510681 10.0.0.2 10.0.0.1 TCP 60 49233 > http [ack] Seq=290 Ack=410 win=65292 Len=0
91 168. 006382 10.0.0.2 8.8.8.8 DNS 91 standard query Ox7ad0 A fgduprdabairzxamhzxydozuwbg. com
92 168. 046982 8.8.8.8 10.0.0.2 DNS 107 standard query response 0x7ad0 A 10.0.0.1
93 168. 048468 10.0.0.2 10.0.0.1 TCP 66 49234 > http [SYN] Seg=0 win=8192 Len=0 M55=1460 W5=4 SACK_PERM=1
94 168. 048530 10.0.0.1 10.0.0.2 TCP 66 http > 49234 [SYN, ACK] Seg=0 Ack=l wWin=29200 Len=0 M55=1460 SACK_PEF
95 168. 048873 10.0.0.2 10.0.0.1 TCP 60 49234 > http [ACK] Seg=l Ack=1 Win=65700 Len=0
96 168. 048911 10.0.0.2 10.0.0.1 HTTP 342 GET / HTTP/1.1
7 168. 048926 10.0.0.1 10.0.0.2 TCP 54 http > 49234 [ACk] seg=1 Ack=289 win=30336 Len=0
98 168. 307159 10.0.0.1 10.0.0.2 HTTP 462 HTTP/1.1 200 ok (text/html)
99 168. 308409 10.0.0.2 10.0.0.1 TCP 60 49234 > http [FIN A(K] Seq 289 A(k—d—OQ w1ﬂ 65292 Len= O =

4 . r

Frame 6: 66 bytes on wire (528 bits), 66 bytes captured (528 bits)

Ethernet II, src: CadmusCo_a7:7e:0e (08:00:27:a7:7e:0e), Dst: CadmusCo_66:25:2b (08:00:27:66:25:2b)
Internet Protocol Version 4. Src: 10.0.0.1 (10.0.0.1). pst: 10.0.0.2 (10.0.0.2)

0000 0B 00 27 66 25 2b 08 00 27 a7 7e Oe 08 00 45 00 R T
0010 00 34 00 00 40 00 40 06 26 c2 0a 00 00 01 Oa 00 4.2, &
0020 00 02 00 50 cO 4e 53 8b 2d 3d 49 5a 9d 8d 80 12 LW PUNS. -
0030 72 10 14 29 00 00 02 04 05 b4 01 01 04 02 01 03 | T
0040 03 07 .

e

(9] tﬁr File: "Ch\analyses\uploads\net_14091916430... | Packets: 1074 . Displayed: 1074 (100.0%) - Load time: 0:00.046 Profile: Default

Figure 93. Malware DNS and HTTP communication.

Here we see that the malware is doing DNS requests for random-looking domain names and then
connecting to them with HTTP protocol doing GET / request.

To better inspect requested domain names apply the following Wireshark filter: jp:sre == 10.0.0.2 &&

Filter: | ip.src==10.0.0.2 &8& dns IZI Expression.. Clear Apply Save

Do e i S— Sourcemm— Lesinathon M Brotocolm Len gt ! o ——————
18 22.826025 10.0.0.2 8.8.8.8 DNS 77 standard query 0x74ce A crl.microsoft.com
69 164.431849 10.0.0.2 8.8.8.8 DNS 74 standard query Ox0ded A www.google.com
80 166. 287807 10.0.0.2 8.8.8.8 DNS 91 standard query 0x8b0e A zhdxoirxzpvwbyivdaejbwcycq.info
91 168.006382 10.0.0.2 8.8.8.8 DNS 91 standard query 0x7ad0 A fqduprdabairzxamhzxydozuwbg. com
102 169.804733 10.0.0.2 B8.B.8.8 DNS 85 standard query 0x237d A qgdcalzlldewcustcdddso.ru
113 171.647132 10.0.0.2 8.8.8.8 DNS 92 standard query 0x5f16 A dgrktivypwohvgucpwecskizyrenf.biz
124 173.379533 10.0.0.2 8.8.8.8 DNS 90 standard query 0x54d4 A nryttbgaegavgjnxrpzhizdgi.info
135 175.210218 10.0.0.2 8.8.8.8 DNS 92 standard query 0x55b4 A tggkdmggjznfgpvkvytayzxdmpeq.org
146 176.943275 10.0.0.2 8.8.8.8 DNS 92 standard query 0x597a A pnagaedlkzaurgtwgmnfugxwufiz.net
157 178.772607 10.0.0.2 8.8.8.8 DNS 88 standard query OxdSdf A wgxoprswvsjvojvsbaljblxs. com
168 180.554605 10.0.0.2 8.B.8.8 DNS 90 standard query 0xc07d A golmvhgjzkvfiljsctohykfonba.ru
179 182. 364737 10.0.0.2 8.8.8.8 DNS 93 standard query 0x96ef A ofobeuylmnwctgtggvcercamfehovu. com
190 184.193578 10.0.0.2 8.8.8.8 DNS 91 standard query 0x2d84 A bapzibrkgouoxwyggqutwdytvsrs.net
201 186.035801 10.0.0.2 8.8.8.8 DNS 92 standard query Oxe7a5 A kvgtkljkvauempfuxgnfemothemv.org
212 187. 896583 10.0.0.2 8.8.8.8 DNS 86 standard query Oxe2d8 a rdlvpfygyzypytyfmscmv.info
223 189.725980 10.0.0.2 8.8.8.8 DNS 90 standard query 0x6f9f A ceggwsmnuhllrxmrhgxypozytp.biz
234 191. 598553 10.0.0.2 8.8.8.8 DNS 88 standard query 0x5bd3 A dmvpeqyhupjlzwkdifulznfqc.ru
245 193. 365664 10.0.0.2 8.8.8.8 DNS 91 standard query O0xffed A dmvcthivmreydlzgaamgyhekbro.com
256 195. 208872 10.0.0.2 8.8.8.8 DNS 92 standard query 0x8cb? A gmovwkdqozdijijrxzxkftsfejv.info
267 197.038931 10.0.0.2 8.8.8.8 DNS 86 standard query 0x5494 A vkbimpbeiussrirmjhwsca.org

Figure 94. DNS requests filtered in Wireshark window.

This is typical DGA (Domain Generation Algorithm) mechanism in which malware is generating
seemingly random domain names with some deterministic algorithm and then trying to connect to

Page 51

L ® Artifact analysis fundamentals

* Artifact analysis training material

November 2014

them. Thanks to DGA, the malware is not limited to hardcoded domain names which can be easily
blocked by law enforcement authorities. On the other hand not all DGA domains are registered by
botmaster. This means that knowing DGA algorithm proper authorities might intentionally register
unregistered domains to perform so called sinkholing — making some of the infected computers to
connect to controlled servers instead of the original rogue ones.

To inspect HTTP traffic to those DGA domains clear the Wireshark view filter and apply the new one:

Filter: | ip.src == 10.0.0.2 && http E Expression... Clear Apply Save
Mao. Time Source Destination Protocol Length Infe
8 0.390487 10.0.0.2 10.0.0.1 HTTP 133 GET /project-feed/ HTTP/1.1
23 22.865046 .0.0.2 .0.0.1 /pki/erl/products,/CodesignPCA. crl
74 164.466069 10.0.0.2 10.0.0.1 HTTP 325 GET / HTTR/1.1
85 166. 316957 10.0.0.2 10.0.0.1 HTTP 342 GET / HTTR/1.1
96 168. 048911 10.0.0.2 10.0.0.1 HTTP 342 GET / HTTR/1.1
107 169. 847604 10.0.0.2 10.0.0.1 HTTP 336 GET / HTTR/1.1
118 171. 682147 10.0.0.2 10.0.0.1 HTTP 343 GET / HTTR/1.1
129 173.402342 10.0.0.2 10.0.0.1 HTTP 341 GET / HTTP/1.1
140 175. 251030 1¢.0.0.2 10.0.0.1 HTTP 343 GET / HTTP/1.1
151 176. 987713 1¢.0.0.2 10.0.0.1 HTTP 343 GET / HTTP/1.1
162 178. 804216 1¢.0.0.2 10.0.0.1 HTTP 338 GET / HTTP/1.1
173 180. 591188 1¢.0.0.2 10.0.0.1 HTTP 341 GET / HTTP/1.1
184 182.397101 1¢.0.0.2 10.0.0.1 HTTP 344 GET / HTTP/1.1
195 184. 226820 1¢.0.0.2 10.0.0.1 HTTP 342 GET / HTTP/1.1
206 186.052749 1¢.0.0.2 10.0.0.1 HTTP 343 GET / HTTP/1.1
217 187.940258 1¢.0.0.2 10.0.0.1 HTTP 337 GET / HTTP/1.1
228 189.757909 1¢.0.0.2 10.0.0.1 HTTP 341 GET / HTTP/1.1
239 191.616181 1¢.0.0.2 10.0.0.1 HTTP 338 GET / HTTP/1.1
Figure 95. HTTP traffic Wireshark filter.

The most interesting requests are GET / requests. To inspect HTTP headers and sent data right click
on a few requests and choose Follow TCP Stream from the context menu. A new window with TCP
stream should appear. After each click you will have to reapply the previous HTTP traffic filter because
following the TCP stream automatically makes Wireshark change the view filter.

M Follow TCP Stream (=N =R ==

Stream Content

GET / HTTP/1.1

Accept: */®

Accept-Language: en-us

User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 6.1; Trident/4.0; SLCC2; .NET
CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR 3.0.30729; Media Center PC 6.0; .NET4.0C)
Host: zhdxoirxzpvwbyivdaejbwecycq. info

Connection: Close

HTTP/1.1 200 OK

content-Type: text/html

Connection: Close

Date: Fri, 19 Sep 2014 14:45:55 GMT
server: INetSim HTTP Server
Content-Length: 258

<html>
<head>
<title>INet5im default HTML page</title>
</head>
<body>
<p></p=
<p align="center">This is the default HTML page for INetsim HTTP server fake mode.</

p>
<p align="center">This file is an HTML document.</p>

</bod
r/htm7>y>

Entire conversation (636 bytes) |Z|

[End][sweas |[eint | ascr ©) EBCDIC ©) Hex Dump) € Arrays ® Raw

[Filter Out This Stream] [Close]

Figure 96. TCP Stream window in Wireshark.

Page 52

* x Artifact analysis fundamentals
* Artifact analysis training material
November 2014

In the TCP stream window the most interesting part is red text—the data sent by malware to the HTTP
server. If the exercise was conducted with full access to the Internet, usually it would be also
interesting to analyse real server replies (blue colour) — which might contain important information.
In this case malware had only access to the network simulator — making server reply predictable and
always the same.

GET / HTTR/1.1

Accept: */%

Accept-Language: en-US

User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 6.1; Trident/4.0; SLCC2; .NET
CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR 3.0.30729; Media Center PC 6.0; .NET4.0C)
Host: ofobeuylmnwctgtggvercamfehovu. com

Connection: Close

Figure 97. HTTP request to ofobeuylmnwctgtggvcrcamfehovu.com domain.

GET / HTTP/1.1

Accept: */®

Accept-Language: en-uUs

User-agent: Mozilla/4.0 (compatible; MSIE 7.0; windows NT 6.1; Trident/4.0; SLCCZ; .NET
CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR 3.0.30729; Media Center PC 6.0; .NET4.0C)
Host: cieayptkrsldlmnvdgcomlin. com

connection: Close

Figure 98. HTTP request to cieayptkrsidimnvdqcmlin.com.

We see that among various HTTP requests only the Host value changes. It is important to note that
the User-Agent string seems to be always the same. This might be used as a part of a network signature
detecting this malware.

Now switch back to the Styx machine to do some analysis of the DGA domains.

One of the easy ways to get a list of DGA domain names is to use INetSim logs (other method would
be to use Tshark tool present on Winbox machine). To do this, go to the INetSim results directory. In

i Extracting list of DGA domains (on styx)

T

$ cd /lab/analyses/pz 7.exe/net results/inetsim/report
$ 1s
report.23733.txt

$ grep ‘requested name’ report.23733.txt | cut -4 Y ‘Y -f 12 >
1 domains.list

Now edit domains.list file and remove any domain that doesn’t look like DGA domain e.g.
www.google.com, getgreenshot.org, etc. — there shouldn’t be too many such domains.

First check if there are any domains that appear multiple times.

$ cat domains.list | wc -1
152

$ cat domains.list | sort -u | wc -1

Both numbers should be the same meaning only unique names are present in the domains.list file.

Next check in what TLDs and ccTLDs are DGA domains.
RSl LA e

(@)
>
(0%
o
)y
S
(0]
_‘
—
O
(%]
)
>3
o
o)
o
—
—
O
(%]

Page 53

x Artifact analysis fundamentals

* Artifact analysis training material

November 2014

$ cat domains.list | cut -d '.'" -f 2 | sort | unig -c | sort -n
20 net
20 org
21 info
25 biz
25 ru

This means DGA domains are only in .net, .org, .info, .biz, .ru and .com domain with the last one having
about twice as many entries as any other TLD.

It might be also useful to view average secondary-level domain name length (with TLD part stripped)

$ cat domains.list | cut -d '.' -f 1 | awk '{ print length }' | sort
-n | unig -c

118
1 20
8 21
8 22
14 23
21 24
22 25
27 26
18 27
20 28
8 29

We see that most of the DGA domain names have length between 23 and 28 characters and almost
all should have length between 18 and 30 characters.

Exercise:

Perform an analysis of the same sample for a second time, and try to answer the following questions
(offline results available at /home/enisa/enisa/ex3/results/netl_2/net_results):
1. Is the captured network traffic similar to the network traffic observed in the first analysis?

Yes, the captured traffic was similar. First there was a group of UDP datagrams and then
malware started connecting to DGA domain names. In both cases there was also a single HTTP
request to www.google.com host — after sending UDP datagrams finished. In all HTTP requests
malware was using the same User-agent string.

Page 54

x Artifact analysis fundamentals
* Artifact analysis training material
November 2014

2. Was the malware sending UDP datagrams to the same IP addresses? What might this
mean?

Yes. The malware was sending UDP datagrams to the list of the same IP addresses and to the
same destination port each. This means that list of IP addresses was most likely hardcoded
into the malware code.

3. Was the UDP src port the same?
No. The source port of the UDP datagrams was different.

4. Did the malware try to connect to the same domain names with HTTP protocol? What
does it mean?

No. The malware was trying to connect to a completely different set of domains. This means
that those domains were randomly generated (with the use of some algorithm known to the
malware creator).

5. Is alist of UDP addresses to which this sample sends datagrams a good network signature
for detecting infections by this malware family?

No. It is not a very good indicator. Those addresses are constant for this particular sample.
Other malware samples from the same family, that belong to a different botnet, will be
sending UDP datagrams to different IP addresses.

6.3 HTTP traffic analysis

In this step sample I6XIE6749M.exe will be analysed. Capture the network traffic for this sample as it
was described in the first step of this task. If during the analysis any dialog windows in Winbox appear
accept them. It is assumed that result files will be stored in the directoru: /lab/analyses/
I6XIE6749M.exe/net_results/ .

In case there were any problems while performing the analysis, the result files can be also obtained
from: /home/enisa/enisa/ex3/results/net2/net_results/

First go to the mitmproxy results directory and open mitmproxy logs.

$ cd /lab/analyses/16XIE6749M.exe/net results/mitmproxy/
$ 1s

mitm.dump

$ mitmproxy -n —--host —-r mitm.dump

Page 55

x Artifact analysis fundamentals
Artifact analysis training material

November 2014

fapl.hostip.1n
text,htm] 2588

20000&1=0P0A0AAOAARALOREOABAADAROR31cTcfha=2
DEA&E1I=0P0NARARORACAARRLAREARABAYR21cTcfha=100
BER&1I=0PRERRABAREARRERABRARARNAERAA0S21c7cf&a=09
[oemqag eu,rtceDD .exe
;dos-program 24kB 21.21MB/s
.bomlw eu,1ucheck.exe
j El DER&E1=0P00ABARRARRORABAORADAEREAR0S21cTcTRa=50
PER&1=0AR0ABARAAARRAAARARERRAERNIR31cTcTRa=22
-"f'Ferd'l_a cn .php: 900&1=00ABAAARAABANARARAABABAAIEI1cTc Faa=19
text/html 2588 94.9 /s
4 pdown1oad macromedia.com/get/flashplayer/update/current/install/install all win ca
textfhtml 258B 2081.72kB/s

p://getgreenshot.org/project-feed/
[showhost]

Figure 99. Mitmproxy window after reading log file.

To navigate through mitmproxy use arrow keys ([up], [down]). To view request details select request
and press [Enter].

ET http://ap1.hostip.info/country.php
~ 200 text/html 258B 255

-Alive
en-us

Mozilla/4.8 (compatible; Win32; WinHttp.WinHttpRequest.5)
apl.hostip.info

[1/26] [showhost] 7:help g:back

Figure 100. Mitmproxy request details view.

In the request details view, to switch between request and server response use [Tab] key. At any point
you can press ‘q’ key to go back.

After opening the mitmproxy logs obtained during the analysis, we see that there were several
suspicious HTTP requests most likely done by the malware.

First two requests lead to the addresses:
e http://api.hostip.info/country.php
e http://promos.fling.com/geo/txt/city.php

Page 56

http://api.hostip.info/country.php
http://promos.fling.com/geo/txt/city.php

x Artifact analysis fundamentals
* Artifact analysis training material
November 2014

- GET http://ap1i.hostip.info/country.php
~ 2080 text/html 258B 255.57kB/s

GET http://promos.fling.com/geo/txt/city.php
~ 200 text/html 258B 88.4kB/s
Figure 101. First two requests observed in mitmproxy.

The names of those URLs suggests they are used by malware to obtain geolocation data based on
infected machine external IP address. Geolocation data is frequently used by malicious software to
change its behaviour — some malware samples don’t execute if started in certain countries while
others might change their execution behaviour based on geolocation results (e.g. ransomware
presenting messages in different languages).

Next there are six requests to afferdls.cn domain. Each of those requests has exact same headers and
user-agent string. The only changing element is the value of GET parameter ‘a’.

oemgag.eu/rtcedd
msdos -program 24kB 21.21MB/s

afferdls.cn
ar-Agent: Opera/6 (Windows NT 6.1; ; LangID=409; x86)
vection: close
o content

Figure 103. afferdls.cn request headers.

Next we see a few requests for .exe files. In the analysed log there were 5 such requests:
e http://goemqgag.eu/rtce007.exe (group 1)
e http://wabomiw.eu/jucheck.exe (group 1)
e http://alliswellintheuniverse.com/pRru4.exe (group 2)
e http://feyzmusteri.com/pAfy.exe (group 2)
e http://inzynieriawroclaw.soulhost.eu/yQQ1gD.exe (group 2)

The first two requests (group 1) were most likely done by a different malware module than requests
from group 2. Requests from first group had different HTTP headers than requests from the second
group. Also there is no negligible time difference between the executions of requests from each group.
2014-89-19 17:22:58 GET http goemgag.eu/rtcefd7.exe

x-msdos -program 24k
Request

Host: goemgag.eu
No content

Figure 104. Headers structure of requests from the first group.

Page 57

http://goemqag.eu/rtce007.exe
http://wabomiw.eu/jucheck.exe
http://alliswellintheuniverse.com/pRru4.exe
http://feyzmusteri.com/pAfy.exe
http://inzynieriawroclaw.soulhost.eu/yQQ1qD.exe

x Artifact analysis fundamentals
* Artifact analysis training material
November 2014

://alliswellintheuniverse.com/pRrud.exe
¥x-msdos -program 24kB 13.71MB/s
R

1swellintheuniverse.com

clo
Mozilla/4.08 (compatible; MSIE 5.0; Windows 98)

Figure 105. Headers structure of requests from the second group.

We also know that the requested executables were executed on the Winbox system because a few
popups appeared during the analysis informing that INetSim executable was executed (INetSim serves
fake PE32 executable file when there is request for .exe file).

IMetSim X
IMetSim
Tl IMetSim

This is the IMetSim default binary

Figure 106. INetSim binary being executed on the Winbox machine.

Another interesting group of requests were the three requests to gate.php file:
e http://favoritepartner.com/ponyrtce/gate.php
e http://linercable.com/ponyrtce/gate.php
e http://biggestsetter.com/ponyrtce/gate.php

The characteristic gate.php filename suggests that those addresses are used by the malware to
contact the C&C server. Next, let’s view request details of one of those requests.

2014-09-19 17:23:34 POST http://favoritepartner.com/ponyrtce/gate.php

application/octet-stream
binary . .
Mozilla/4.0 (compatible; MSIE 5.0; Windows 98)

PE..+..0X.Q...M ;
fh. .XSM. .@H.@A....m.N..1.{z.,.{%eBH...rPG....0....>#...

Figure 107. Details of http://favoritepartner.com/ponyrtce/gate.php request.

There is some binary payload attached to the request. To ease viewing the binary payload, switch to
hex view by pressing ‘m’ and then ‘e’.

Page 58

x Artifact analysis fundamentals
* Artifact analysis training material

November 2014

- 2 text/html

favoritepartner.com
175
close
application/octet-stream
bina
1 .0 (compatible; MSIE 5.0; Windows 98)

30 94 Be 01 19 a5 3T 45 d2 CRYPTED®
aa 4d ff ed4 1f ad ALLoX.0. ..
3 11 91 46 85 68 37 1..
» 42 eb dc 2a da 29
14 00 80 f2 ee c2
fa cc 17 04 9c da
40 48 Qe 40 41 99
7b 7a fc 2c a3 7b
7 cf cb c2 a1l 20 ae
b4 6b a5 22 22 a7
a d9 96 2e B4

DOo-NWo TN

el N BTl I . W)

(SR

[13/20] [showhost] 7:help g:back

Figure 108. Request payload in hex view.

When comparing this payload to payloads of other gate.php requests, we see that each request had
exactly the same payload.

Exercise:
1. Analyse the pcap file obtained in the same analysis of I6XIE6749M.exe sample. Is there any
other suspicious network traffic besides http requests observed by MITMProxy?

Yes. There is suspicious non-http traffic in PCAP file.

First there are a few UDP datagrams sent to 94.242.250.64 to port 53 (and seen by Wireshark
as malformed DNS requests). This might be some covert channel created by the malware using
port 53 to deceive system administrator.

No. Time Source Destination Protocol Length Info
33 1.788552 10.0.0.2 94.242.250.64 DNS 62 Unknown operation (15) Ox8B8% [Malformed Packet]
36 1.788639 10.0.0.2 94.242.250.64 DNS 62 Unknown operation (15) Ox8889 [Malformed Packet]
45 1.800929 10.0.0.2 94.242.250.64 DNS 62 Unknown operation (15) Ox8889 [Malformed Packet]
107 15.007670 10.0.0.2 94.242.250.64 DNS 62 unknown operation (15) 0x8889 [Malformed Packet]
114 16.293147 10.0.0.2 94.242.250.64 DNS 62 unknown operation (15) 0x8883 [malformed Packet]
119 16.297530 10.0.0.2 94.242.250.64 DNS 62 Unknown operation (15) 0x8889 [Malformed Packet]

Figure 109. Suspicious UDP traffic to port 53.

Secondly there were a few TCP connection attempts to port 91.

Filter: | tcp.port == 91 Expressiun‘.. Clear Apply Save

MNo. Time Source Destination Protocol Length Info
66 49231 > mit-dov [SYN] Seq=0 Win=8192 Len=0 M55=1460 W5=4 SACK_PERM=1
54 mit-dov > 49231 [RST, ACK] Seq=l Ack=1l Win=0 Len=0
66 49231 > mit-dov [5YN] Seq=0 win=8192 Len=0 M55=1460 WS=4 SACK_PERM=1

54 mit-dov > 49231 [RST, ACK] Seq=1 Ack=1 win=0 Len=0
62 49231 > mit-dov [5YN] Seq=0 Win=8192 Len=0 M55=1460 SACK_PERM=1
54 mit-dov > 49231 [R5T, ACK] Seq=1 Ack=1l Win=0 Len=0

T

Frame 16: 66 bytes on wire (528 bits), 66 bytes captured (528 bits)

® Ethernet II, src: 08:00:27:66:25:2b (08:00:27:66:25:2b), Dst: 08:00:27:a7:7e:0e (08:00:27:a7:7e:0e)
Internet Protocol Version 4, Src: 10.0.0.2 (10.0.0.2), Dst: 10.0.0.1 (10.0.0.1)

Transmission Control Protocol, Src Port: 49231 (49231), Dst Port: 91 (91), sSeq: 0, Len: O

Figure 110. Connection attempts to TCP port 91.

Page 59

¥ 79 Artifact analysis fundamentals

* Artifact analysis training material

November 2014

2. During this exercise MITMProxy captured information about many HTTP connections. Were
the addresses of all HTTP servers resolved by domain or were there any HTTP connections to
hardcoded IP addresses?

The connection to http://afferdls.cn/stat2.php was done with a hardcoded IP address. There
was no DNS request about afferdls.cn domain.

In the current lab configuration if malware tries to connect to any domain, its address will be
resolved to 10.0.0.1 (by INetSim fake DNS server). If the malware tries to connect to any service
through a hardcoded IP address it will appear in the captured network traffic as a connection
to an external IP address.

This can be easily viewed in Wireshark:

Filter: | ip.src == 10.0.0.2 & hitp |z| Expression... Clear Apply Save
MNa. Time Source Destination Protecol Length Info
6 0.036822 10.0.0.2 10.0.0.1 HTTP 238 GET /country.php HTTP/1.1

251.450394 10.0.0.2 10.0.0.1 HTTP 131 GET /geo/txt/city.php HTTP/1.0
391.789906 10.0.0.2 178.32.190.142 HTTP 223 GET /stat2.php?w=30000&i=0000000000000000000000009831c7cf&a=2 HTTP/1.1
41 1.789965 10.0.0.2 178.32.190.142 HTTP 224 GET /stat2.php?w=30000&1=0000000000000000000000009831c7cf&a=99 HTTP/1.1
47 1.803127 10.0.0.2 178.32.190.142 HTTP 225 GET /stat2.php?w=30000&i=0000000000000000000000009831c7cf&a=100 HTTP/1.1
70 2.415145 10.0.0.2 10.0.0.1 HTTP 101 GET /rtce0d7.exe HTTP/1.0
90 2.780514 10.0.0.2 10.0.0.1 HTTP 101 GET /jucheck.exe HTTP/1.0

105 15.006730 10.0.0.2 178.32.190.142 HTTP 224 GET /stat2.php?w=30000&i=0000000000000000000000009831c7cf&a=50 HTTP/1.1

120 16.297630 10.0.0.2 178.32.190.142 HTTP 224 GET /stat2.php?w=30000&1=0000000000000000000000009831c7cf&a=22 HTTP/1.1

122 16.297692 10.0.0.2 178.32.190.142 HTTP 224 GET /stat2.php?w=30000&i=0000000000000000000000009831c7cf&a=19 HTTP/1.1

Figure 111. Connections to external IP address.

It can be also viewed in MITMProxy if MITMProxy will be started without --host flag.

Starting mitmproxy without --host flag.

$ mitmproxy -n —-r mitm.dump

3hp?w:34444&i:4444444444444444444444449@31c?c &a=2

.F
faa=160
.F

_php?w:34444&i:@444444444444444444444449331c?c &a=99

B/fs

~ 200 x-msdos-program 24kB 21.21MB/s

Figure 112. MITMProxy without --host flag.

6.4 Extra sample

As an extra exercise, students can analyse additional malware samples using the techniques known in
this task. The extra sample name is: ejhct.bfg.exe. The sample can be found in
/home/enisa/enisa/ex3/extra.

After analysis, students should have an open discussion to share their findings.

7 Task 4: Automatic analysis

After learning basic static analysis and dynamic analysis, students will be asked to perform automatic
analysis using Cuckoo Sandbox to see what are advantages and disadvantages of such type of analysis.
First, the students will upload the new sample to Cuckoo Sandbox and then they will analyse the
results obtained.

Page 60

x Artifact analysis fundamentals
* Artifact analysis training material
November 2014

To present all features of the Cuckoo Sandbox, a new malware sample, not analysed in previous tasks,
will be used.

7.1 Sending sample to Cuckoo

First, start Cuckoo Sandbox with its web interface and API script as described in the first exercise
Building artifact handling and analysis environment. Also make sure that INetSim is currently enabled.
NB: Cuckoo snapshot should in running state!

Then start Viper (in enisa project space) and find invoice.exe sample. If there is no such sample it can
be obtained from /home/enisa/enisa/ex3/samples directory.

Figure 113. Finding invoice.exe sample in Viper

Then send sample to Cuckoo using the Viper cuckoo command.

Figure 114. Sending invoice.exe sample to the cuckoo analysis.

Then start Cuckoo web interface, switch to Recent tab and wait until the last analysis (md5:
a4f80b699b52c39da...) will be completed and report generated.

ent © Pending Search ® Submit
cuckoosy”

Completed invoice exe analysis

Recent Files

Timestamp MD5 Status

2014-09-25 11:21:49 alf80bE699b52c39dablT7ab6l lbkb71d9f reported
2014-09-25 11:17:23 fal26=8cd29c14b50029f13c0bdE1l5al reported
2014-09-25 02:40:40 alf80b699b52c29dab17a661 Ibkb71d9f reported
2014-09-24 16:42:58 2f0af1560bsc6a2i0libTazcs118192d reported
2014-09-24 16:40:39 Td9fched3d6a9121721f71ba%ddb2028 reported
2014-09-24 16:38:19 1166db921802cd27216f5f05fc59=£27 reported

Figure 115. Completed invoice.exe analysis in Cuckoo Sandbox.

To view the analysis report click on md5 sum link.

Page 61

L ® Artifact analysis fundamentals

* Artifact analysis training material

November 2014

cuckooty”

Quick Overview Static Analysis Behavioral Analysis Network Analysis Dropped Files

Category Started Completed Duration Log

FILE 2014-08-25 12:15:01 2014-08-25 12:17:19 138 seconds Show Log

Figure 116. Cuckoo report of the invoice.exe file.

Each Cuckoo report is divided into five areas: Quick Overview, Static Analysis, Behavioural Analysis,
Network Analysis and Dropped Files. All of these areas will be briefly presented in the next steps of
this task.

If there were any problems with starting Cuckoo Sandbox or sending sample to the analysis, offline
analysis results can be obtained from /home/enisa/enisa/results/cuckool.

Offline results are in form of a saved webpage. To view them upload the results to the clean instance
of the Winbox machine and open the result file (cuckoo_invoice.htm) in a web browser. Then proceed
with the analysis as it is described in the next step.

e —————————————————————
1

7.2 Cuckoo Sandbox results

The first area of the Cuckoo Sandbox report is Quick Overview giving brief information about analysed
sample and its behaviour.

At the top of the Quick Overview there is File Details section presenting a sample file name, checksums
as well as any detected signatures. An interesting thing to notice is that if the sample is uploaded to
Cuckoo Sandbox using Viper, the original sample file name is changed to its SHA256 sum value. This is
not the case when the sample is uploaded by web interface or Cuckoo scripts.

File Details
File Name d99dfcdd814ef39468f6912a8ci772185eeeac285eb6c3187650eb3cd7833c79
File Size 194560 bytes
File Type PE32 executable (GUI) Intel 80386, for MS Windows
MD5 a4f50b699b52c39dab17a6614bb74dor
SHA1 016b7343d910263cdib5224080825c1d4a5d8e82
SHA256 d99dfcdde14ef39466M0912a8cIT72165eeeac265ebbc3167650eb0cd7633C79
SHA512 b04b97b237b4c738080721e51e0a71402e023513156742669b5alfed37522ed5215a61ch97441744048644418e366531d33209050be4bf0223e7ab38bd6505a8¢
CRC32 4128ADAS
Ssdeep 3072:0ltrgLe GwpbVOIFZEXSWT ndviXSwQ9bn0sKbelmZVin+RNriKe QrAXMsXU: OIt0HYpbVuhVdvEWQ8bn+hLz7eQrAX

Yara None matched

Figure 117. File Details section of the Cuckoo report.

Page 62

L ® Artifact analysis fundamentals

* Artifact analysis training material

November 2014

The following section is presenting what hosts the malware connected to, and what domains it was
querying? In this case we can see two suspicious domains: angelescitypattaya.com and
pattayasuay.com.

Hosts Domains
IP Domain IP
8888 teredo.ipv6_microsoft.com
239255 255 250 dns.msfincsi.com
angelescitypattaya.com
pattayasuay.com

cri.microsoft.com

OCSP.MSOCSP.Com

Figure 118. List of hosts and domains from the Cuckoo report.

The summary section below is presenting list of files, registry keys and mutexes which malware
accessed during the analysis (created, read or written).

Summary

Registry Keys Mutexes

C:\Windows

C:\Windows\

=

MopuntPointManager
:\Users\ENISA\AppData‘\Local\Temp'd99dfcddBl4ef39466£6912a8cfT172f85eeeac2B85ebac318T7650eb9cdT833cTY
:\Users\ENISA\AppData\Roaming\Ozho\unweh.exe
:\Users\ENISAK\AppData‘\Roaming' Tymicy
:\Device\HarddiskVolume2\Users\ENISA\AppData‘Roaming\
:\Users\ENISRK\AppData\Local\Temp
:\Users\ENISA\AppData‘\Roaming' Tymicyh\igruo.duo
:\Users\ENISA\AppData‘\Roaming' Ixyxm
:\Users\ENISA\AppData‘\Roamingh Ixyxm\ydpai.von

0o 0 n o o0o0nn

Figure 119. Fragment of the list of accessed files.

Page 63

K, Artifact analysis fundamentals

* Artifact analysis training material
enisa
o November 2014
Summary

Files Reqgistry Keys Mutexes

Software\Microsoft\Rpc

HEEY LOCAL MACHINE\System\CurrentControlSet\Control\ComputerName'\ActiveComputerName
Software‘\Policies\Microsoft\Windows NT\Rpc

HREY LOCAL MACHINE\Software\Policies\Microsoft\SQMClient\Windows
Software\Microsoft\Windows\CurrentVersion\Explorer\FolderDescriptions
{F3BBF404-1D43-42F2-9305-6TDEOB2EBFC23}
Software\Microsoft\Windows\CurrentVersion\Explorer\EnownFolderSettings
{3EB6ESDB-65F9-4CF6-R03A-E3EF65T29F3D}

PropertyBag

SessionInfoll

EnownFolders

Figure 120. Fragment of the list of accessed registry keys.

Summary

Files Registry Keys m

Global\ {AT60CABA-3AT3-6631-EBE3-B6AE00SDF631}
Local\{36DFBAF0)-1A08-FTBE-EBE3-B6AE00SDF631}
Global\ {3D01DFCE-4F3E-FCS50-EBE3-BAE00SDF631}
Local\{4T760F3B4-694C-8631-EBE3-B6RAEO0SDFE31}
Local\ { 6AFB4BT7C-DEE4-ABAA-FRBE3-B6AEO0SDFE31}
Local\{1D79EFC1-TF39-DC28-EBE3-B6AEOOSDF631}
Global% {DR3IF107TE-8086-1B6E-0ABC-1TBTEL026728}
Global% {DR3F107E-B086-1B6E-OEBD-17BTES036728}
Global% {DA3IF107E-8086-1B6E-SEBD-1TBT7B5036728}
Global% {DR3F107E-B086-1B6E-BEBD-17B765036728}

Figure 121. Fragment of the list of accessed mutexes.

7.3 Static Analysis results

Switch to the Static Analysis area of the Cuckoo Sandbox report. This section contains information
about static analysis findings. Additionally Static Analysis is divided into three subsections: static
analysis, strings and antivirus.

Quick Qverview Static Analysis Behavioral Analysis Network Analysis Dropped Files

Static Analysis Strings Antivirus

Figure 122. Static Analysis section with three subsections.

The Static Analysis subsection starts with the Version Info structure — structure which is typically
attached to the executable file as an additional resource. The aim of this structure is to give
information about the executable version number, operating system, description, as well as the
original file name.

10 http://msdn.microsoft.com/en-us/library/windows/desktop/aa381058%28v=vs.85%29.aspx

Page 64

http://msdn.microsoft.com/en-us/library/windows/desktop/aa381058%28v=vs.85%29.aspx

& Artifact analysis fundamentals
* Artifact analysis training material
November 2014

ersion Infos

LegalCopyright “xa9 2003 Gelepu Erovoz. Osahany Agatul Eleliny.
dX8r6WrHnFP UbgTEfZb2ngR

h83w2oFDe3CRoKi fPlaC&UPanoDatDNrJtg

thd2BBGBxqD3wBwg dbotMQbFhVgLSBg

AuK4phoSjGe5Wk xNLCrxAVRSROXEDS

peBEMIRELWTKIpKYbqw8 g7dgTstMSUTw

OESxJwGalUTnX rDREQkcTHTVE

Figure 123. Fragment of the Version Info structure of the analysed sample.

In this case we see that Version Info structure is filled with random strings — this is not a typical
situation.

Below Version Info structure there is a list of PE sections found in executable file.

Sections
Name Virtual Address Virtual Size Size of Raw Data Entropy
Blaeub7uwe 1-wb1'\wd6 0x00001000 0x00035000 0x00000000 0.0
W8T 79T webu \w0b 11 0x00036000 0x00021000 0x0002e800 7.99661984982
Isrc 0x00065000 0x00001000 0x00000c00 3.37805487255

Figure 124. List of sections in analysed binary file.

We can see that the first two sections have some random names. Moreover the second section has
very high entropy (7.99/8.00) while the first section has no raw data on disk and large virtual size. This
is a clear indicator that this sample was packed.

The sections below list the sample imports lists. We see that malware imports only a few functions
from three libraries. This confirms our suspicion that this sample was packed.

Page 65

L ® Artifact analysis fundamentals

* Artifact analysis training material
- November 2014
Imports

Library KERNEL32.DLL:

» 0x465a0c LoadLibrarya

» 0x465al0 GetProchddress
= 0x465al4 VirtualProtect
= 0x465alf VirtualAlloc

» 0xd65alc VirtualFree

= 0x465a20 ExitProcess

Library aDVaPI32.dll:

Library UsER32.DLL:
= 0x465a30 SetProph

Figure 125. Imports list of the sample.

Next, switch to Strings subsection which contains strings found in sample file. As expected from the
packed file there aren’t too many meaningful strings for this sample.

Stafic Analysis Strings Antivirus

!This program cannot be run in DOS mode.
aw?%.!
tgs#/*
OP:gj8
B/x%/Q
\I:?zy
(g#@:5{
Nn(;e,
59U;<Q
1y{usT
_U4F5~8
@Y ict{ec
.9 (W, D

Figure 126. Fragment of the Strings subsection.

Depending on whether there was internet access on the Styx machine, in the next Antivirus subsection
there will be a list of Virustotal results for the analysed file (if there was no Internet access this
subsection will be empty).

Page 66

L ® Artifact analysis fundamentals

* Artifact analysis training material
enisa

. November 2014
Static Analysis Strings

Antivirus Signature

Blkav W32.AppdataZano. Trojan
MicroWorld-eSecan Trojan.GenerickDV.859150
nProtect Trojan. GenerickDV. 852150
CMC Trojan-Spy. Win32. Zbot!O
CAT-QuickHeal TrojanPWS. Zbot

MchAfee Artemis!A4FB0BB99B52
Malwarebytes Trojan. Agent. RSEVGen
K7AntiVirus Trojan { 0040{3081)
K7GW Trojan { 0040{3081)

Figure 127. Fragment of the Virustotal results list for the analysed sample.

7.4 Behavioural Analysis results

Behavioural Analysis results section contains information on what malicious processes were running
during the analysis. It lists processes started by the malware as well as processes to which the malware
injected its code.

At the top there is a process tree of the malware’s processes.

d938dfcdd814efi9468f6912a8cf772f85eeeac285ebbe3187650eb8cd 7833279 1540
o unweh.exe 580
o emd.exe 3602
taskhost.exe 1876
Dwm.exe 1740
Explorer.EXE 1764
o FilleZilla Server Interface.exe 1412
o Greenshot.exe 852

Figure 128. Malware processes process tree.

On this list we see that the malware sample (d99dfc..., pid:1540) created two new processes:
unweh.exe and cmd.exe. There is also a group of other processes involved in malware activity:
taskhost.exe, Dwm.exe, Explorer.EXE, FileZilla Server Interface.exe and Greenshot.exe to which
malware might have injected some code.

Page 67

* L ® Artifact analysis fundamentals

* Artifact analysis training material
November 2014
x *

In the process tree below, there is an API calls list for each traced process. To switch between
processes click on tabs with process names. It is also possible to filter API calls by clicking on the chosen
calls type.

d99dfedd814ef39468f6912a8cf772f{B5eeeac2B85ebbc3187650eb8ed 783379 yhih.exe taskhost.exe Dwm.exe

Explorer.EXE FileZilla Server Interface.exe Greenshot. exe cmd.exe

Click to filter calls

yhih.exe, FID: 3240, Parent PID: 2824 /

default network filesystem registry process services synchronization

Figure 129. API calls list.

Each observed API call consists of timestamp when it was observed, its name, arguments, status,
return value and information whether it was repeated.

Time APl Arguments Status Return Repeated

2014-09-24 14:02:30,144 NtOpenDirectoryObject DirectoryHandle success 0x00000000
000000061
DesiredAccess: 15
ObjectAttributes:
C:\Sessions

\1\BaseNamedOb jects

2014-09-24 14:02:31 562 NtOpenFile ShareAccess: 3 tailed 3221225658
FileName: c: \Windows
DesiredAccess:
000100080
FileHandle: 0x00000000

Figure 130. Two example API calls.

By tracing the calls made by each process, it is possible to find out information about some of the
malicious code’s functionality. Unfortunately due to the usually large number of observed calls it is a
rather time consuming task.

Due to the structure of the results page, API calls won’t be available for students using offline results
file cuckoo_invoice.htm. Students using offline results can still view API calls using slightly older Cuckoo
report format by opening the second file — cuckoo_invoice2.htm.

Page 68

x K, Artifact analysis fundamentals
Artifact analysis training material

November 2014

Processes

registry filesystem process services network synchronization

d99dfcdd814ef3946816912a8cf772f85eeeac285ebbc3187650eb9cd7833¢79 riD: 1540. Parent
PID: 3896

unweh.exe PID- 580, Parent PID- 1540

taskhost.exe PID: 12876, Parent PID: 480

Dwm.exe PID- 1740, Parent PID- 796

FileZilla Server Interface.exe PID: 1412, Parent PID: 1764
Explorer.EXE FID: 1764, Parent PID: 1808
Greenshot.exe PiD: 852, Parent PID: 1764

cmd.exe PID: 3692, Parent PID: 1540

Figure 131. Older format of API calls list in cuckoo_invoice2.htm.

7.5 Network Analysis results

The Network Analysis section includes information about network traffic observed during the analysis.
Currently, the detected traffic types are DNS requests, HTTP traffic, ICMP packets and IRC protocol. It
is also possible to directly download the PCAP file with all of the detected traffic for further inspection.

Quick Overview Static Analysis Behavioral Analysis Network Analysis Dropped Files

Download PCAP
Hosts (2) Domains (6) HTTP (&) ICMP (0} IRC (0)

Hosts
IP
8888

239.255.255.250
Figure 132. Network traffic analysis section.

Hosts and Domains were already listed in the Quick Overview section. The only other recognized traffic
are eight HTTP requests.

Page 69

In the HTTP requests subsection we can see that the malware was doing multiple suspicious HTTP
POST requests to file.php. In each such request the same User-agent string was used. There was also

® Artifact analysis fundamentals
Artifact analysis training material

November 2014

Hosts (2) Domains (6) IRLIEM ICMP(0) IRC (0)

HTTP Requests
URI

hitp:/fangelescitypattaya com/mimosafile_php

Data

POST /mimosa/file.php HTTP/1.1

Accept: */*

User-Agent: Mozilla/4.8 (compatible; MSIE 7.@; W
indows NT 6.1; Trident/4.8; SLCC2; .NET CLR 2.8.
5@727; .NET CLR 3.5.36729; .MET CLR 3.8.38729; M
edia Center PC 6.8; .NET4.8C)

Host: angelescitypattaya.com

Content-Length: 122

Connection: Keep-Alive

Cache-Contrel: no-cache

TAVx 14\ xd9In+'\ 188 \xde\xae@\x8a\xBe&\xe6E) 7\xa50g\
*1INN\xBO7\xOF , PAx 1 \xc BE\xba\ x93 \xe D\ xe5\x1dS\x9
Fixed\xd4\x13\xd1\xca\x9b}\xd2\x85 \xcFB\xF6[\xad\
xa3h\xalxdel\xBe\xd3ui\xF S\ 3\ f 68\ xebF\x 15\ xc2
Yacfd w8 \xca\ x8d \xca\xF1\x98g \xab\xd 7\ xdarm-\xed
\xc7\xBO\xBT\xaft \xd@\xae\x13\xce | \xb7\xcB\xcI\x
FraA\x17BpSi, \Wwec \xd4fqlxcc \x 13+ \xd@\xc F o 7\
\x18\xbem\xce\x1le\xb6Hm

Figure 133. HTTP requests subsection.

variable length POST data attached, different for each request.

In total there were six requests to file.php to two unique URlIs:
e http://angelescitypattaya.com/mimosa/file.php
e http://pattayasuay.com/dkp/file.php

7.6 Analysing list of dropped files

The last section of the Cuckoo report (Dropped Files) contains a list of files that were observed to be
created during the analysis.

Page 70

x Artifact analysis fundamentals

enisa Artifact analysis training material
' [
November 2014
*
Quick Overview Static Analysis Behavioral Analysis Network Analysis Dropped Files

File name unweh.exe

File Size 194560 bytes

File Type PE32 executable (GUI) Intel 80386, for MS Windows

MD5 9ac21354338053c1386d4a79cad8edac

SHA1 bd174b9%ae4313005ae3f8b4dc5eb92701fdd 1196

SHA256 2f03def09334c4728eT744ea3fB8abaced372321dfd9c009c466971c118b5a31c

CRC32 29172950

Ssdeep 3072:0lUtrgLec GwpbVOIFZEXsWTndvEXSwQ9bn08KbcImZVin+RNriKeQrAXMsXmH:OIrnt0OHYpbVuhVdvEwQSbn+hLz7eQrAX

Yara None matched

Figure 134. Dropped Files section.

For each dropped file there is a standard file details table containing the file name, type, and group of
cryptographic hashes. Additionally each file can be downloaded to the local machine.

In this analysis, Cuckoo Sandbox detected the creation of the following files:
e unweh.exe (executable)
e d99dfcdd814ef39468f6912a8cf772f85eeeac285eb6c3187650eb9cd7833¢c79 (executable)
e tmpfd5ba7aa.bat (DOS batch file)
e igruo.duo (unknown data)
e file[1].htm (HTML document/text)
e file[2].htm (HTML document/text)

7.7 Extra analyses

As an extra exercise, students can analyse samples from previous tasks using Cuckoo Sandbox. Then
they should compare the Cuckoo Sandbox results with their previous findings. Most of the results
should be similar to the previous ones. For a few samples Cuckoo Sandbox might fail during the static
analysis or report some errors. This is caused by some obfuscation techniques used by malware or
some other non-standard behaviour.

8 Exercise summary

During the exercise students have learnt basic principles of malicious artifacts analysis. After a proper
theoretical introduction, the students had the opportunity to test their skills by analysing live malware
samples.

At the beginning of the exercise the students were introduced to the fundamentals of malicious code
analysis. In this part, the students learnt various types of analyses, their application, strong and weak
points, and when to use each of them. After that, the participants learnt basic security precautions
involving the execution of malware samples in a controlled environment.

During the basic static analysis, students had the opportunity to search for indicators of the malicious
functionality in the sample files provided. First they scanned the sample for the patterns of well-known
packers and protectors, then they analysed a list of strings extracted from the file. After the string

Page 71

x Artifact analysis fundamentals
* Artifact analysis training material
November 2014

analysis, the participants analysed various headers in the PE structure (import tables, file resources).
Finally, the students scanned a sample malware for any embedded objects with well-known file types.

After the static analysis, the students performed basic behavioural analysis of the provided sample.
During this analysis they searched for any changes in the operating system that might indicate
malicious code functionality and purpose. After that, that operating system was scanned using the
GMER tool to search for any indicators of rootkit activity.

During the network analysis, the participants executed the samples provided, and captured the
network traffic. The samples were executed in an isolated environment. To simulate basic network
services, INetSim tool was used. Then, using the captured traffic, students searched for well-known
malicious network traffic patterns.

The last type of analysis performed was an automatic analysis. During this analysis, students used the
Cuckoo Sandbox appliance previously configured in the exercise Building artifact handling and analysis
environment. The purpose of this analysis was to let students compare the results obtained in the
automatic analysis with the results from non-automatic analyses.

9 References

1. A Study of the Packer Problem and Its Solutions
http://www.ecsl.cs.sunysb.edu/tr/TR237.pdf (accessed 15. October 2014)
Visual Studio 2013 Update 3 http://www.visualstudio.com/ (accessed 15. October 2014)
What is a DLL? http://support.microsoft.com/kb/815065 (accessed 15. October 2014)
Base64 http://en.wikipedia.org/wiki/Base64 (accessed 15. October 2014)
Borland Delphi http://www.on-time.com/rtos-32-docs/rttarget-32/programming-

vk W

manual/compiling/borland-delphi.htm (accessed 15. October 2014)

6. Advanced Techniques — Using Process Explorer
http://www.microsoft.com/security/sir/strategy/default.aspx#!malwarecleaning_explorer
(accessed 15. October 2014)

7. VERSIONINFO resource http://msdn.microsoft.com/en-
us/library/windows/desktop/aa381058%28v=vs.85%29.aspx (accessed 15. October 2014)

Page 72

http://www.ecsl.cs.sunysb.edu/tr/TR237.pdf
http://www.visualstudio.com/
http://support.microsoft.com/kb/815065
http://en.wikipedia.org/wiki/Base64
http://www.on-time.com/rtos-32-docs/rttarget-32/programming-manual/compiling/borland-delphi.htm
http://www.on-time.com/rtos-32-docs/rttarget-32/programming-manual/compiling/borland-delphi.htm
http://www.microsoft.com/security/sir/strategy/default.aspx#!malwarecleaning_explorer
http://msdn.microsoft.com/en-us/library/windows/desktop/aa381058%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa381058%28v=vs.85%29.aspx

ENISA

European Union Agency for Network and Information Security
Science and Technology Park of Crete (ITE)

Vassilika Vouton, 700 13, Heraklion, Greece

Athens Office
1 Vass. Sofias & Meg. Alexandrou
Marousi 151 24, Athens, Greece

PO Box 1309, 710 01 Heraklion, Greece
Tel: +30 28 14 40 9710
info@enisa.europa.eu
WWW.enisa.europa.eu

